Policy Gradient Methods

Sources: Stanford CS 231n, Berkeley Deep RL course, David Silver’s RL course
Policy Gradient Methods

- Instead of indirectly representing the policy using Q-values, it can be more efficient to parameterize and learn it directly.
 - Especially in large or continuous action spaces.

Image source: OpenAI Gym
Outline

• Stochastic policy representation
• Finding the policy gradient
• REINFORCE algorithm
• Reducing variance: Actor-critic algorithms
• Asynchronous advantage actor-critic (A3C)
• Application: policy gradients for image captioning
Stochastic policy representation

- Learn a function giving the probability distribution over actions from the current state:

\[\pi_\theta(a|s) \approx P(a|s) \]
Stochastic policy representation

• Learn a function giving the probability distribution over actions from the current state:

\[\pi_\theta(a|s) \approx P(a|s) \]

• Why stochastic policies?
 • There are examples even of grid world scenarios where only a stochastic policy can reach optimality

The agent can’t tell the difference between the gray cells

Source: D. Silver
Stochastic policy representation

• Learn a function giving the probability distribution over actions from the current state:

\[
\pi_\theta(a|s) \approx P(a|s)
\]

• Why stochastic policies?
 • It’s mathematically convenient!
 • Softmax policy:
 \[
 \pi_\theta(a|s) = \frac{\exp(f_\theta(s, a))}{\sum_{a'} \exp(f_\theta(s, a'))}
 \]
 • Gaussian policy (for continuous action spaces):
 \[
 \pi_\theta(a|s) = \frac{1}{\sqrt{2\pi}\sigma^2} \exp \left(- \frac{(a - f_\theta(s))^2}{2\sigma^2} \right)
 \]
Expected value of a policy

\[J(\theta) = \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r_t \mid \pi_\theta \right] \]

\[= \mathbb{E}_\tau [r(\tau)] \]

Expectation of return over trajectories \(\tau = (s_0, a_0, r_0, s_1, a_1, r_1, \ldots) \)

\[= \int_\tau r(\tau)p(\tau; \theta) d\tau \]

Probability of trajectory \(\tau \)
under policy with
parameters \(\theta \)
Finding the policy gradient

\[J(\theta) = \int r(\tau)p(\tau; \theta)d\tau \]

\[\nabla_\theta J(\theta) = \int r(\tau)\nabla_\theta p(\tau; \theta)d\tau \]

\[= \int r(\tau)p(\tau; \theta)\frac{\nabla_\theta p(\tau; \theta)}{p(\tau; \theta)}d\tau \]

\[= \int r(\tau)p(\tau; \theta)\nabla_\theta \log p(\tau; \theta)\,d\tau \]

\[= \mathbb{E}_\tau [r(\tau)\nabla_\theta \log p(\tau; \theta)] \]
Finding the policy gradient

\[\nabla_{\theta} J(\theta) = \mathbb{E}_\tau [r(\tau) \nabla_{\theta} \log p(\tau; \theta)] \]

Probability of trajectory

\[\tau = (s_0, a_0, s_1, a_1, \ldots) \]

\[p(\tau; \theta) = \prod_{t \geq 0} \pi_\theta(a_t | s_t) P(s_{t+1} | s_t, a_t) \]

\[\log p(\tau; \theta) = \sum_{t \geq 0} [\log \pi_\theta(a_t | s_t) + \log P(s_{t+1} | s_t, a_t)] \]

\[\nabla_{\theta} \log p(\tau; \theta) = \sum_{t \geq 0} \nabla_{\theta} \log \pi_\theta(a_t | s_t) \]

The score function
Score function $\nabla_\theta \log \pi_\theta (a|s)$

- For softmax policy:
 \[
 \pi_\theta (a|s) = \frac{\exp (f_\theta (s,a))}{\sum_{a'} \exp (f_\theta (s,a'))}
 \]
 \[
 \nabla_\theta \log \pi_\theta (a_t|s_t) = \nabla_\theta f_\theta (s,a) - \sum_{a'} \pi_\theta (a'|s) \nabla_\theta f_\theta (s,a')
 \]

- For Gaussian policy:
 \[
 \pi_\theta (a|s) = \frac{1}{\sqrt{2\pi}\sigma^2} \exp \left(- \frac{(a - f_\theta (s))^2}{2\sigma^2} \right)
 \]
 \[
 \nabla_\theta \log \pi_\theta (a_t|s_t) = \frac{(a - f_\theta (s))}{\sigma^2} \nabla_\theta f_\theta (s) - \text{const.}
 \]
Finding the policy gradient

\[
\nabla_\theta J(\theta) = \mathbb{E}_{\tau}[r(\tau)\nabla_\theta \log p(\tau; \theta)] \\
\n\nabla_\theta \log p(\tau; \theta) = \sum_{t \geq 0} \nabla_\theta \log \pi_\theta(a_t|s_t) \\

\n\n\nabla_\theta J(\theta) = \mathbb{E}_{\tau}\left[\left(\sum_{t \geq 0} \gamma^t r_t\right)\left(\sum_{t \geq 0} \nabla_\theta \log \pi_\theta(a_t|s_t)\right)\right]
\]

- How do we estimate the gradient in practice?
Finding the policy gradient

\[\nabla_{\theta} J(\theta) = \mathbb{E}_\tau [r(\tau) \nabla_{\theta} \log p(\tau; \theta)] \]

\[\nabla_{\theta} \log p(\tau; \theta) = \sum_{t \geq 0} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \]

\[\nabla_{\theta} J(\theta) = \mathbb{E}_\tau \left[\left(\sum_{t \geq 0} \gamma^t r_t \right) \left(\sum_{t \geq 0} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \right) \right] \]

- Stochastic approximation: sample \(N \) trajectories \(\tau_1, \ldots, \tau_N \)

\[\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=0}^{T_i} \gamma^t r_{i,t} \right) \left(\sum_{t=0}^{T_i} \nabla_{\theta} \log \pi_{\theta}(a_{i,t} | s_{i,t}) \right) \]
REINFORCE algorithm

1. Sample \(N \) trajectories \(\tau_i \) using current policy \(\pi_\theta \)

2. Estimate the policy gradient:

\[
\nabla_\theta J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} r(\tau_i) \left(\sum_{t=0}^{T_i} \nabla_\theta \log \pi_\theta(a_{i,t}|s_{i,t}) \right)
\]

3. Update parameters by gradient ascent:

\[
\theta \leftarrow \theta + \eta \nabla_\theta J(\theta)
\]

Williams et al. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine Learning, 8(3):229-256, 1992
REINFORCE: Single-step version

1. In state s, sample action a using current policy π_θ, observe reward r

2. Estimate the policy gradient:

 $$\nabla_\theta J(\theta) \approx r \nabla_\theta \log \pi_\theta(a|s)$$

3. Update parameters by gradient ascent:

 $$\theta \leftarrow \theta + \eta \nabla_\theta J(\theta)$$

- What effect does this update have?
 - Push up the probability of good actions, push down probability of bad actions
Outline

• Stochastic policy representation
• Finding the policy gradient
• REINFORCE algorithm
• Reducing variance: Actor-critic algorithms
Reducing variance

- Gradient estimate (for a single trajectory):

\[\nabla_\theta J(\theta) \approx \sum_{t \geq 0} r(\tau) \nabla_\theta \log \pi_\theta(a_t|s_t) \]

- **General problem**: rewards of sampled trajectories are too noisy and lead to unreliable policy gradients
Reducing variance

• Gradient estimate (for a single trajectory):

\[\nabla_{\theta} J(\theta) \approx \sum_{t \geq 0} r(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t|s_t) \]

• First observation: it seems bad to weight each action in a trajectory by the return of the entire trajectory. In particular, rewards obtained \textit{before} an action was taken should not be used to weight that action.

• Instead, for each action, consider only the cumulative \textit{future} reward:

\[\nabla_{\theta} J(\theta) \approx \sum_{t \geq 0} \left(\sum_{t' \geq t} \gamma^{t'-t} r_{t'} \right) \nabla_{\theta} \log \pi_{\theta}(a_t|s_t) \]
Reducing variance

\[\nabla_{\theta} J(\theta) \approx \sum_{t \geq 0} \left(\sum_{t' \geq t} \gamma^{t'-t} r_{t'} \right) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \]

Observed cumulative reward after taking action \(a_t \) in state \(s_t \)

- But then, why not use \textit{expected} cumulative reward?

\[\nabla_{\theta} J(\theta) \approx \sum_{t \geq 0} Q^\pi(\!s_t, a_t\!) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \]
Actor-Critic algorithms

- Combine policy gradients and Q-learning by simultaneously training an *actor* (the policy) and a *critic* (the Q-function)

Source: D. Silver
Reducing variance

\[\nabla_\theta J(\theta) \approx \sum_{t \geq 0} Q^{\pi_\theta}(s_t, a_t) \nabla_\theta \log \pi_\theta(a_t|s_t) \]

- Next observation: the raw Q-values are not the most useful. If all Q-values are good, we will try to push up the probabilities of all the actions.

- Instead, compare Q-values of actions to some baseline function of the state:

\[\nabla_\theta J(\theta) \approx \sum_{t \geq 0} \left(Q^{\pi_\theta}(s_t, a_t) - V^{\pi_\theta}(s_t) \right) \nabla_\theta \log \pi_\theta(a_t|s_t) \]

Advantage function
Estimating the advantage function

- Advantage function:

\[
A^{\pi_\theta}(s, a) = Q^{\pi_\theta}(s, a) - V^{\pi_\theta}(s) \\
= \mathbb{E}_{\pi_\theta}[r + \gamma V^{\pi_\theta}(s')|s, a] - V^{\pi_\theta}(s) \\
\approx r + \gamma V^{\pi_\theta}(s') - V^{\pi_\theta}(s)
\]

(from a single transition)

- Therefore, it is sufficient to learn the value function:

\[
V^{\pi_\theta}(s) \approx V_w(s)
\]
Online actor-critic algorithm

1. Sample action a using current policy, observe reward r, successor state s'
2. Update $V_w(s)$ towards target $r + \gamma V_w(s')$
3. Estimate $A^{\pi \theta} (s, a) = r + \gamma V_w(s') - V_w(s)$
4. Estimate $\nabla_\theta J(\theta) = A^{\pi \theta} (s, a) \nabla_\theta \log \pi_\theta(a|s)$
5. Update policy parameters: $\theta \leftarrow \theta + \eta \nabla_\theta J(\theta)$

Source: Berkeley RL course
Asynchronous advantage actor-critic (A3C)

Asynchronous advantage actor-critic (A3C)

<table>
<thead>
<tr>
<th>Method</th>
<th>Training Time</th>
<th>Mean</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>DQN</td>
<td>8 days on GPU</td>
<td>121.9%</td>
<td>47.5%</td>
</tr>
<tr>
<td>Gorilla</td>
<td>4 days, 100 machines</td>
<td>215.2%</td>
<td>71.3%</td>
</tr>
<tr>
<td>D-DQN</td>
<td>8 days on GPU</td>
<td>332.9%</td>
<td>110.9%</td>
</tr>
<tr>
<td>Dueling D-DQN</td>
<td>8 days on GPU</td>
<td>343.8%</td>
<td>117.1%</td>
</tr>
<tr>
<td>Prioritized DQN</td>
<td>8 days on GPU</td>
<td>463.6%</td>
<td>127.6%</td>
</tr>
<tr>
<td>A3C, FF</td>
<td>1 day on CPU</td>
<td>344.1%</td>
<td>68.2%</td>
</tr>
<tr>
<td>A3C, FF</td>
<td>4 days on CPU</td>
<td>496.8%</td>
<td>116.6%</td>
</tr>
<tr>
<td>A3C, LSTM</td>
<td>4 days on CPU</td>
<td>623.0%</td>
<td>112.6%</td>
</tr>
</tbody>
</table>

Mean and median human-normalized scores over 57 Atari games

Asynchronous advantage actor-critic (A3C)

TORCS car racing simulation video

Asynchronous advantage actor-critic (A3C)

Motor control tasks video

Benchmarks and environments for Deep RL

OpenAI Gym

Gym is a toolkit for developing and comparing reinforcement learning algorithms. It supports teaching agents everything from walking to playing games like Pong or Pinball.

View documentation ›
View on GitHub ›

https://gym.openai.com/
Outline

- Stochastic policy representation
- Finding the policy gradient
- REINFORCE algorithm
- Reducing variance: Actor-critic algorithms
- Asynchronous advantage actor-critic (A3C)
- Application: policy gradients for image captioning
Application: Policy gradients for image captioning

• Standard training: maximize log-likelihood of reference sentences given the image
 • Log-likelihood is not related to any specialized caption quality scores (BLEU, CIDER, METEOR, SPICE, etc.)
 • Does not reward high-quality generated sentences that are not identical to the reference ones
Application: Policy gradients for image captioning

- Standard training: maximize log-likelihood of reference sentences given the image
 - Log-likelihood is not related to any specialized caption quality scores (BLEU, CIDER, METEOR, SPICE, etc.)
 - Does not reward high-quality generated sentences that are not identical to the reference ones

- Solution: train model with a non-differentiable caption quality score as reward
Application: Policy gradients for image captioning

- **MDP formulation for captioning**
 - **States**
 - Image, sequence generated so far
 - **Actions**
 - Generate word from vocabulary
 - **Transition model**
 - Append generated word to sequence (deterministic)
 - **Reward**
 - BLEU/CIDER/METEOR/SPICE etc. at the end of the sequence

- **Challenges**
 - Action space is large
 - Reward is sparse
Application: Policy gradients for image captioning

- Initialize policy with ML-trained model
- Estimate expected intermediate returns $Q(s, a)$ using Monte Carlo rollouts
 - For each partial sequence, sample K continuations until completion and average their reward

S. Liu, Z. Zhu, N. Ye, S. Guadarrama, and K. Murphy, *Improved Image Captioning via Policy Gradient optimization of SPIDER*, ICCV 2017
Application: Policy gradients for image captioning

Human study on 492 images: percentage of captions judged to be “not bad”
(87% of human captions are judged to be “not bad”)

- PG-SPIDER: 48.57% (+10.56%)
- PG-BCMR: 44.72% (+6.71%)
- MLE: 38.01% (+0.00%)
Application: Policy gradients for image captioning

Comparison of captions

1. A woman walking on a city street in a red coat.
2. A group of people that are standing on the side of a street.
3. A woman in a red jacket crossing the street.
4. A street light with some people and a woman wearing a red jacket.
5. A blonde woman in a red coat crosses the street with her friend.

- MLE: a woman walking down a street while holding an umbrella.
- PG-SPICE: a group of people walking down a street with a man on a street holding a traffic light and a traffic light on a city street with a city street.
- MIXER-BCMR: a group of people walking down a street.
- MIXER-BCMR-A: a group of people walking down a street.
- PG-BCMR: a group of people walking down a city street.
- PG-SPIDER: a group of people walking down a street with a traffic light.

1. A group of people converse in an office setting.
2. A group of people playing a game with remote controllers.
3. Four young people have crowded into a small office.
4. A group of people standing next to each other in a room.
5. A group of people standing next to each other with some of them holding video game controllers.

- MLE: a group of people standing around a living room.
- PG-SPICE: a group of people in a room with a man in a chair holding a nintendo wii remote in a living room with a man in a chair holding a
- MIXER-BCMR: a group of people standing in a living room.
- MIXER-BCMR-A: a group of people standing in a living room playing a video game.
- PG-BCMR: a group of people standing in a room.
- PG-SPIDER: a group of people playing a video game in a living room.

1. A man looking through a book on top of a table.
2. A man sitting on a bed looking at a book.
3. A man is flipping through a book on a bed.
5. A man in a black jacket is flipping through a large book.

- MLE: a man sitting in front of a laptop computer.
- PG-SPICE: a man sitting in front of a book and a laptop on a table with a laptop computer on top of a laptop computer on top of