Variational autoencoders (VAEs)
Outline

• Basic VAE formulation
• Highlights of recent work
Recall: GANs

- **Training:**
 - Discriminator: low scores for fake data, high scores for real data
 - Generator: increase discriminator score on fake data
- **Test time:** discard discriminator and use generator to sample from learned distribution
Variational autoencoders: Overview

- Probabilistic formulation based on variational Bayes framework
- At training time, jointly learn encoder and decoder by maximizing (a bound on) the data likelihood
- At test time, discard encoder and use decoder to sample from the learned distribution

Variational autoencoders: Overview

- Probabilistic generative model of the data distribution:

 - Sample \(z \) from prior \(p(z) \) (usually Gaussian)
 - Sample \(x \) from conditional \(p(x|z) \)
 - Try to approximate the conditional with neural network
Variational autoencoders: Overview

- At training time, jointly learn encoder and decoder
- **Encoder**: given inputs x, output $q_\phi(z \mid x)$
 - Specifically, output mean and (diagonal) covariance, or $\mu_{z \mid x}$ and $\Sigma_{z \mid x}$, so that $q_\phi(z \mid x) = N(\mu_{z \mid x}, \Sigma_{z \mid x})$
- **Decoder**: given z, output $p_\theta(x \mid z)$
 - Specifically, output $\mu_{x \mid z}$ and $\Sigma_{x \mid z}$ so that $p_\theta(x \mid z) = N(\mu_{x \mid z}, \Sigma_{x \mid z})$
- **Training objective**: (a bound on) data likelihood under the model
Variational autoencoders: Overview

- At test time, discard encoder and use decoder to sample from $p_\theta(x \mid z) = N(\mu_{x|z}, \Sigma_{x|z})$
Variational autoencoders: Training

- Objective: maximize the variational lower bound on the data likelihood:

$$\log p_\theta(x) \geq \mathbb{E}_{z \sim q_\phi(z|x)}[\log p_\theta(x|z)] - D_{KL}\left(q_\phi(z|x), p(z)\right)$$

Adapted from J. Johnson
Variational autoencoders: Training

• Objective: maximize the variational lower bound on the data likelihood:

\[
\log p_\theta(x) \geq \mathbb{E}_{z \sim q_\phi(z|x)}[\log p_\theta(x|z)] - D_{KL}(q_\phi(z|x), p(z))
\]

1. Run training point \(x\) through encoder to get a distribution over latent codes \(z\)

Adapted from J. Johnson
Variational autoencoders: Training

- Objective: maximize the variational lower bound on the data likelihood:

\[
\log p_\theta(x) \geq \mathbb{E}_{z \sim q_\phi(z|x)}[\log p_\theta(x|z)] - D_{KL}(q_\phi(z|x), p(z))
\]

1. Run training point \(x\) through encoder to get a distribution over latent codes \(z\)
2. Encoder output should match the prior \(p(z)\)
 - Closed form solution when \(q_\phi\) is diagonal Gaussian and \(p\) is unit Gaussian (Assume \(z\) has dimension \(J\)):
 \[
 -D_{KL}(q_\phi(z|x), p(z)) = \sum_{j=1}^{J} \left(1 + \log \left(\Sigma_{z|x} \right)_j^2 \right) - \left(\mu_{z|x} \right)_j^2 - \left(\Sigma_{z|x} \right)_j^2
 \]

Adapted from J. Johnson
Variational autoencoders: Training

- Objective: maximize the *variational lower bound* on the data likelihood:

\[
\log p_\theta(x) \geq \mathbb{E}_{z \sim q_\phi(z|x)}[\log p_\theta(x|z)] - D_{KL}(q_\phi(z|x), p(z))
\]

1. Run training point \(x \) through encoder to get a distribution over latent codes \(z \)
2. Encoder output should match the prior \(p(z) \)
3. Sample code \(z \) from encoder output

Adapted from J. Johnson
Variational autoencoders: Training

- Objective: maximize the \textit{variational lower bound} on the data likelihood:

\[
\log p_{\theta}(x) \geq \mathbb{E}_{z \sim q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}(q_{\phi}(z|x), p(z))
\]

1. Run training point \(x \) through encoder to get a distribution over latent codes \(z \)
2. Encoder output should match the prior \(p(z) \)
3. Sample code \(z \) from encoder output
4. Run sampled \(z \) through decoder to get a distribution over data samples

Adapted from J. Johnson
Variational autoencoders: Training

- Objective: maximize the *variational lower bound* on the data likelihood:

\[
\log p_\theta(x) \geq \mathbb{E}_{z \sim q_\phi(z|x)}[\log p_\theta(x|z)] - D_{KL}(q_\phi(z|x), p(z))
\]

1. Run training point \(x \) through encoder to get a distribution over latent codes \(z \)
2. Encoder output should match the prior \(p(z) \)
3. Sample code \(z \) from encoder output
4. Run sampled \(z \) through decoder to get a distribution over data samples
5. Original input should be likely under the distribution output in (4)

Adapted from J. Johnson
Variational autoencoders: Training

- Objective: maximize the \textit{variational lower bound} on the data likelihood:

\[
\log p_\theta(x) \geq \mathbb{E}_{z \sim q_\phi(z|x)}[\log p_\theta(x|z)] - D_{KL}\left(q_\phi(z|x), p(z)\right)
\]

- Data likelihood
- Regularization
Variational autoencoders: Training

- Objective: maximize the \textit{variational lower bound} on the data likelihood:

\[
\log p_\theta(x) \geq \mathbb{E}_{z \sim q_\phi(z|x)}[\log p_\theta(x|z)] - D_{KL}(q_\phi(z|x), p(z))
\]

\begin{itemize}
\item Data likelihood
\item Regularization
\end{itemize}

- Objective for the entire dataset:

\[
\mathbb{E}_{x \sim D} \left[\mathbb{E}_{z \sim q_\phi(z|x)}[\log p_\theta(x|z)] - D_{KL}(q_\phi(z|x), p(z)) \right]
\]

For further details, see: C. Doersch, \textit{Tutorial on Variational Autoencoders}, 2016
Original results

- Learned 2D manifolds:

Variational autoencoders: Generating data

Image source
Basic VAE framework: Summary

• **Pros:**
 • Principled mathematical formalism for generative models
 • Allows inference of code given image, can be useful for controlling the latent space

• **Cons:**
 • Samples blurrier and lower quality compared to GANs

• **Active areas of research:**
 • More powerful and flexible approximations for relevant probability distributions
 • Combining VAEs and GANs
 • Incorporating structure in latent variables, e.g., hierarchical or categorical distributions

Adapted from J. Johnson
Combining VAEs and GANs

- Define decoder probability model $p_\theta(x|z)$ not in terms of reconstruction errors in pixel space, but in terms of errors in discriminator feature space.
Combining VAEs and GANs: BicycleGANs

Toward Multimodal Image-to-Image Translation, NIPS 2017
Combining VAEs and GANs: BicycleGANs

- Key ideas:
 - Image-to-image translation is a *one-to-many* problem. Need to model conditional distribution of output given input parametrized by z.
 - To prevent mode collapse (or many-to-one mapping from z to output), need to encourage the mapping between output and latent code to be invertible.
 - Propose BicycleGAN framework to simultaneously learn mappings in both directions.

Combining VAEs and GANs: BicycleGANs

Generating better samples: VQ-VAE-2

- Combining VAE and autoregressive models:

 Train a VAE-like model to generate multiscale grids of latent codes

 Use a multiscale autoregressive model (PixelCNN) to sample in latent code space

Generating better samples: VQ-VAE-2

- 256 x 256 class-conditional samples, trained on ImageNet:
Generating better samples: VQ-VAE-2

- 256 x 256 class-conditional samples, trained on ImageNet:

 - Redshank
 - Pekinese
 - Papillon
 - Drake
 - Spotted Salamander
Generating better samples: VQ-VAE-2

- 1024 x 1024 generated faces, trained on FFHQ:
Generating better samples: Hierarchical VAE

Figure 1: 256×256-pixel samples generated by NVAE, trained on CelebA HQ [28].