Uninformed search strategies
(Section 3.4)




Uninformed search strategies

* A search strategy is defined by picking the
order of node expansion

* Uninformed search strategies use only the
information available in the problem definition
— Breadth-first search
— Depth-first search
— |terative deepening search
— Uniform-cost search



Breadth-first search

* Expand shallowest unexpanded node
* Implementation: frontier is a FIFO queue

Example state space
graph for a tiny search
problem

Example from P. Abbeel and D. Klein



Breadth-first search

* Expansion order:
(S,d,e,p,b,c,e,h,r,q,3,3,
h,r,p,a,f,p,q,f,q,c,G)




Depth-first search

* Expand deepest unexpanded node
* Implementation: frontier is a LIFO queue



Depth-first search

* Expansion order:
(d,b,a,c,a,e,h,p,q,q,
r,f,c,a,G)
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Analysis of search strategies

e Strategies are evaluated along the following criteria:
— Completeness: does it always find a solution if one exists?
— Optimality: does it always find a least-cost solution?
— Time complexity: number of nodes generated
— Space complexity: maximum number of nodes in memory

* Time and space complexity are measured in terms of
— b: maximum branching factor of the search tree
— d: depth of the optimal solution
— m: maximum length of any path in the state space (may be infinite)



Properties of breadth-first search

Complete?
Yes (if branching factor b is finite)
Optimal?
Yes —if cost = 1 per step
Time?
Number of nodes in a b-ary tree of depth d: O(bY)
(d is the depth of the optimal solution)
Space?
O(b9)

Space is the bigger problem (more than time)



Properties of depth-first search

Complete?
Fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
- complete in finite spaces

Optimal?
No — returns the first solution it finds
Time?
Could be the time to reach a solution at maximum depth m: O(b™)
Terrible if m is much larger than d
But if there are lots of solutions, may be much faster than BFS
Space?
O(bm), i.e., linear space!



Iterative deepening search

e Use DFS as a subroutine

1.
2.
3.

Check the root
Do a DFS searching for a path of length 1

If there is no path of length 1, do a DFS
searching for a path of length 2

If there is no path of length 2, do a DFS
searching for a path of length 3...



Iterative deepening search
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Properties of iterative deepening
search

Complete?
Yes
Optimal?
Yes, if step cost =1
Time?
(d+1)b° + d bt + (d-1)b?% + ... + b?
Space?
O(bd)



Search with varying step costs

* BFS finds the path with the fewest steps, but
does not always find the cheapest path



Uniform-cost search

For each frontier node, save the total cost of
the path from the initial state to that node

Expand the frontier node with the lowest path
cost

Implementation: frontier is a priority queue
ordered by path cost

Equivalent to BFS if step costs all equal

Equivalent to Dijkstra’s algorithm in general



Uniform-cost search example

* Expansion order:
(S,p,d,b,e,a,r,f,e,G)




Another example of uniform-cost
search

Source: Wikipedia




Properties of uniform-cost search

e Complete?

Yes, if step cost is greater than some positive constant €
(we don’t want infinite sequences of steps that have a
finite total cost)

e Optimal?
Yes



Optimality of uniform-cost search

Graph separation property: every path from
the initial state to an unexplored state has to - start
pass through a state on the frontier .

— Proved inductively

Optimality of UCS: proof by contradiction

— Suppose UCS terminates at goal state n
with path cost g(n) but there exists
another goal state n” with g(n’) < g(n)

— By the graph separation property, there

must exist a node n” on the frontier that
is on the optimal path to n’

— But because g(n”) < g(n’) < g(n),
n” should have been expanded first!



Properties of uniform-cost search

Complete?

Yes, if step cost is greater than some positive constant € (we
don’t want infinite sequences of steps that have a finite total
cost)

Optimal?
Yes — nodes expanded in increasing order of path cost
Time?
Number of nodes with path cost < cost of optimal solution (C*),
O(bc7¢)
This can be greater than O(b?): the search can explore long

paths consisting of small steps before exploring shorter paths
consisting of larger steps

Space?
O(bC7¢)



Review: Uninformed search strategies

Algorithm Complete? Optimal? Time Space
complexity complexity

If all step o(bd) 0(bd)
costs are equal

DFS No No O(b™) O(bm)
If all step q
O(bd

IDS Yes costs are equal O(bS) (bd)
UCS Yes Yes Number of nodes with g(n) < C*

b: maximum branching factor of the search tree

d: depth of the optimal solution

m: maximum length of any path in the state space

C*: cost of optimal solution

g(n): cost of path from start state to node n



