Uninformed search strategies
(Section 3.4)

Uninformed search strategies

* A search strategy is defined by picking the
order of node expansion

* Uninformed search strategies use only the
information available in the problem definition
— Breadth-first search
— Depth-first search
— |terative deepening search
— Uniform-cost search

Breadth-first search

* Expand shallowest unexpanded node
* Implementation: frontier is a FIFO queue

Example state space
graph for a tiny search
problem

Example from P. Abbeel and D. Klein

Breadth-first search

* Expansion order:
(S,d,e,p,b,c,e,h,r,q,3,3,
h,r,p,a,f,p,q,f,q,c,G)

Depth-first search

* Expand deepest unexpanded node
* Implementation: frontier is a LIFO queue

Depth-first search

* Expansion order:
(d,b,a,c,a,e,h,p,q,q,
r,f,c,a,G)

PREPRRING FRADATE| [~V ¥ 7 ¥V "V 7N (v~

OKAY, WHAT KINDS OF HM. WHICH SNAKES ARE
WHAT SITUATIONS EMERGENCIES CANHAPPEN? DANGEROUS? LET'S SEE... THE RESEARCH (OMPRRING

MIGHT T PREPARE. RR? 1) A) SNAKEBITE)A) &) (ORN SNAKE mmsmfr TLL MAKE

) MEDGALEMERGENCY | B) LIGHNNGSRKE 3 GARTER SNAKE. 7
2) DPNONG L O PLURM AR 1) SRR s A SPREADSHEET To ORGP IT
", 3 FOD TOEBPENSIVE
0. o) O
. 5 0 0@
o

A

IMHERETOPKK BY Dy, THE INLAND
YOUUP. YOURE TAIPAN HAS THE DEADUEST
NOTDRESSED\ ? VENOM OF ANY SNAKE'

)

IS

http://xked.com/761/ i

T REAUY NEED To SToP
USING DEPTH-FIRST SEARCHES.

BFS vs. DFS

BFS vs. DFS

BFS vs. DFS

BFS vs. DFS

BFS vs. DFS

BFS vs. DFS

BFS vs. DFS

BFS vs. DFS

BFS vs. DFS

BFS vs. DFS

BFS vs. DFS

BFS vs. DFS

BFS vs. DFS

BFS vs. DFS

BFS vs. DFS

BFS vs. DFS

BFS vs. DFS

BFS vs. DFS

BFS vs. DFS

BFS vs. DFS

BFS vs. DFS

BFS vs. DFS

Analysis of search strategies

e Strategies are evaluated along the following criteria:
— Completeness: does it always find a solution if one exists?
— Optimality: does it always find a least-cost solution?
— Time complexity: number of nodes generated
— Space complexity: maximum number of nodes in memory

* Time and space complexity are measured in terms of
— b: maximum branching factor of the search tree
— d: depth of the optimal solution
— m: maximum length of any path in the state space (may be infinite)

Properties of breadth-first search

Complete?
Yes (if branching factor b is finite)
Optimal?
Yes —if cost = 1 per step
Time?
Number of nodes in a b-ary tree of depth d: O(bY)
(d is the depth of the optimal solution)
Space?
O(b9)

Space is the bigger problem (more than time)

Properties of depth-first search

Complete?
Fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
- complete in finite spaces

Optimal?
No — returns the first solution it finds
Time?
Could be the time to reach a solution at maximum depth m: O(b™)
Terrible if m is much larger than d
But if there are lots of solutions, may be much faster than BFS
Space?
O(bm), i.e., linear space!

Iterative deepening search

e Use DFS as a subroutine

1.
2.
3.

Check the root
Do a DFS searching for a path of length 1

If there is no path of length 1, do a DFS
searching for a path of length 2

If there is no path of length 2, do a DFS
searching for a path of length 3...

Iterative deepening search

@ ®

Iterative deepening search

° « o e e

Iterative deepening search

>

O,

S

>(5) (©
()
()
() (©)

S SN

Iterative deepening search

£
o

ff\
T

xi\
o

?)%

Properties of iterative deepening
search

Complete?
Yes
Optimal?
Yes, if step cost =1
Time?
(d+1)b° + d bt + (d-1)b?% + ... + b?
Space?
O(bd)

Search with varying step costs

* BFS finds the path with the fewest steps, but
does not always find the cheapest path

Uniform-cost search

For each frontier node, save the total cost of
the path from the initial state to that node

Expand the frontier node with the lowest path
cost

Implementation: frontier is a priority queue
ordered by path cost

Equivalent to BFS if step costs all equal

Equivalent to Dijkstra’s algorithm in general

Uniform-cost search example

* Expansion order:
(S,p,d,b,e,a,r,f,e,G)

Another example of uniform-cost
search

Source: Wikipedia

Properties of uniform-cost search

e Complete?

Yes, if step cost is greater than some positive constant €
(we don’t want infinite sequences of steps that have a
finite total cost)

e Optimal?
Yes

Optimality of uniform-cost search

Graph separation property: every path from
the initial state to an unexplored state has to - start
pass through a state on the frontier .

— Proved inductively

Optimality of UCS: proof by contradiction

— Suppose UCS terminates at goal state n
with path cost g(n) but there exists
another goal state n” with g(n’) < g(n)

— By the graph separation property, there

must exist a node n” on the frontier that
is on the optimal path to n’

— But because g(n”) < g(n’) < g(n),
n” should have been expanded first!

Properties of uniform-cost search

Complete?

Yes, if step cost is greater than some positive constant € (we
don’t want infinite sequences of steps that have a finite total
cost)

Optimal?
Yes — nodes expanded in increasing order of path cost
Time?
Number of nodes with path cost < cost of optimal solution (C*),
O(bc7¢)
This can be greater than O(b?): the search can explore long

paths consisting of small steps before exploring shorter paths
consisting of larger steps

Space?
O(bC7¢)

Review: Uninformed search strategies

Algorithm Complete? Optimal? Time Space
complexity complexity

If all step o(bd) 0(bd)
costs are equal

DFS No No O(b™) O(bm)
If all step q
O(bd

IDS Yes costs are equal O(bS) (bd)
UCS Yes Yes Number of nodes with g(n) < C*

b: maximum branching factor of the search tree

d: depth of the optimal solution

m: maximum length of any path in the state space

C*: cost of optimal solution

g(n): cost of path from start state to node n

