Reinforcement learning
(Chapter 21)
Reinforcement learning

• Regular MDP
 – Given:
 • Transition model $P(s' \mid s, a)$
 • Reward function $R(s)$
 – Find:
 • Policy $\pi(s)$

• Reinforcement learning
 – Transition model and reward function initially unknown
 – Still need to find the right policy
 – “Learn by doing”
Reinforcement learning: Basic scheme

• In each time step:
 – Take some action
 – Observe the outcome of the action: successor state and reward
 – Update some internal representation of the environment and policy
 – If you reach a terminal state, just start over (each pass through the environment is called a *trial*)

• Why is this called reinforcement learning?
Applications of reinforcement learning

• Backgammon

Applications of reinforcement learning

- Learning a fast gait for Aibos

Policy Gradient Reinforcement Learning for Fast Quadrupedal Locomotion
Nate Kohl and Peter Stone.
Applications of reinforcement learning

• Stanford autonomous helicopter

Pieter Abbeel et al.
Applications of reinforcement learning

- **Playing Atari with deep reinforcement learning**

[Video link]

V. Mnih et al., *Nature*, February 2015
Applications of reinforcement learning

- **End-to-end training of deep visuomotor policies**

Fig. 1: Our method learns visuomotor policies that directly use camera image observations (left) to set motor torques on a PR2 robot (right).

[Video](#)

Sergey Levine et al., Berkeley
Applications of reinforcement learning

- Active object localization with deep reinforcement learning

J. Caicedo and S. Lazebnik, ICCV 2015, to appear
Review: Reinforcement learning
Reinforcement learning strategies

• **Model-based**
 – Learn the model of the MDP (transition probabilities and rewards) and try to solve the MDP concurrently

• **Model-free**
 – Learn how to act without explicitly learning the transition probabilities $P(s' | s, a)$
 – **Q-learning**: learn an action-utility function $Q(s,a)$ that tells us the value of doing action a in state s
Model-based reinforcement learning

- **Basic idea:** try to learn the model of the MDP (transition probabilities and rewards) and learn how to act (solve the MDP) simultaneously

- **Learning the model:**
 - Keep track of how many times state \(s' \) follows state \(s \) when you take action \(a \) and update the transition probability \(P(s' | s, a) \) according to the relative frequencies
 - Keep track of the rewards \(R(s) \)

- **Learning how to act:**
 - Estimate the utilities \(U(s) \) using Bellman’s equations
 - Choose the action that maximizes expected future utility:

\[
\pi^*(s) = \arg\max_{a \in A(s)} \sum_{s'} P(s'| s, a) U(s')
\]
Model-based reinforcement learning

• Learning how to act:
 – Estimate the utilities $U(s)$ using Bellman’s equations
 – Choose the action that maximizes expected future utility given the model of the environment we’ve experienced through our actions so far:

$$\pi^*(s) = \arg\max_{a \in A(s)} \sum_{s'} P(s'| s, a) U(s')$$

• Is there any problem with this “greedy” approach?
Exploration vs. exploitation

- **Exploration**: take a new action with unknown consequences
 - Pros:
 - Get a more accurate model of the environment
 - Discover higher-reward states than the ones found so far
 - Cons:
 - When you’re exploring, you’re not maximizing your utility
 - Something bad might happen

- **Exploitation**: go with the best strategy found so far
 - Pros:
 - Maximize reward as reflected in the current utility estimates
 - Avoid bad stuff
 - Cons:
 - Might also prevent you from discovering the true optimal strategy
Incorporating exploration

• **Idea:** explore more in the beginning, become more and more greedy over time

• Standard (“greedy”) selection of optimal action:

\[
 a = \arg \max_{a' \in A(s)} \sum_{s'} P(s'|s,a')U(s')
\]

• Modified strategy:

\[
 a = \arg \max_{a' \in A(s)} f \left(\sum_{s'} P(s'|s,a')U(s'), N(s,a') \right)
\]

\[f(u,n) = \begin{cases}
 R^+ & \text{if } n < N_e \text{ (optimistic reward estimate)} \\
 u & \text{otherwise}
\end{cases}\]
Model-free reinforcement learning

- **Idea:** learn how to act without explicitly learning the transition probabilities $P(s' | s, a)$
- **Q-learning:** learn an *action-utility function* $Q(s,a)$ that tells us the value of doing action a in state s
- Relationship between Q-values and utilities:

$$U(s) = \max_a Q(s, a)$$

- Selecting an action: $\pi^*(s) = \arg\max_a Q(s, a)$
- Compare with: $\pi^*(s) = \arg\max_a \sum_{s'} P(s' | s, a) U(s')$
 - With Q-values, don’t need to know the transition model to select the next action
Model-free reinforcement learning

• **Q-learning**: learn an action-utility function $Q(s,a)$ that tells us the value of doing action a in state s

 $$U(s) = \max_a Q(s,a)$$

• Equilibrium constraint on Q values:

 $$Q(s,a) = R(s) + \gamma \sum_{s'} P(s'|s,a) \max_{a'} Q(s',a')$$

• What is the relationship between this constraint and the Bellman equation?

 $$U(s) = R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s,a)U(s')$$
Model-free reinforcement learning

• **Q-learning**: learn an action-utility function $Q(s,a)$ that tells us the value of doing action a in state s

$$U(s) = \max_a Q(s,a)$$

• Equilibrium constraint on Q values:

$$Q(s,a) = R(s) + \gamma \sum_{s'} P(s'|s,a) \max_{a'} Q(s',a')$$

• Problem: we don’t know (and don’t want to learn) $P(s' | s, a)$
Temporal difference (TD) learning

- Equilibrium constraint on Q values:
 \[Q(s, a) = R(s) + \gamma \sum_{s'} P(s'| s, a) \max_{a'} Q(s', a') \]

- Temporal difference (TD) update:
 - Pretend that the currently observed transition \((s, a, s')\) is the only possible outcome and adjust the Q values towards the “local equilibrium”
 \[
 Q^{local}(s, a) = R(s) + \gamma \max_{a'} Q(s', a')
 \]
 \[
 Q^{new}(s, a) = (1 - \alpha)Q(s, a) + \alpha Q^{local}(s, a)
 \]
 \[
 Q^{new}(s, a) = Q(s, a) + \alpha \left(Q^{local}(s, a) - Q(s, a) \right)
 \]
 \[
 Q^{new}(s, a) = Q(s, a) + \alpha \left(R(s) + \gamma \max_{a'} Q(s', a') - Q(s, a) \right)
 \]
Temporal difference (TD) learning

- At each time step t
 - From current state s, select an action a:
 $$a = \arg \max_{a'} f(Q(s, a'), N(s, a'))$$

 Exploration function
 Number of times we’ve taken action a' from state s

 - Get the successor state s'
 - Perform the TD update:
 $$Q(s, a) \leftarrow Q(s, a) + \alpha(R(s) + \gamma \max_{a'} Q(s', a') - Q(s, a))$$

 Learning rate
 Should start at 1 and decay as $O(1/t)$

 e.g., $\alpha(t) = 60/(59 + t)$
Temporal difference (TD) learning

- At each time step t
 - From current state s, select an action a:
 $$a = \arg \max_{a'} f\left(Q(s, a'), N(s, a')\right)$$
 Exploration function Number of times we've taken action a' from state s
 - Get the successor state s'
 - Perform the TD update:
 $$Q(s, a) \leftarrow Q(s, a) + \alpha \left(R(s) + \gamma \max_{a'} Q(s', a') - Q(s, a) \right)$$

TD Q-learning result

Q-VALUES AFTER 1000 EPISODES

Source: Berkeley CS188
Function approximation

- So far, we’ve assumed a lookup table representation for utility function $U(s)$ or action-utility function $Q(s,a)$
- But what if the state space is really large or continuous?
- Alternative idea: approximate the utility function, e.g., as a weighted linear combination of features:

$$U(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$

 - RL algorithms can be modified to estimate these weights
 - More generally, functions can be nonlinear (e.g., neural networks)
- Recall: features for designing evaluation functions in games
- Benefits:
 - Can handle very large state spaces (games), continuous state spaces (robot control)
 - Can generalize to previously unseen states
Other techniques

• **Policy search**: instead of getting the Q-values right, you simply need to get their ordering right
 – Write down the policy as a function of some parameters and adjust the parameters to improve the expected reward

• **Learning from imitation**: instead of an explicit reward function, you have expert demonstrations of the task to learn from