Planning (Chapter 10)

Planning

• Problem: I’m at home and I need milk, bananas, and a drill.

• How is planning different from regular search?
 – States and action sequences typically have complex internal structure
 – State space and branching factor are huge
 – Multiple subgoals at multiple levels of resolution

• Examples of planning applications
 – Scheduling of tasks in space missions
 – Logistics planning for the army
 – Assembly lines, industrial processes
 – Robotics
 – Games, storytelling
A representation for planning

• **STRIPS** (Stanford Research Institute Problem Solver): classical planning framework from the 1970s

• **States** are specified as conjunctions of predicates
 – Start state: \(\text{At}(\text{Home}) \land \text{Sells}(ext{SM, Milk}) \land \text{Sells}(ext{SM, Bananas}) \land \text{Sells}(ext{HW, Drill}) \)
 – Goal state: \(\text{At}(\text{Home}) \land \text{Have}(\text{Milk}) \land \text{Have}(\text{Banana}) \land \text{Have}(\text{Drill}) \)

• **Actions** are described in terms of preconditions and effects:
 – \(\text{Go}(x, y) \)
 • **Precond:** \(\text{At}(x) \)
 • **Effect:** \(\neg \text{At}(x) \land \text{At}(y) \)
 – \(\text{Buy}(x, \text{store}) \)
 • **Precond:** \(\text{At}(\text{store}) \land \text{Sells}(\text{store, x}) \)
 • **Effect:** \(\text{Have}(x) \)

• Planning is “just” a search problem
Challenges of planning: “Sussman anomaly”

Start state:

Goal state:

Let’s try to achieve On(A, B):

Let’s try to achieve On(B, C):

http://en.wikipedia.org/wiki/Sussman_Anomaly
Challenges of planning: “Sussman anomaly”

- Shows the limitations of non-interleaved planners that consider subgoals in sequence and try to satisfy them one at a time
 - If you try to satisfy subgoal X and then subgoal Y, X might undo some preconditions for Y, or Y might undo some effects of X
- More powerful planning approaches must *interleave* the steps towards achieving multiple subgoals

http://en.wikipedia.org/wiki/Sussman_Anomaly
Algorithms for planning

• **Forward (progression) state-space search:** starting with the start state, find all applicable actions (actions for which preconditions are satisfied), compute the successor state based on the effects, keep searching until goals are met
 – Can work well with good heuristics
Algorithms for planning

- **Forward (progression) state-space search**: starting with the start state, find all applicable actions (actions for which preconditions are satisfied), compute the successor state based on the effects, keep searching until goals are met
 - Can work well with good heuristics

- **Backward (regression) relevant-states search**: to achieve a goal, what must have been true in the previous state?
Situation space planning vs. plan space planning

• **Situation space planners**: each node in the search space represents a world state, arcs are actions in the world
 – Plans are sequences of actions from start to finish
 – Must be *totally ordered*

• **Plan space planners**: nodes are (incomplete) plans, arcs are transformations between plans
 – Actions in the plan may be *partially ordered*
 – Principle of least commitment: avoid ordering plan steps unless absolutely necessary
Partial order planning

- Task: put on socks and shoes

Total order (linear) plans

Start
→ Left Sock
→ Right Sock
→ Left Shoe
→ Right Shoe
→ Finish

Partial order plan

Start
→ Left Sock
→ LeftSockOn
→ LeftShoeOn
→ Finish

→ Right Sock
→ RightSockOn
→ RightShoeOn
→ Finish
Partial Order Planning Example

Start: empty plan

Action: find flaw in the plan and modify plan to fix the flaw
Partial Order Planning Example

Start

Sells(SM, Milk) At(Home) Sells(SM, Bananas)

At(x1) Sells(x1, Milk)

Buy(x1, Milk) Have(Milk)

x1 = SM

At(x2) Sells(x2, Bananas)

Buy(x2, Bananas) Have(Bananas)

x2 = SM

At(x3) Go(x3, SM)

At(SM) At(x3)

Have(Bananas)

x3 = Home

Finish
Application of planning: Automated storytelling

https://research.cc.gatech.edu/inc/mark-riedl
Application of planning: Automated storytelling

• Applications
 – Personalized experience in games
 – Automatically generating training scenarios (e.g., for the army)
 – Therapy for kids with autism
 – Computational study of creativity

https://research.cc.gatech.edu/inc/mark-riedl
Challenges of real-world planning

- Actions at different levels of granularity: hierarchical planning
- Resource constraints (semi-dynamic environments)
- Dynamic environments
- Stochastic or partially observable environments
- Multi-agent environments

- Example: path planning with moving obstacles