Review: Tree search

- Initialize the **frontier** using the **starting state**
- While the frontier is not empty
 - Choose a frontier node to expand according to search strategy and take it off the frontier
 - If the node contains the **goal state**, return solution
 - Else **expand** the node and add its children to the frontier

- To handle repeated states:
 - Keep an **explored set**; add each node to the explored set every time you expand it
 - Every time you add a node to the frontier, check whether it already exists in the frontier with a higher path cost, and if yes, replace that node with the new one
Review: Uninformed search strategies

• Breadth-first search
• Depth-first search
• Iterative deepening search
• Uniform-cost search
Informed search strategies (Sections 3.5-3.6)

• Idea: give the algorithm “hints” about the desirability of different states
 – Use an *evaluation function* to rank nodes and select the most promising one for expansion

• Greedy best-first search
• A* search
Heuristic function

- **Heuristic function** $h(n)$ estimates the cost of reaching goal from node n
- **Example:**
Heuristic for the Romania problem
Greedy best-first search

• Expand the node that has the lowest value of the heuristic function \(h(n) \)
Greedy best-first search example
Greedy best-first search example
Greedy best-first search example
Greedy best-first search example
Properties of greedy best-first search

- **Complete?**
 - No – can get stuck in loops
Properties of greedy best-first search

• **Complete?**

 No – can get stuck in loops

• **Optimal?**

 No
Properties of greedy best-first search

• **Complete?**
 No – can get stuck in loops

• **Optimal?**
 No

• **Time?**
 Worst case: $O(b^m)$
 Can be much better with a good heuristic

• **Space?**
 Worst case: $O(b^m)$
How can we fix the greedy problem?

- How about keeping track of the distance already traveled in addition to the distance remaining?
A* search

• Idea: avoid expanding paths that are already expensive
• The **evaluation function** $f(n)$ is the estimated total cost of the path through node n to the goal:

$$f(n) = g(n) + h(n)$$

$g(n)$: cost so far to reach n (path cost)
$h(n)$: estimated cost from n to goal (heuristic)
A* search example

Straight-line distance

- Arad 366
- Bucharest 0
- Craiova 166
- Dobrota 242
- Eforie 101
- Fagaras 176
- Giurgiu 77
- Hirssova 131
- Iasi 226
- Lugoj 244
- Mehadia 341
- Neamt 234
- Oradea 382
- Pitești 16
- Rimnicu Vlaicu 193
- Sibiu 253
- Timisoara 325
- Urziceni 88
- Vaslui 196
- Zerind 374
A* search example
Another example

Uniform cost search vs. A* search

Admissible heuristics

- An admissible heuristic never overestimates the cost to reach the goal, i.e., it is optimistic.
- A heuristic $h(n)$ is **admissible** if for every node n, $h(n) \leq h^*(n)$, where $h^*(n)$ is the true cost to reach the goal state from n.
- Example: straight line distance never overestimates the actual road distance.
- **Theorem:** If $h(n)$ is admissible, A^* is optimal.
Optimality of A*

- **Theorem:** If the heuristic is admissible, A* without repeated state detection is optimal

- **Proof sketch:**
 - Let C^* be the evaluation function value (actual path cost) of the first goal node we select for expansion
 - Then all the other nodes on the frontier have estimated path costs to the goal that are at least as big as C^*
 - Because we are using an admissible heuristic, the true path costs to the goal for those nodes cannot be less than C^*
A* gone wrong?

State space graph

Search tree

Source: Berkeley CS188x
Consistency of heuristics

- Consistency: Stronger than admissibility
- Definition:
 \[\text{cost}(A \text{ to } C) + h(C) \geq h(A) \]
 \[\text{cost}(A \text{ to } C) \geq h(A) - h(C) \]
 \[\text{real cost} \geq \text{cost implied by heuristic} \]
- Consequences:
 - The f value along a path never decreases
 - A* graph search is optimal

Source: Berkeley CS188x
Optimality of A*

- **Tree search** (i.e., search without repeated state detection):
 - A* is optimal if heuristic is *admissible* (and non-negative)
- **Graph search** (i.e., search with repeated state detection)
 - A* optimal if heuristic is *consistent*
- Consistency implies admissibility
 - In general, most natural admissible heuristics tend to be consistent, especially if they come from relaxed problems

Source: [Berkeley CS188x](http://example.com)
Optimality of A*

• A* is *optimally efficient* – no other tree-based algorithm that uses the same heuristic can expand fewer nodes and still be guaranteed to find the optimal solution
 – A* expands all nodes for which \(f(n) \leq C^* \). Any algorithm that does not risks missing the optimal solution
Properties of A*

- **Complete?**
 Yes – unless there are infinitely many nodes with $f(n) \leq C^*$

- **Optimal?**
 Yes

- **Time?**
 Number of nodes for which $f(n) \leq C^*$ (exponential)

- **Space?**
 Exponential
Designing heuristic functions

• Heuristics for the 8-puzzle
 \[h_1(n) = \text{number of misplaced tiles} \]
 \[h_2(n) = \text{total Manhattan distance (number of squares from desired location of each tile)} \]

\[h_1(\text{start}) = 8 \]
\[h_2(\text{start}) = 3+1+2+2+2+3+3+2 = 18 \]

• Are \(h_1 \) and \(h_2 \) admissible?
Heuristics from relaxed problems

• A problem with fewer restrictions on the actions is called a relaxed problem.
• The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem.
• If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution.
• If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution.
Heuristics from subproblems

- Let $h_3(n)$ be the cost of getting a subset of tiles (say, 1,2,3,4) into their correct positions
- Can precompute and save the exact solution cost for every possible subproblem instance – *pattern database*
Dominance

• If h_1 and h_2 are both admissible heuristics and $h_2(n) \geq h_1(n)$ for all n, (both admissible) then h_2 dominates h_1

• Which one is better for search?
 – A* search expands every node with $f(n) < C^*$ or $h(n) < C^* - g(n)$
 – Therefore, A* search with h_1 will expand more nodes
Dominance

• Typical search costs for the 8-puzzle (average number of nodes expanded for different solution depths):

 - \(d=12 \)
 - IDS = 3,644,035 nodes
 - \(A^*(h_1) = 227 \) nodes
 - \(A^*(h_2) = 73 \) nodes

 - \(d=24 \)
 - IDS \approx 54,000,000,000 \) nodes
 - \(A^*(h_1) = 39,135 \) nodes
 - \(A^*(h_2) = 1,641 \) nodes
Combining heuristics

• Suppose we have a collection of admissible heuristics $h_1(n), h_2(n), ..., h_m(n)$, but none of them dominates the others

• How can we combine them?

$$h(n) = \max\{h_1(n), h_2(n), ..., h_m(n)\}$$
Weighted A* search

• **Idea:** speed up search at the expense of optimality

• Take an admissible heuristic, “inflate” it by a multiple $\alpha > 1$, and then perform A* search as usual

• Fewer nodes tend to get expanded, but the resulting solution may be suboptimal (its cost will be at most α times the cost of the optimal solution)
Example of weighted A* search

Heuristic: 5 * Euclidean distance from goal
Example of weighted A* search

Heuristic: 5 * Euclidean distance from goal

Compare: Exact A*
Additional pointers

- Interactive path finding demo
- Variants of A* for path finding on grids
All search strategies

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complete?</th>
<th>Optimal?</th>
<th>Time complexity</th>
<th>Space complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFS</td>
<td>Yes</td>
<td>If all step costs are equal</td>
<td>$O(b^d)$</td>
<td>$O(b^d)$</td>
</tr>
<tr>
<td>DFS</td>
<td>No</td>
<td>No</td>
<td>$O(b^m)$</td>
<td>$O(bm)$</td>
</tr>
<tr>
<td>IDS</td>
<td>Yes</td>
<td>If all step costs are equal</td>
<td>$O(b^d)$</td>
<td>$O(bd)$</td>
</tr>
<tr>
<td>UCS</td>
<td>Yes</td>
<td>Yes</td>
<td>Number of nodes with $g(n) \leq C^*$</td>
<td></td>
</tr>
<tr>
<td>Greedy</td>
<td>No</td>
<td>No</td>
<td>Worst case: $O(b^m)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Best case: $O(bd)$</td>
<td></td>
</tr>
<tr>
<td>A*</td>
<td>Yes</td>
<td>Yes (if heuristic is admissible)</td>
<td>Number of nodes with $g(n)+h(n) \leq C^*$</td>
<td></td>
</tr>
</tbody>
</table>
A note on the complexity of search

• We said that the worst-case complexity of search is exponential in the length of the solution path
 – But the length of the solution path can be exponential in the number of “objects” in the problem!

• Example: towers of Hanoi