Understanding real cameras
Overview

• Cameras with lenses
 • Depth of field
 • Field of view
 • Lens aberrations

• Digital sensors
Home-made pinhole camera

What is wrong with this image?

Source: P.Debevec via A. Efros
Shrinking the aperture

Why not make the aperture as small as possible?

- Less light gets through
- Diffraction!
Shrinking the aperture
Adding a lens
A lens focuses light onto the film

- Thin lens model:
Adding a lens

A lens focuses light onto the film

- Thin lens model:
 - Rays passing through the center are not deviated
 (pinhole projection model still holds)
Adding a lens

A lens focuses light onto the film

- Thin lens model:
 - Rays passing through the center are not deviated (pinhole projection model still holds)
 - All rays parallel to the optical axis pass through the focal point
 - All parallel rays converge to points on the focal plane
Thin lens formula

- Where does the lens focus the rays coming from a given point in the scene?
Thin lens formula

What is the relation between the focal length \(f \), the distance of the object from the optical center \(D \), and the distance at which the object will be in focus \(D' \)?
Thin lens formula

Similar triangles everywhere!
Thin lens formula

Similar triangles everywhere! \[\frac{y'}{y} = \frac{D'}{D} \]
Thin lens formula

Similar triangles everywhere!

\[
y'/y = D'/D
\]

\[
y'/y = (D'-f)/f
\]
Thin lens formula

\[
\frac{1}{D'} + \frac{1}{D} = \frac{1}{f}
\]

Any point satisfying the thin lens equation is in focus.

What happens when \(D \) is very large?
Overview

• Cameras with lenses
 • Depth of field
 • Field of view
Depth of field

- For a fixed focal length and image plane, there is a specific distance at which objects are “in focus”
 - Other points project to a “circle of confusion” in the image
Depth of field

- Depth of field is the distance between the nearest and farthest objects in a scene that appear acceptably sharp in an image (Wikipedia)
Controlling depth of field
Controlling depth of field

Changing the *aperture* size affects depth of field

- A smaller aperture increases the range in which the object is approximately in focus
- But small aperture reduces amount of light – need to increase *exposure*
Varying the aperture

Large aperture = small DOF
Small aperture = large DOF

Slide by A. Efros
Field of view

- The field of view is the angular extent of the world observed by the camera ([Wikipedia](https://en.wikipedia.org/wiki/Field_of_view))
- What determines the FOV?
Field of view

- The field of view is the angular extent of the world observed by the camera (Wikipedia).
- What determines the FOV?
 - Focal length \((f) \), length of the sensor \((d) \):
 \[
 \varphi = \tan^{-1} \frac{d}{2f}
 \]
 - Larger focal length = smaller FOV
Field of view

Slide by A. Efros
Field of view

Slide by A. Efros
Field of view / focal length

Large FOV, small f
Camera close to car

Small FOV, large f
Camera far from the car

Sources: A. Efros, F. Durand
Same effect for faces

wide-angle standard telephoto

Source: F. Durand
Approximating an orthographic camera

Source: Hartley & Zisserman
The dolly zoom

- Continuously adjusting the focal length while the camera moves away from (or towards) the subject

The dolly zoom

• Continuously adjusting the focal length while the camera moves away from (or towards) the subject
• “The Vertigo shot”

[Image of dolly zoom from Goodfellas (YouTube)]
[Image of dolly zoom from La Haine (YouTube)]
Choice of lens and viewpoint: A COVID-era illustration
Overview

• Cameras with lenses
 • Depth of field
 • Field of view
 • Lens aberrations
Real lenses
Lens flaws: Vignetting
Lens flaws: Radial distortion

- Caused by imperfect lenses
- Deviations are most noticeable near the edge of the lens
Lens flaws: Spherical aberration

Spherical lenses don’t focus light perfectly
 Rays farther from the optical axis focus closer
Lens flaws: Chromatic aberration

Lens has different refractive indices for different wavelengths: causes color fringing

Near Lens Center

Near Lens Outer Edge
Overview

• Cameras with lenses
 • Depth of field
 • Field of view
 • Lens aberrations

• Digital sensors
Digital camera sensors

- Each cell in a sensor array is a light-sensitive diode that converts photons to electrons
 - Dominant in the past: **Charge Coupled Device (CCD)***
 - Dominant now: **Complementary Metal Oxide Semiconductor (CMOS)***

Color filter arrays

Bayer grid (1976)

Demosaicing:
Estimation of missing components from neighboring values

Why more green?

Human Luminance Sensitivity Function

Source: Steve Seitz
Color filter arrays

Bayer grid (1976)

Demosaicing:
Estimation of missing components from neighboring values

Recent cameraphone technology: **pixel binning**
Misc. digital camera artifacts

Noise
- low light is where you most notice noise
- light sensitivity (ISO) / noise tradeoff
- stuck pixels

In-camera processing
- oversharpening can produce halos

Compression
- JPEG artifacts, blocking

Blooming
- CCD charge overflowing into neighboring pixels

Color artifacts
- Color moire
- Purple fringing from microlenses
Historic milestones

• **Pinhole model:** Mozi (470-390 BCE), Aristotle (384-322 BCE)
• **Principles of optics (including lenses):** Alhacen (965-1039 CE)
• **Camera obscura:** Leonardo da Vinci (1452-1519), Johann Zahn (1631-1707)
• **First photo:** Joseph Nicephore Niepce (1822)
• **Daguerréotypes** (1839)
• **Photographic film** (Eastman, 1889)
• **Cinema** (Lumière Brothers, 1895)
• **Color Photography** (Lumière Brothers, 1908)
• **Television** (Baird, Farnsworth, Zworykin, 1920s)
• **First consumer camera with CCD**
 Sony Mavica (1981)
• **First fully digital camera:** Kodak DCS100 (1990)

First digitally scanned photograph

- NIST (1957), 176x176 pixels

Camera sales over time

Source
Camera sales over time

The full chart…

Source