The Gory Details of Neural Network Training: A Gentle Overview
Outline

• Optimization
 • Mini-batch SGD
 • Learning rate decay
 • Adaptive methods

• Massaging the numbers
 • Data augmentation
 • Data preprocessing
 • Weight initialization
 • Batch normalization

• Regularization
 • Classic regularization: L2 and L1
 • Dropout
 • Label smoothing

• Test time: ensembles, averaging predictions
A not-so-deep dive into optimization

D. Hockney, Pool with two figures, 1972
Mini-batch SGD

- Iterate over epochs
 - Group data into mini-batches of size b
 - Compute gradient of the loss for the mini-batch $(x_1, y_1), ..., (x_b, y_b)$:
 \[
 \nabla \hat{L} = \frac{1}{b} \sum_{i=1}^{b} \nabla l(w, x_i, y_i)
 \]
 - Update parameters:
 \[
 w \leftarrow w - \eta \nabla \hat{L}
 \]
 - Check for convergence, decide whether to decay learning rate

- What are the hyperparameters?
 - Mini-batch size, learning rate decay schedule, deciding when to stop
Setting the mini-batch size

- Larger mini-batches: more expensive and less frequent updates, lower gradient variance, more parallelizable
- SGD with larger batches may generalize more poorly (e.g., Keskar et al., 2017)
- But can be made to work well by carefully controlling learning rate and addressing other optimization issues (Goyal et al., 2018)
Setting the learning rate

Want: good *decay schedule*

Source: Stanford CS231n
Learning rate decay

• Decay formulas
 • Exponential: $\eta_t = \eta_0 e^{-kt}$, where η_0 and k are hyperparameters, t is the iteration or epoch number
 • Inverse: $\eta_t = \eta_0 / (1 + kt)$
 • Inverse sqrt: $\eta_t = \eta_0 / \sqrt{t}$
 • Linear: $\eta_t = \eta_0 (1 + t/T)$, where T is the total number of epochs
 • Cosine: $\eta_t = \frac{1}{2} \eta_0 (1 + \cos(t\pi/T))$
Learning rate decay

- Decay formulas
- Most common in practice:
 - **Step decay**: reduce rate by a constant factor every few epochs, e.g., by 0.5 every 5 epochs, 0.1 every 20 epochs
 - **Manual**: watch validation error and reduce learning rate whenever it stops improving
 - “Patience” hyperparameter: number of epochs without improvement before reducing learning rate
 - **Warmup**: train with a low learning rate for a first few epochs, or linearly increase learning rate before transitioning to normal decay schedule ([Goyal et al.](http://example.com), 2018)
A typical phenomenon

Possible explanation

Image source: Stanford CS231n
Diagnosing learning curves: Obvious problems

- Not training
 - Bug in update calculation?

- Error increasing
 - Bug in update calculation?

- Get NaNs in the loss after a number of iterations:
 - Numerical instability

- Weird cyclical patterns in loss:
 - Data not shuffled

Source: Stanford CS231n
Diagnosing learning curves: Subtler behaviors

Not converged yet
Keep training, possibly increase learning rate

Slow start
Bad initialization?

Possible overfitting

Definite overfitting

Source: Stanford CS231n
When to stop training?

- Monitor validation error to decide when to stop
 - “Patience” hyperparameter: number of epochs without improvement before stopping
 - *Early stopping* can be viewed as a kind of regularization

Figure from *Deep Learning Book*
Advanced optimizers

- SGD with momentum
- RSMProp
- Adam
SGD with momentum

What will SGD do?

Image source
SGD with momentum

- Introduce a “momentum” variable m and associated “friction” coefficient β:

$$m \leftarrow \beta m - \eta \nabla L$$
$$w \leftarrow w + m$$

- Typically start with $\beta = 0.5$, gradually increase over time
SGD with momentum

• Introduce a “momentum” variable m and associated “friction” coefficient β:

$$m \leftarrow \beta m - \eta \nabla L$$

$$w \leftarrow w + m$$

• Move faster in directions with consistent gradient
• Avoid oscillating in directions with large but inconsistent gradients
SGD with momentum

- Introduce a “momentum” variable m and associated “friction” coefficient β:
 \[
 m \leftarrow \beta m - \eta \nabla L \\
 w \leftarrow w + m
 \]

- Nesterov momentum: evaluate gradient at “lookahead” position $w + \beta m$
Adaptive per-parameter learning rates

- Gradients of different layers have different magnitudes
- Want an automatic way to set different learning rates for different parameters
Adagrad

- Keep track of history of gradient magnitudes, scale the learning rate for each parameter based on this history:

\[
v_k \leftarrow v_k + \left\| \frac{\partial L}{\partial w_k} \right\|^2
\]

\[
w_k \leftarrow w_k - \frac{\eta}{\sqrt{v_k} + \epsilon} \frac{\partial L}{\partial w_k}
\]

- Parameters with small gradients get large updates and vice versa
- Problem: long-ago gradient magnitudes are not “forgotten” so learning rate decays too quickly

J. Duchi, Adaptive subgradient methods for online learning and stochastic optimization, JMLR 2011
RMSProp

- Introduce decay factor β (typically ≥ 0.9) to downweight past history exponentially:

$$v_k \leftarrow \beta v_k + (1 - \beta) \left\| \frac{\partial L}{\partial w_k} \right\|^2$$

$$w_k \leftarrow w_k - \frac{\eta}{\sqrt{v_k} + \epsilon} \frac{\partial L}{\partial w_k}$$

Adam

- Combine RMSProp with momentum:

\[
\begin{align*}
 m &\leftarrow \beta_1 m + (1 - \beta_1) \nabla L \\
 v_k &\leftarrow \beta_2 v_k + (1 - \beta_2) \left\| \frac{\partial L}{\partial w_k} \right\|^2 \\
 w_k &\leftarrow w_k - \frac{\eta}{\sqrt{v_k} + \epsilon} m_k
\end{align*}
\]

- Full algorithm includes bias correction to account for \(m \) and \(v \) starting at 0:

\[
\hat{m} = \frac{m}{1 - \beta_1^t}, \quad \hat{v} = \frac{v}{1 - \beta_2^t} \quad (t \text{ is the timestep})
\]

- Default parameters from paper: \(\beta_1 = 0.9, \beta_2 = 0.999, \eta = 1e-3, \epsilon = 1e-8 \)

- Reputed to be good starting point for many models

Which optimizer to use in practice?

- Adaptive methods tend to reduce initial training error faster than SGD and are “safer”
 - Andrej Karpathy: “In the early stages of setting baselines I like to use Adam with a learning rate of 3e-4. In my experience Adam is much more forgiving to hyperparameters, including a bad learning rate. For ConvNets a well-tuned SGD will almost always slightly outperform Adam, but the optimal learning rate region is much more narrow and problem-specific.”
 - Use Adam at first, then switch to SGD?
- However, some literature reports problems with adaptive methods, such as failing to converge or generalizing poorly (Wilson et al. 2017, Reddi et al. 2018)
 - YMMV!
Outline

- Optimization
 - Mini-batch SGD
 - Learning rate decay
 - Adaptive methods

- Massaging the numbers
 - Data augmentation
 - Data preprocessing
 - Weight initialization
 - Batch normalization

- Regularization
 - Classic regularization: L2 and L1
 - Dropout
 - Label smoothing

- Test time: ensembles, averaging predictions
Data augmentation

- Introduce transformations not adequately sampled in the training data
 - Geometric: flipping, rotation, shearing, multiple crops
Data augmentation

• Introduce transformations not adequately sampled in the training data
 • Geometric: flipping, rotation, shearing, multiple crops
 • Photometric: color transformations
Data augmentation

- Introduce transformations not adequately sampled in the training data
 - Geometric: flipping, rotation, shearing, multiple crops
 - Photometric: color transformations
 - Other: add noise, compression artifacts, lens distortions, etc.
Data augmentation

- Introduce transformations not adequately sampled in the training data
- Limited only by your imagination and time/memory constraints!
- Avoid introducing artifacts
Data augmentation

• Introduce transformations not adequately sampled in the training data
• Limited only by your imagination and time/memory constraints!
• Avoid introducing artifacts
• Automatic augmentation strategies: {AutoAugment, RandAugment}
Data preprocessing

- Zero centering
 - Subtract *mean image* – all input images need to have the same resolution
 - Subtract *per-channel means* – images don’t need to have the same resolution
- Optional: rescaling – divide each value by (per-pixel or per-channel) standard deviation

- Be sure to apply the same transformation at training and test time!
 - Save training set statistics and apply to test data
Weight initialization

- What’s wrong with initializing all weights to the same number (e.g., zero)?
Weight initialization

• Typically: initialize to random values sampled from zero-mean Gaussian: \(w \sim \mathcal{N}(0, \sigma^2) \)

 • Standard deviation matters!

 • Key idea: avoid reducing or amplifying the variance of layer responses, which would lead to vanishing or exploding gradients

• Common heuristics:

 • Xavier initialization: \(\sigma^2 = 1/n_{\text{in}} \) or \(\sigma^2 = 2/(n_{\text{in}} + n_{\text{out}}) \), where \(n_{\text{in}} \) and \(n_{\text{out}} \) are the numbers of inputs and outputs to a layer (Glorot and Bengio, 2010)

 • For ReLU: \(\sigma^2 = 2/n_{\text{in}} \) (He et al., 2015)

• Initializing biases: just set them to 0

Batch normalization

• The authors’ intuition

Batch normalization

- **Key idea**: shifting and rescaling are differentiable operations, so the network can *learn* how best to normalize the data.
- Statistics of activations (outputs) from a given layer across the dataset can be approximated by statistics from a mini-batch.

Batch normalization

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_1,...,x_m\}$; Parameters to be learned: γ, β

Output: $\{y_i = \text{BN}_{\gamma,\beta}(x_i)\}$

$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$ \hspace{1cm} // mini-batch mean

$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_{\mathcal{B}})^2$ \hspace{1cm} // mini-batch variance

$\hat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$ \hspace{1cm} // normalize

$y_i \leftarrow \gamma \hat{x}_i + \beta \equiv \text{BN}_{\gamma,\beta}(x_i)$ \hspace{1cm} // scale and shift

Why?

Batch normalization

At test time (usually):

\[\hat{x}_i \leftarrow \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}} \]
\[y_i \leftarrow \gamma \hat{x}_i + \beta \equiv \text{BN}_\gamma,\beta(x_i) \]

Batch normalization

- Common configuration: insert BN layers right after conv or FC layers, before ReLU nonlinearity (but this is purely empirical)

Batch normalization

• **Benefits**
 • Prevents exploding and vanishing gradients
 • Keeps most activations away from saturation regions of non-linearities
 • Accelerates convergence of training
 • Makes training more robust w.r.t. hyperparameter choice, initialization

• **Pitfalls**
 • Behavior depends on composition of mini-batches, can lead to hard-to-catch bugs if there is a mismatch between training and test regime ([example](#))
 • Doesn’t work well for small mini-batch sizes
 • Cannot be used in recurrent models
Why does BatchNorm *really* work?

- It may have to do not with internal covariate shift (ICS), but with making the optimization problem much smoother ([Santurkar et al.], 2018)
- *Is ICS even a thing?* ([Lipton and Steinhardt], 2018)
Other types of normalization

- **Layer normalization** (Ba et al., 2016)
- **Instance normalization** (Ulyanov et al., 2017)
- **Group normalization** (Wu and He, 2018)
- **Weight normalization** (Salimans et al., 2016)

Y. Wu and K. He, *Group Normalization*, ECCV 2018
Outline

• Optimization
 • Mini-batch SGD
 • Learning rate decay
 • Adaptive methods

• Massaging the numbers
 • Data augmentation
 • Data preprocessing
 • Weight initialization
 • Batch normalization

• Regularization
 • Classic regularization: L2 and L1
 • Dropout
 • Label smoothing

• Test time: ensembles, averaging predictions
Recall: Regularization

- Techniques for controlling the capacity of a neural network to prevent overfitting
Recall: L2 regularization

- Regularized objective:
 \[\hat{L}(w) = \frac{\lambda}{2} \|w\|_2^2 + \sum_{i=1}^{n} l(w, x_i, y_i) \]

- Gradient of objective:
 \[\nabla \hat{L}(w) = \lambda w + \sum_{i=1}^{n} \nabla l(w, x_i, y_i) \]

- SGD update:
 \[w \leftarrow w - \eta \left(\lambda w + \nabla l(w, x_i, y_i) \right) \]
 \[w \leftarrow (1 - \eta \lambda)w - \eta \nabla l(w, x_i, y_i) \]

- Interpretation: weight decay
L1 regularization

• Regularized objective:

\[\hat{L}(w) = \lambda \|w\|_1 + \sum_{i=1}^{n} l(w, x_i, y_i) \]

\[= \lambda \sum_d |w_d| + \sum_{i=1}^{n} l(w, x_i, y_i) \]

• Gradient: \[\nabla \hat{L}(w) = \lambda \text{sgn}(w) + \sum_{i=1}^{n} \nabla l(w, x_i, y_i) \]

• SGD update:

\[w \leftarrow w - \eta \lambda \text{sgn}(w) - \eta \nabla l(w, x_i, y_i) \]

• Interpretation: encouraging sparsity
Other types of regularization

• Adding noise to the inputs
 • Recall motivation of max margin criterion
 • In simple scenario (linear model, quadratic loss, Gaussian noise), this is equivalent to weight decay
 • Data augmentation is a more general form of this

• Adding noise to the weights
Dropout

- At training time, in each forward pass, turn off some neurons with probability p
- At test time, to have deterministic behavior, multiply output of neuron by p

Dropout: A Simple Way to Prevent Neural Networks from Overfitting. JMLR 2014
Dropout

• Intuitions
 • Prevent “co-adaptation” of units, increase robustness to noise
 • Train *implicit ensemble*

Dropout: A Simple Way to Prevent Neural Networks from Overfitting. JMLR 2014
Current status of dropout

- Against
 - Slows down convergence
 - Made redundant by batch normalization or possibly even clashes with it
 - Unnecessary for larger datasets or with sufficient data augmentation
- In favor
 - Can still help in certain situations: e.g., used in Wide Residual Networks
Label smoothing

- **Idea:** avoid overly confident predictions, account for label noise
- When using softmax loss, replace hard 1 and 0 prediction targets with “soft” targets of \(1 - \epsilon \) and \(\frac{\epsilon}{C-1} \)
- Used in Inception-v2 architecture
Outline

• Optimization
 • Mini-batch SGD
 • Learning rate decay
 • Adaptive methods

• Massaging the numbers
 • Data augmentation
 • Data preprocessing
 • Weight initialization
 • Batch normalization

• Regularization
 • Classic regularization: L2 and L1
 • Dropout
 • Label smoothing

• Test time: ensembles, averaging predictions
Test time

- **Ensembles**: train multiple independent models, then average their predicted label distributions
 - Gives 1-2% improvement in most cases
 - Can take multiple snapshots of models obtained during training, especially if you *cycle* the learning rate (increase to jump out of local minima)

G. Huang et al., [Snapshot ensembles: Train 1, get M for free](https://iclr.cc/2017/content/iclr2017_paper_688.pdf), ICLR 2017
Test time

• Average predictions across multiple crops of test image
 • There is a more elegant way to do this with *fully convolutional networks* (FCNs)
Attempt at a conclusion

- Training neural networks is still a black art
- Process requires close “babysitting”
- For many techniques, the reasons why, when, and whether they work are in active dispute – read everything but don’t trust anything
- It all comes down to (principled) trial and error
- Further reading: A. Karpathy, A recipe for training neural networks