Where are we in CS 440?

• Now leaving: sequential, deterministic reasoning

• Entering: probabilistic reasoning and machine learning
Probability: Review of main concepts (Chapter 13)
Motivation: Planning under uncertainty

- Recall: representation for planning
- **States** are specified as conjunctions of predicates
 - Start state: $\text{At}(P1, \text{CMI}) \land \text{Plane}(P1) \land \text{Airport}(\text{CMI}) \land \text{Airport}(\text{ORD})$
 - Goal state: $\text{At}(P1, \text{ORD})$
- **Actions** are described in terms of preconditions and effects:
 - $\text{Fly}(p, \text{source}, \text{dest})$
 - **Precond**: $\text{At}(p, \text{source}) \land \text{Plane}(p) \land \text{Airport}(\text{source}) \land \text{Airport}(\text{dest})$
 - **Effect**: $\neg\text{At}(p, \text{source}) \land \text{At}(p, \text{dest})$
Motivation: Planning under uncertainty

• Let action $A_t = \text{leave for airport } t \text{ minutes before flight}$
 – Will A_t succeed, i.e., get me to the airport in time for the flight?

• Problems:
 • Partial observability (road state, other drivers' plans, etc.)
 • Noisy sensors (traffic reports)
 • Uncertainty in action outcomes (flat tire, etc.)
 • Complexity of modeling and predicting traffic

• Hence a purely logical approach either
 • Risks falsehood: “A_{25} will get me there on time,” or
 • Leads to conclusions that are too weak for decision making:
 • A_{25} will get me there on time if there's no accident on the bridge and it doesn't rain and my tires remain intact, etc., etc.
 • A_{1440} will get me there on time but I'll have to stay overnight in the airport
Probability

Probabilistic assertions summarize effects of

- Laziness: reluctance to enumerate exceptions, qualifications, etc.
- Ignorance: lack of explicit theories, relevant facts, initial conditions, etc.
- Intrinsically random phenomena
Making decisions under uncertainty

• Suppose the agent believes the following:
 \[P(A_{25} \text{ gets me there on time}) = 0.04 \]
 \[P(A_{90} \text{ gets me there on time}) = 0.70 \]
 \[P(A_{120} \text{ gets me there on time}) = 0.95 \]
 \[P(A_{1440} \text{ gets me there on time}) = 0.9999 \]

• Which action should the agent choose?
 – Depends on preferences for missing flight vs. time spent waiting
 – Encapsulated by a utility function

• The agent should choose the action that maximizes the expected utility:
 \[P(A_t \text{ succeeds}) \times U(A_t \text{ succeeds}) + P(A_t \text{ fails}) \times U(A_t \text{ fails}) \]
Making decisions under uncertainty

• More generally: the expected utility of an action is defined as:

\[
EU(a) = \sum_{\text{outcomes of } a} P(\text{outcome} \mid a) U(\text{outcome})
\]

• **Utility theory** is used to represent and infer preferences
• **Decision theory** = probability theory + utility theory
Monty Hall problem

• You’re a contestant on a game show. You see three closed doors, and behind one of them is a prize. You choose one door, and the host opens one of the other doors and reveals that there is no prize behind it. Then he offers you a chance to switch to the remaining door. Should you take it?

http://en.wikipedia.org/wiki/Monty_Hall_problem
Monty Hall problem

- With probability 1/3, you picked the correct door, and with probability 2/3, picked the wrong door. If you picked the correct door and then you switch, you lose. If you picked the wrong door and then you switch, you win the prize.

- Expected utility of switching:
 \[
 EU(\text{Switch}) = (1/3) * 0 + (2/3) * \text{Prize}
 \]

- Expected utility of not switching:
 \[
 EU(\text{Not switch}) = (1/3) * \text{Prize} + (2/3) * 0
 \]
Where do probabilities come from?

• **Frequentism**
 – Probabilities are relative frequencies
 – For example, if we toss a coin many times, $P(\text{heads})$ is the proportion of the time the coin will come up heads
 – But what if we’re dealing with events that only happen once?
 • E.g., what is the probability that Team X will win the Superbowl this year?
 • “Reference class” problem

• **Subjectivism**
 – Probabilities are degrees of belief
 – But then, how do we assign belief values to statements?
 – What would constrain agents to hold consistent beliefs?
Probabilities and rationality

• Why should a rational agent hold beliefs that are consistent with axioms of probability?
 – For example, \(P(A) + P(\neg A) = 1 \)

• If an agent has some degree of belief in proposition \(A \), he/she should be able to decide whether or not to accept a bet for/against \(A \) (De Finetti, 1931):
 – If the agent believes that \(P(A) = 0.4 \), should he/she agree to bet \(\$4 \) that \(A \) will occur against \(\$6 \) that \(A \) will not occur?

• **Theorem:** An agent who holds beliefs inconsistent with axioms of probability can be convinced to accept a combination of bets that is guaranteed to lose them money
Random variables

• We describe the (uncertain) state of the world using random variables
 - Denoted by capital letters
 - \(R \): Is it raining?
 - \(W \): What’s the weather?
 - \(D \): What is the outcome of rolling two dice?
 - \(S \): What is the speed of my car (in MPH)?

• Just like variables in CSPs, random variables take on values in a domain
 - Domain values must be mutually exclusive and exhaustive
 - \(R \) in \{True, False\}
 - \(W \) in \{Sunny, Cloudy, Rainy, Snow\}
 - \(D \) in \{(1,1), (1,2), \ldots (6,6)\}
 - \(S \) in \([0, 200]\)
Events

• Probabilistic statements are defined over events, or sets of world states
 - “It is raining”
 - “The weather is either cloudy or snowy”
 - “The sum of the two dice rolls is 11”
 - “My car is going between 30 and 50 miles per hour”

• Events are described using propositions about random variables:
 - $R = \text{True}$
 - $W = \text{“Cloudy”} \lor W = \text{“Snowy”}$
 - $D \in \{(5,6), (6,5)\}$
 - $30 \leq S \leq 50$

• Notation: $P(A)$ is the probability of the set of world states in which proposition A holds
Kolmogorov’s axioms of probability

• For any propositions (events) A, B
 - \(0 \leq P(A) \leq 1 \)
 - \(P(\text{True}) = 1 \) and \(P(\text{False}) = 0 \)
 - \(P(A \lor B) = P(A) + P(B) - P(A \land B) \)
 – Subtraction accounts for double-counting

• Based on these axioms, what is \(P(\neg A) \)?

• These axioms are sufficient to completely specify probability theory for discrete random variables
 - For continuous variables, need density functions
Atomic events

- **Atomic event**: a complete specification of the state of the world, or a complete assignment of domain values to all random variables
 - Atomic events are mutually exclusive and exhaustive

- E.g., if the world consists of only two Boolean variables *Cavity* and *Toothache*, then there are four distinct atomic events:

 \[
 \begin{align*}
 \text{Cavity} &= \text{false} \wedge \text{Toothache} = \text{false} \\
 \text{Cavity} &= \text{false} \wedge \text{Toothache} = \text{true} \\
 \text{Cavity} &= \text{true} \wedge \text{Toothache} = \text{false} \\
 \text{Cavity} &= \text{true} \wedge \text{Toothache} = \text{true}
 \end{align*}
 \]
Joint probability distributions

- A **joint distribution** is an assignment of probabilities to every possible atomic event

<table>
<thead>
<tr>
<th>Atomic event</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cavity = false ∧ Toothache = false</td>
<td>0.8</td>
</tr>
<tr>
<td>Cavity = false ∧ Toothache = true</td>
<td>0.1</td>
</tr>
<tr>
<td>Cavity = true ∧ Toothache = false</td>
<td>0.05</td>
</tr>
<tr>
<td>Cavity = true ∧ Toothache = true</td>
<td>0.05</td>
</tr>
</tbody>
</table>

- Why does it follow from the axioms of probability that the probabilities of all possible atomic events must sum to 1?
Joint probability distributions

• **A joint distribution** is an assignment of probabilities to every possible atomic event

• Suppose we have a joint distribution of \(n \) random variables with domain sizes \(d \)
 – What is the size of the probability table?
 – Impossible to write out completely for all but the smallest distributions
Notation

- \(P(X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n) \) refers to a single entry (atomic event) in the joint probability distribution table
 - Shorthand: \(P(x_1, x_2, \ldots, x_n) \)
- \(P(X_1, X_2, \ldots, X_n) \) refers to the entire joint probability distribution table
- \(P(A) \) can also refer to the probability of an event
 - E.g., \(X_1 = x_1 \) is an event
Marginal probability distributions

- From the joint distribution $P(X,Y)$ we can find the \textit{marginal distributions} $P(X)$ and $P(Y)$

<table>
<thead>
<tr>
<th>$P(\text{Cavity, Toothache})$</th>
</tr>
</thead>
</table>
| $\text{Cavity} = \text{false} \land \text{Toothache} = \text{false}$ | 0.8
| $\text{Cavity} = \text{false} \land \text{Toothache} = \text{true}$ | 0.1
| $\text{Cavity} = \text{true} \land \text{Toothache} = \text{false}$ | 0.05
| $\text{Cavity} = \text{true} \land \text{Toothache} = \text{true}$ | 0.05

<table>
<thead>
<tr>
<th>$P(\text{Cavity})$</th>
</tr>
</thead>
</table>
| $\text{Cavity} = \text{false}$ | ?
| $\text{Cavity} = \text{true}$ | ?

<table>
<thead>
<tr>
<th>$P(\text{Toothache})$</th>
</tr>
</thead>
</table>
| $\text{Toothache} = \text{false}$ | ?
| $\text{Toothache} = \text{true}$ | ?

Marginal probability distributions

• From the joint distribution $P(X,Y)$ we can find the **marginal distributions** $P(X)$ and $P(Y)$

• To find $P(X = x)$, sum the probabilities of all atomic events where $X = x$:

$$P(X = x) = P((X = x \land Y = y_1) \lor \ldots \lor (X = x \land Y = y_n))$$

$$= P((x, y_1) \lor \ldots \lor (x, y_n)) = \sum_{i=1}^{n} P(x, y_i)$$

• This is called **marginalization** (we are marginalizing out all the variables except X)
Conditional probability

• Probability of cavity given toothache:
 \[P(\text{Cavity} = \text{true} \mid \text{Toothache} = \text{true}) \]

• For any two events A and B, \[P(A \mid B) = \]
Conditional probability

<table>
<thead>
<tr>
<th>P(Cavity, Toothache)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$Cavity = false \land Toothache = false$</td>
<td>0.8</td>
</tr>
<tr>
<td>$Cavity = false \land Toothache = true$</td>
<td>0.1</td>
</tr>
<tr>
<td>$Cavity = true \land Toothache = false$</td>
<td>0.05</td>
</tr>
<tr>
<td>$Cavity = true \land Toothache = true$</td>
<td>0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P(Cavity)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$Cavity = false$</td>
<td>0.9</td>
</tr>
<tr>
<td>$Cavity = true$</td>
<td>0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P(Toothache)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$Toothache = false$</td>
<td>0.85</td>
</tr>
<tr>
<td>$Toothache = true$</td>
<td>0.15</td>
</tr>
</tbody>
</table>

• What is $P(Cavity = true \mid Toothache = false)$?
 $0.05 / 0.85 = 0.059$

• What is $P(Cavity = false \mid Toothache = true)$?
 $0.1 / 0.15 = 0.667$
Conditional distributions

- A conditional distribution is a distribution over the values of one variable given fixed values of other variables.

<table>
<thead>
<tr>
<th>$P(Cavity, Toothache)$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$Cavity = false \land Toothache = false$</td>
<td>0.8</td>
</tr>
<tr>
<td>$Cavity = false \land Toothache = true$</td>
<td>0.1</td>
</tr>
<tr>
<td>$Cavity = true \land Toothache = false$</td>
<td>0.05</td>
</tr>
<tr>
<td>$Cavity = true \land Toothache = true$</td>
<td>0.05</td>
</tr>
</tbody>
</table>

| $P(Cavity | Toothache = true)$ | |
|--------------------------|-------|
| $Cavity = false$ | 0.667 |
| $Cavity = true$ | 0.333 |

| $P(Toothache | Cavity = true)$ | |
|----------------|-------|
| $Toothache = false$ | 0.5 |
| $Toothache = true$ | 0.5 |

| $P(Cavity | Toothache = false)$ | |
|------------------------|-------|
| $Cavity = false$ | 0.941 |
| $Cavity = true$ | 0.059 |

| $P(Toothache | Cavity = false)$ | |
|----------------|-------|
| $Toothache = false$ | 0.889 |
| $Toothache = true$ | 0.111 |
Normalization trick

- To get the whole conditional distribution $P(X \mid Y = y)$ at once, select all entries in the joint distribution table matching $Y = y$ and renormalize them to sum to one.

<table>
<thead>
<tr>
<th>$P(\text{Cavity, Toothache})$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Cavity} = \text{false} \land \text{Toothache} = \text{false}$</td>
<td>0.8</td>
</tr>
<tr>
<td>$\text{Cavity} = \text{false} \land \text{Toothache} = \text{true}$</td>
<td>0.1</td>
</tr>
<tr>
<td>$\text{Cavity} = \text{true} \land \text{Toothache} = \text{false}$</td>
<td>0.05</td>
</tr>
<tr>
<td>$\text{Cavity} = \text{true} \land \text{Toothache} = \text{true}$</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Select

<table>
<thead>
<tr>
<th>Toothache, Cavity = false</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Toothache} = \text{false}$</td>
<td>0.8</td>
</tr>
<tr>
<td>$\text{Toothache} = \text{true}$</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Renormalize

<table>
<thead>
<tr>
<th>$P(\text{Toothache} \mid \text{Cavity} = \text{false})$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Toothache} = \text{false}$</td>
<td>0.889</td>
</tr>
<tr>
<td>$\text{Toothache} = \text{true}$</td>
<td>0.111</td>
</tr>
</tbody>
</table>
Normalization trick

- To get the whole conditional distribution $P(X \mid Y = y)$ at once, select all entries in the joint distribution table matching $Y = y$ and renormalize them to sum to one.
- Why does it work?

$$\frac{P(x, y)}{\sum_{x'} P(x', y)} = \frac{P(x, y)}{P(y)}$$

by marginalization
Product rule

- Definition of conditional probability: \(P(A \mid B) = \frac{P(A, B)}{P(B)} \)

- Sometimes we have the conditional probability and want to obtain the joint:

\[
P(A, B) = P(A \mid B)P(B) = P(B \mid A)P(A)
\]
Product rule

- Definition of conditional probability: \(P(A \mid B) = \frac{P(A, B)}{P(B)} \)

- Sometimes we have the conditional probability and want to obtain the joint:

\[
P(A, B) = P(A \mid B)P(B) = P(B \mid A)P(A)
\]

- The chain rule:

\[
P(A_1, \ldots, A_n) = P(A_1)P(A_2 \mid A_1)P(A_3 \mid A_1, A_2) \ldots P(A_n \mid A_1, \ldots, A_{n-1}) = \prod_{i=1}^{n} P(A_i \mid A_1, \ldots, A_{i-1})
\]
The Birthday problem

• We have a set of \(n \) people. What is the probability that two of them share the same birthday?

• Easier to calculate the probability that \(n \) people do not share the same birthday

\[
P(B_1, \ldots B_n \text{ distinct})
= P(B_n \text{ distinct from } B_1, \ldots B_{n-1} \mid B_1, \ldots B_{n-1} \text{ distinct})
\]

\[
P(B_1, \ldots B_{n-1} \text{ distinct})
= \prod_{i=1}^{n} P(B_i \text{ distinct from } B_1, \ldots B_{i-1} \mid B_1, \ldots B_{i-1} \text{ distinct})
\]
The Birthday problem

\[P(B_1, \ldots B_n \text{ distinct}) \]
\[= \prod_{i=1}^{n} P(B_i \text{ distinct from } B_1, \ldots B_{i-1} \mid B_1, \ldots B_{i-1} \text{ distinct}) \]

\[P(B_i \text{ distinct from } B_1, \ldots, B_{i-1} \mid B_1, \ldots, B_{i-1} \text{ distinct}) = \frac{365 - i + 1}{365} \]

\[P(B_1, \ldots, B_n \text{ distinct}) = \frac{365}{365} \times \frac{364}{365} \times \ldots \times \frac{365 - n + 1}{365} \]

\[P(B_1, \ldots, B_n \text{ not distinct}) = 1 - \frac{365}{365} \times \frac{364}{365} \times \ldots \times \frac{365 - n + 1}{365} \]
The Birthday problem

• For 23 people, the probability of sharing a birthday is above 0.5!

Independence

• Two events A and B are independent if and only if
 \[P(A \land B) = P(A, B) = P(A) \cdot P(B) \]
 – In other words, \[P(A \mid B) = P(A) \] and \[P(B \mid A) = P(B) \]
 – This is an important simplifying assumption for modeling, e.g., *Toothache* and *Weather* can be assumed to be independent

• Are two mutually exclusive events independent?
 – No, but for mutually exclusive events we have
 \[P(A \lor B) = P(A) + P(B) \]
Independence

- Two events A and B are *independent* if and only if
 \[P(A \land B) = P(A) \cdot P(B) \]
 - In other words, \(P(A \mid B) = P(A) \) and \(P(B \mid A) = P(B) \)
 - This is an important simplifying assumption for modeling, e.g., *Toothache* and *Weather* can be assumed to be independent

- **Conditional independence**: A and B are *conditionally independent* given C iff
 \[P(A \land B \mid C) = P(A \mid C) \cdot P(B \mid C) \]
 - Equivalently:
 \[P(A \mid B, C) = P(A \mid C) \text{ or } P(B \mid A, C) = P(B \mid C) \]
Conditional independence: Example

- **Toothache**: boolean variable indicating whether the patient has a toothache
- **Cavity**: boolean variable indicating whether the patient has a cavity
- **Catch**: whether the dentist’s probe catches in the cavity

If the patient has a cavity, the probability that the probe catches in it doesn't depend on whether he/she has a toothache

\[P(\text{Catch} | \text{Toothache}, \text{Cavity}) = P(\text{Catch} | \text{Cavity}) \]

Therefore, **Catch** is conditionally independent of **Toothache** given **Cavity**

Likewise, **Toothache** is conditionally independent of **Catch** given **Cavity**

\[P(\text{Toothache} | \text{Catch}, \text{Cavity}) = P(\text{Toothache} | \text{Cavity}) \]

Equivalent statement:

\[P(\text{Toothache}, \text{Catch} | \text{Cavity}) = P(\text{Toothache} | \text{Cavity}) P(\text{Catch} | \text{Cavity}) \]
Conditional independence: Example

• How many numbers do we need to represent the joint probability table $P(\text{Toothache, Cavity, Catch})$?

 $2^3 - 1 = 7$ independent entries

• Write out the joint distribution using chain rule:

 $P(\text{Toothache, Catch, Cavity})$

 $= P(\text{Cavity}) \ P(\text{Catch} \mid \text{Cavity}) \ P(\text{Toothache} \mid \text{Catch, Cavity})$

 $= P(\text{Cavity}) \ P(\text{Catch} \mid \text{Cavity}) \ P(\text{Toothache} \mid \text{Cavity})$

• How many numbers do we need to represent these distributions?

 $1 + 2 + 2 = 5$ independent numbers

• In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in n to linear in n