Fall 2018 CS498DLAssignment 2: Multi-Layer Neural NetworksDue date: Tuesday, October 16th, 11:59:59PMCredit: Daniel McKee, Maghav Kumar, based on Stanford CS231n materials![]() Source: https://gfycat.com/gifs/detail/MiniatureDependentCob, https://www.youtube.com/watch?v=aircAruvnKk In this assignment you will implement multi-layer neural networks on the CIFAR-10 image classification dataset, which was used in Assignment 1 as well. The goal of this assignment is to help you understand the fundamentals of neural networks and backpropagation. Specifically, you will write your own backward pass and train two- and three-layer networks with ReLU and sigmoid nonlinearities. You will also get experience with hyperparameter tuning and using proper train/test/validation data splits. The format of this assignment is inspired by the Stanford CS231n assignments, and we have borrowed some of their data loading and instructions. Download the starting code here. The top-level notebook ( We also provide you with a notebook to help with debugging and testing your neural network implementation by using a
toy dataset along with numeric gradient checks. It is found in None of the parts of this assignment require use of a machine with a GPU. You may complete the assignment using your local machine or you may use Google Colaboratory. However, we encourage you to try using Colaboratory if you are not familiar with it and don't have access to GPUs since Colaboratory provides free access to a Tesla K80 (for running short jobs). Environment Setup (Local)If you will be completing the assignment on a local machine then you will need a python environment set up with the appropriate packages. We suggest that you use Anaconda to manage python package dependencies (https://www.anaconda.com/download). This guide provides useful information on how to use Conda: https://conda.io/docs/user-guide/getting-started.html. Data Setup (Local)Once you have unzipped the zip file, navigate to the cifar10 directory in assignment2_materials and execute the get_dataset script provided:
Data Setup (For Colaboratory)If you are using Google Colaboratory for this assignment you will need do some addition setup steps. Download the assignment zip file and follow the steps above to download CIFAR-10 to your local machine. Next, you should make a folder in your Google Drive to hold all of your assignment files and upload the entire assignment folder (including the cifar10 dataset you downloaded) into this Google drive file. You will now need to open the Assignment 2 ipython notebook file from your Google Drive folder in Colaboratory and run a few setup commands. However, we have condensed all the important commands you need to run into an ipython notebook (you can disregard the section on GPU setup for this assignment). IPythonThe assignment is given to you in the Submission Instructions:Submission of this assignment will involve two steps:
Please refer to course policies on collaborations, late submission, and extension requests. |