Deep Q-learning
Reinforcement learning (RL)

• Agent can take actions that affect the state of the environment and observe occasional rewards that depend on the state
• The goal is to learn a policy (mapping from states to actions) to maximize expected reward over time
RL vs. supervised learning

- **Reinforcement learning loop**
 - From state s, take action a determined by policy $\pi(s)$
 - Environment selects next state s' based on transition model $P(s'|s,a)$
 - Observe s' and reward $r(s')$, update policy

- **Supervised learning loop**
 - Get input x_i sampled i.i.d. from data distribution
 - Use model with parameters w to predict output y
 - Observe target output y_i and loss $l(w, x_i, y_i)$
 - Update w to reduce loss: $w \leftarrow w - \eta \nabla l(w, x_i, y_i)$
RL vs. supervised learning

• Reinforcement learning
 • Agent’s actions affect the environment and help to determine next observation
 • Rewards may be sparse
 • Rewards are not differentiable w.r.t. model parameters

• Supervised learning
 • Next input does not depend on previous inputs or agent’s predictions
 • There is a supervision signal at every step
 • Loss is differentiable w.r.t. model parameters
Applications of deep RL

- AlphaGo and AlphaZero

https://deepmind.com/research/alphago/
Applications of deep RL

• Playing video games

Applications of deep RL

- End-to-end training of deep visuomotor policies

Fig. 1: Our method learns visuomotor policies that directly use camera image observations (left) to set motor torques on a PR2 robot (right).

Video

Sergey Levine et al., Berkeley
Formalism: Markov Decision Processes

- Components:
 - **States** s, beginning with initial state s_0
 - **Actions** a
 - **Transition model** $P(s' \mid s, a)$
 - *Markov assumption*: the probability of going to s' from s depends only on s and a and not on any other past actions or states
 - **Reward function** $r(s)$
 - **Policy** $\pi(s)$: the action that an agent takes in any given state
 - The “solution” to an MDP
Example MDP: Grid world

\[r(s) = -0.04 \] for every non-terminal state

Transition model:

Source: P. Abbeel and D. Klein
Example MDP: Grid world

- Goal: find the best policy

Source: P. Abbeel and D. Klein
Example MDP: Grid world

- Optimal policies for various values of $r(s)$:

 \begin{align*}
 &R(s) < -1.6284 & \quad & -0.4278 < R(s) < -0.0850 \\
 &-0.0221 < R(s) < 0 & \quad & R(s) > 0
 \end{align*}
Rewards of state sequences

• Suppose that following policy \(\pi \) starting in state \(s_0 \) leads to a sequence \(s_0, s_1, s_2, ... \)

• The cumulative reward of the sequence is \(\sum_{t \geq 0} r(s_t) \)

• Problem: state sequences can vary in length or even be infinite

• Solution: redefine cumulative reward as sum of rewards discounted by a factor \(\gamma \):

\[
r(s_0) + \gamma r(s_1) + \gamma^2 r(s_2) + \gamma^3 r(s_3) + \cdots
= \sum_{t \geq 0} \gamma^t r(s_t), \quad 0 < \gamma \leq 1
\]
Discounting

\[r(s_0) + \gamma r(s_1) + \gamma^2 r(s_2) + \gamma^3 r(s_3) + \ldots = \sum_{t \geq 0} \gamma^t r(s_t) \]

- Cumulative reward is bounded by \(\frac{r_{\text{max}}}{1-\gamma} \)
- Helps algorithms converge

Image source: P. Abbeel and D. Klein
Value function

- The value function \(V^\pi(s) \) of a state \(s \) w.r.t. policy \(\pi \) is the expected cumulative reward of following that policy starting in \(s \):

\[
V^\pi(s) = \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r(s_t) \mid s_0 = s, \pi \right]
\]

with \(a_t = \pi(s_t), s_{t+1} \sim P(\cdot \mid s_t, a_t) \)

- The optimal value of a state is the value achievable by following the best possible policy:

\[
V^*(s) = \max_\pi \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r(s_t) \mid s_0 = s, \pi \right]
\]
The Bellman equation

• Recursive relationship between optimal values of successive states:

\[V^*(s) = r(s) + \gamma \max_a \sum_{s'} P(s'|s, a)V^*(s') \]

Agent receives reward \(r(s) \)

Agent chooses action \(a \)

Environment chooses \(s' \sim P(\cdot|s, a) \)

Expected value for action \(a \):
\[\sum_{s'} P(s'|s, a)V^*(s') \]

Optimal policy:
\[\pi^*(s) = \arg \max_a \sum_{s'} P(s'|s, a)V^*(s') \]
The optimal policy

- Expression using the state value function:

\[\pi^*(s) = \arg \max_a \sum_{s'} P(s'|s, a)V^*(s') \]

- To use this in practice, we need to know the transition model

- It is more convenient to define the value of a state-action pair:

\[Q^\pi(s, a) = \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r(s_t) | s_0 = s, a_0 = a, \pi \right] \]
Q-value function

- The optimal Q-value:

\[Q^*(s, a) = \max_\pi \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r(s_t) \mid s_0 = s, a_0 = a, \pi \right] \]

- What is the relationship between \(V^*(s) \) and \(Q^*(s, a) \)?

\[V^*(s) = \max_a Q^*(s, a) \]

- What is the optimal policy?

\[\pi^*(s) = \arg \max_a Q^*(s, a) \]
Q-value function

\[Q^*(s, a) = \max_{\pi} \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r(s_t) \mid s_0 = s, a_0 = a, \pi \right] \]

\[\pi^*(s) = \arg \max_{a} Q^*(s, a) \]
Bellman equation for Q-values

\[V^*(s) = \max_a Q^*(s, a) \]

- Regular Bellman equation:
 \[V^*(s) = r(s) + \gamma \max_a \sum_{s'} P(s'|s, a) V^*(s') \]

- Bellman equation for Q-values:
 \[Q^*(s, a) = r(s) + \gamma \sum_{s'} P(s'|s, a) \max_{a'} Q^*(s', a') \]
 \[= \mathbb{E}_{s' \sim P(\cdot|s, a)} \left[r(s) + \gamma \max_{a'} Q^*(s', a') \right]|s, a] \]
Finding the optimal policy

- The Bellman equation is a constraint on Q-values of successive states:

\[Q^*(s, a) = \mathbb{E}_{s' \sim P(\cdot | s, a)} [r(s) + \gamma \max_{a'} Q^*(s', a') | s, a] \]

- We could think of \(Q^*(s, a) \) as a table indexed by states and actions, and try to solve the system of Bellman equations to fill in the unknown values of the table.

- **Problem**: state spaces for interesting problems are huge.

- **Solution**: approximate Q-values using a parametric function:

\[Q^*(s, a) \approx Q_w(s, a) \]
Deep Q-learning

- Train a deep neural network to estimate Q-values:

Source: D. Silver

Deep Q-learning

\[Q^*(s, a) = \mathbb{E}_{s' \sim P(\cdot|s,a)} \left[r(s) + \gamma \max_{a'} Q^*(s', a')|s, a \right] \]

- Idea: at each iteration \(i \) of training, update model parameters \(w_i \) to “nudge” the left-hand side toward the right-hand “target”:

\[y_i(s, a) = \mathbb{E}_{s' \sim P(\cdot|s,a)} \left[r(s) + \gamma \max_{a'} Q_{w_{i-1}}(s', a')|s, a \right] \]

- Loss function:

\[L_i(w_i) = \mathbb{E}_{s,a \sim \rho} \left[(y_i(s, a) - Q_{w_i}(s, a))^2 \right] \]

where \(\rho \) is a behavior distribution
Deep Q-learning

• Target: \(y_i(s, a) = \mathbb{E}_{s' \sim P(\cdot|s,a)} [r(s) + \gamma \max_{a'} Q_{w_{i-1}} (s', a')|s, a] \)

• Loss: \(L_i(w_i) = \mathbb{E}_{s,a \sim \rho} [(y_i(s, a) - Q_{w_i}(s, a))^2] \)

• Gradient update:

\[
\nabla_{w_i} L(w_i) = \mathbb{E}_{s,a \sim \rho} [(y_i(s, a) - Q_{w_i}(s, a)) \nabla_{w_i} Q_{w_i}(s, a)] \\
= \mathbb{E}_{s,a \sim \rho, s'} [(r(s) + \gamma \max_{a'} Q_{w_{i-1}} (s', a') - Q_{w_i}(s, a)) \nabla_{w_i} Q_{w_i}(s, a)]
\]

• SGD training: replace expectation by sampling experiences \((s, a, s')\) using behavior distribution and transition model
Deep Q-learning in practice

- Training is prone to instability
 - Unlike in supervised learning, the targets themselves are moving!
 - Successive experiences are correlated and dependent on the policy
 - Policy may change rapidly with slight changes to parameters, leading to drastic change in data distribution

- Solutions
 - Freeze target Q network
 - Use experience replay
Experience replay

- At each time step:
 - Take action a_t according to epsilon-greedy policy
 - Store experience $(s_t, a_t, r_{t+1}, s_{t+1})$ in replay memory buffer
 - Randomly sample mini-batch of experiences from the buffer

<table>
<thead>
<tr>
<th>s_1, a_1, r_2, s_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_2, a_2, r_3, s_3</td>
</tr>
<tr>
<td>s_3, a_3, r_4, s_4</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>s_t, a_t, r_{t+1}, s_{t+1}</td>
</tr>
</tbody>
</table>
Experience replay

- At each time step:
 - Take action a_t according to *epsilon-greedy policy*
 - Store experience $(s_t, a_t, r_{t+1}, s_{t+1})$ in *replay memory buffer*
 - Randomly sample *mini-batch* of experiences from the buffer
 - Update parameters to reduce loss:

$$L_i(w_i) = \mathbb{E}_{s,a,s'} [(r(s) + \gamma \max_{a'} Q_{w_{i-1}}(s', a') - Q_{w_i}(s, a))^2]$$

Keep parameters of *target network* fixed, update every once in a while
Deep Q-learning in Atari

Deep Q-learning in Atari

- End-to-end learning of $Q(s, a)$ from pixels s
- Output is $Q(s, a)$ for 18 joystick/button configurations
- Reward is change in score for that step
Deep Q-learning in Atari

- Input state is stack of raw pixels (grayscale) from last 4 frames
- Network architecture and hyperparameters fixed for all games
Deep Q-learning in Atari
Breakout demo

https://www.youtube.com/watch?v=TmPfTpjtdgg