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Abstract

We introduce a technique for dimensionality estimation based on the no-
tion of quantization dimension, which connects the asymptotic optimal
quantization error for a probability distribution on a manifold to its intrin-
sic dimension. The definition of quantization dimension yields a family
of estimation algorithms, whose limiting case is equivalent to a recent
method based on packing numbers. Using the formalism of high-rate
vector quantization, we address issues of statistical consistency and ana-
lyze the behavior of our scheme in the presence of noise.

1. Introduction

The goal ofnonlinear dimensionality reduction(NLDR) [1, 2, 3] is to find low-dimensional
manifold descriptions of high-dimensional data. Most NLDR schemes require a good es-
timate of the intrinsic dimensionality of the data to be available in advance. A number
of existing methods for estimating the intrinsic dimension (e.g., [3, 4, 5]) rely on the fact
that, for data uniformly distributed on ad-dimensional compact smooth submanifold of
IRD, the probability of a small ball of radiusε around any point on the manifold isΘ(εd).
In this paper, we connect this argument with the notion ofquantization dimension[6, 7],
which relates the intrinsic dimension of a manifold (atopologicalproperty) to the asymp-
totic optimal quantization error for distributions on the manifold (anoperationalproperty).
Quantization dimension was originally introduced as a theoretical tool for studying “non-
standard” signals, such as singular distributions [6] or fractals [7]. However, to the best
of our knowledge, it has not been previously used for dimension estimation in manifold
learning. The definition of quantization dimension leads to a family of dimensionality esti-
mation algorithms, parametrized by thedistortion exponentr ∈ [1,∞), yielding in the limit
of r = ∞ a scheme equivalent to Kégl’s recent technique based on packing numbers [4].

To date, many theoretical aspects of intrinsic dimensionality estimation remain poorly un-
derstood. For instance, while the estimator bias and variance are assessed either heuris-
tically [4] or exactly [5], scant attention is paid to robustness of each particular scheme
against noise. Moreover, existing schemes do not fully utilize the potential for statistical
consistency afforded by ergodicity of i.i.d. data: they compute the dimensionality estimate
from a fixed training sequence (typically, the entire dataset of interest), whereas we show
that an independenttest sequenceis necessary to avoid overfitting. In addition, using the
framework of high-rate vector quantization allows us to analyze the performance of our
scheme in the presence of noise.



2. Quantization-based estimation of intrinsic dimension

Let us begin by introducing the definitions and notation used in the rest of the paper. A
D-dimensionalk-point vector quantizer[6] is a measurable mapQk : IRD → C, where
C = {y1, . . . , yk} ⊂ IRD is called thecodebookand theyi’s are called thecodevec-
tors. The numberlog2 k is called therate of the quantizer, in bits per vector. The sets
Ri

4= {x ∈ IRD : Qk(x) = yi}, 1 ≤ i ≤ k, are called thequantizer cells(or par-
tition regions). The quantizer performance on a random vectorX distributed according
to a probability distributionµ (denotedX ∼ µ) is measured by theaveragerth-power
distortion δr(Qk|µ) 4= Eµ ‖X − Qk(X)‖r, r ∈ [1,∞), where‖ · ‖ is the Euclidean
norm on IRD. In the sequel, we will often find it more convenient to work with the
quantizer errorer(Qk|µ) 4= δr(Qk|µ)1/r. Let Qk denote the set of allD-dimensional
k-point quantizers. Then the performance achieved by anoptimalk-point quantizer onX
is δ∗r (k|µ) 4= infQk∈Qk

δr(Qk|µ) or equivalently,e∗r(k|µ) 4= δ∗r (k|µ)1/r.

2.1. Quantization dimension

The dimensionality estimation method presented in this paper exploits the connection be-
tween the intrinsic dimensiond of a smooth compact manifoldM ⊂ IRD (from now on,
simply referred to as “manifold”) and the asymptotic optimal quantization error for a reg-
ular probability distribution1 onM . When the quantizer rate is high, the partition cells can
be well approximated byD-dimensional balls around the codevectors. Then the regularity
of µ ensures that the probability of such a ball of radiusε is Θ(εd), and it can be shown
[7, 6] thate∗r(k|µ) = Θ(k−1/d). This is referred to as thehigh-rate(or high-resolution)
approximation, and motivates the definition ofquantization dimensionof orderr:

dr(µ) 4= − lim
k→∞

log k

log e∗r(k|µ)
.

The theory of high-rate quantization confirms that, for a regularµ supported on the mani-
fold M , dr(µ) exists for all1 ≤ r ≤ ∞ and equals the intrinsic dimension ofM [7, 6].
(Ther = ∞ limit will be treated in Sec. 2.2.)

This definition immediately suggests an empirical procedure for estimating the intrinsic di-
mension of a manifold from a set of samples. LetXn = (X1, . . . , Xn) ben i.i.d. samples
from an unknown regular distributionµ on the manifold. We also fix somer ∈ [1,∞).
Briefly, we select a rangek1 ≤ k ≤ k2 of codebook sizes for which the high-rate approxi-
mation holds (see Sec. 3 for implementation details), and design a sequence of quantizers
{Q̂k}k2

k=k1
that give us good approximationsêr(k|µ) to the optimal errore∗r(k|µ) over the

chosen range ofk. Then an estimate of the intrinsic dimension is obtained by plottinglog k
vs.− log êr(k|µ) and measuring the slope of the plot over the chosen range ofk (because
the high-rate approximation holds, the plot is linear).

This method hinges on estimating reliably the optimal errorse∗r(k|µ). Let us explain how
this can be achieved. The ideal quantizer for eachk should minimize thetraining error

er(Qk|µtrain) =

(
1
n

n∑
i=1

‖Xi −Qk(Xi)‖r

)1/r

,

1A probability distributionµ on IRD is regular of dimensiond [6] if it has compact support and
if there exist constantsc, ε0 > 0, such thatc−1εd ≤ µ(B(a, ε)) ≤ cεd for all a ∈ supp(µ) and all
ε ∈ (0, ε0), whereB(a, ε) is the open ball of radiusε centered ata. If M ⊂ IRD is ad-dimensional
smooth compact manifold, then anyµ with M = supp(µ) that possesses a smooth, strictly positive
density w.r.t. the normalized surface measure onM is regular of dimensiond.



whereµtrain is the corresponding empirical distribution. However, finding thisempirically
optimalquantizer is, in general, an intractable problem, so in practice we merely strive to
produce a quantizer̂Qk whose errorer(Q̂k|µtrain) is a good approximation to theminimal
empirical error e∗r(k|µtrain) 4= infQk∈Qk

er(Qk|µtrain) (the issue of quantizer design is
discussed in Sec. 3). However, while minimizing the training error is necessary for obtain-
ing a statistically consistent approximation to an optimal quantizer forµ, the training error
itself is an optimistically biased estimate ofe∗r(k|µ) [8]: intuitively, this is due to the fact
that an empirically designed quantizer overfits the training set. A less biased estimate is
given by the performance of̂Qk on atest sequenceindependent from the training set. Let
Zm = (Z1, . . . , Zm) bem i.i.d. samples fromµ, independent fromXn. Providedm is
sufficiently large, the law of large numbers guarantees that the empirical average

er(Q̂k|µtest) =

(
1
m

m∑
i=1

‖Zi − Q̂k(Zi)‖r

)1/r

will be a good estimate of thetest errorer(Q̂k|µ). Using learning-theoretic formalism [8],
one can show that the test error of an empirically optimal quantizer is astrongly consistent
estimate ofe∗r(k|µ), i.e., it converges almost surely toe∗r(k|µ) as n → ∞. Thus, we
take êr(k|µ) = er(Q̂k|µtest). In practice, therefore, the proposed scheme is statistically
consistent to the extent that̂Qk is close to the optimum.

2.2. Ther = ∞ limit and packing numbers

If the support ofµ is compact (which is the case with all probability distributions considered
in this paper), then the limite∞(Qk|µ) = limr→∞ er(Qk|µ) exists and gives the “worst-
case” quantization error ofX by Qk:

e∞(Qk|µ) = max
x∈supp(µ)

‖x−Qk(x)‖.

The optimume∗∞(k|µ) = infQk∈Qk
e∞(Qk|µ) has an interesting interpretation as the

smallest covering radius of the most parsimonious covering ofsupp(µ) by k or fewer balls
of equal radii [6]. Let us describe how ther = ∞ case is equivalent to dimensionality esti-
mation using packing numbers [4]. Thecovering numberNM (ε) of a manifoldM ⊂ IRD

is defined as the size of the smallest covering ofM by balls of radiusε > 0, while thepack-
ing numberPM (ε) is the cardinality of the maximal setS ⊂ M with ‖x − y‖ ≥ ε for all
distinctx, y ∈ S. If d is the dimension ofM , thenNM (ε) = Θ(ε−d) for small enoughε,
leading to the definition of thecapacity dimension: dcap(M) 4= − limε→0

log NM (ε)
log ε . If this

limit exists, then it equals the intrinsic dimension ofM . Alternatively, Ḱegl [4] suggests
using the easily proved inequalityNM (ε) ≤ PM (ε) ≤ NM (ε/2) to express the capacity
dimension in terms of packing numbers asdcap(M) = − limε→0

log PM (ε)
log ε .

Now, a simple geometric argument shows that, for anyµ supported onM , PM (e∗∞(k|µ)) >
k [6]. On the other hand,NM (e∗∞(k|µ)) ≤ k, which implies thatPM (2e∗∞(k|µ)) ≤ k. Let
{εk} be a sequence of positive reals converging to zero, such thatεk = e∗∞(k|µ). Letk0 be
such thatlog εk < 0 for all k ≥ k0. Then it is not hard to show that

− log PM (2εk)
log 2εk − 1

≤ − log k

log e∗∞(k|µ)
< − log PM (εk)

log εk
, k ≥ k0.

In other words, there exists a decreasing sequence{εk}, such that for sufficiently large
values ofk (i.e., in the high-rate regime) the ratio− log k/ log e∗∞(k|µ) can be approx-
imated increasingly finely both from below and from above by quantities involving the
packing numbersPM (εk) andPM (2εk) and converging to the common valuedcap(M).



This demonstrates that ther = ∞ case of our scheme is numerically equivalent to Kégl’s
method based on packing numbers.

For a finite training set, ther = ∞ case requires us to find an empirically optimalk-
point quantizer w.r.t. the worst-case`2 error — a task that is much more computationally
complex than for ther = 2 case (see Sec. 3 for details). In addition to computational
efficiency, other important practical considerations include sensitivity to sampling density
and noise. In theory, this worst-case quantizer is completely insensitive to variations in
sampling density, since the optimal errore∗∞(k|µ) is the same for allµ with the same
support. However, this advantage is offset in practice by the increased sensitivity of the
r = ∞ scheme to noise, as explained next.

2.3. Estimation with noisy data

Random noise transforms “clean” data distributed according toµ into “noisy” data dis-
tributed according to some other distributionν. This will cause the empirically de-
signed quantizer to be matched to the noisy distributionν, whereas our aim is to esti-
mate optimal quantizer performance on the original clean data. To do this, we make
use of therth-orderWasserstein distance[6] betweenµ and ν, defined as̄ρr(µ, ν) 4=
infX∼µ,Y∼ν(E ‖X − Y ‖r)1/r, r ∈ [1,∞), where the infimum is taken over all pairs
(X, Y ) of jointly distributed random variables with the respective marginalsµ andν. It
is a natural measure ofquantizer mismatch, i.e., the difference in performance that results
from using a quantizer matched toν on data distributed according toµ [9]. Let νn denote
the empirical distribution ofn i.i.d. samples ofν. It is possible to show (details omitted
for lack of space) that for an empirically optimalk-point quantizerQ∗k,r trained onn sam-
ples ofν, |er(Q∗k,r|ν) − e∗r(k|µ)| ≤ 2ρ̄r(νn, ν) + ρ̄r(µ, ν). Moreover,νn converges toν
in the Wasserstein sense [6]:limn→∞ ρ̄r(νn, ν) = 0. Thus, provided the training set is
sufficiently large, the distortion estimation error is controlled byρ̄r(µ, ν).

Consider the case of isotropic additive Gaussian noise. LetW be aD-dimensional zero-
mean Gaussian with covariance matrixK = σ2ID, whereID is theD×D identity matrix.
The noisy data are described by the random variableX + W = Y ∼ ν, and

ρ̄r(µ, ν) ≤
√

2σ

[
Γ((r + D)/2)

Γ(D/2)

]1/r

,

whereΓ is the gamma function. In particular,̄ρ2(µ, ν) ≤ σ
√

D. The magnitude of the
bound, and hence the worst-case sensitivity of the estimation procedure to noise, is con-
trolled by the noise variance, by the extrinsic dimension, and by the distortion exponent.
The factor involving the gamma functions grows without bound both asD → ∞ and as
r →∞, which suggests that the susceptibility of our algorithm to noise increases with the
extrinsic dimension of the data and with the distortion exponent.

3. Experimental results

We have evaluated our quantization-based scheme for two choices of the distortion expo-
nent,r = 2 andr = ∞. Forr = 2, we used thek-means algorithm to design the quantizers.
For r = ∞, we have implemented a Lloyd-type algorithm, which alternates two steps: (1)
theminimum-distortion encoder, where each sampleXi is mapped to its nearest neighbor
in the current codebook, and (2) thecentroid decoder, where the center of each region is
recomputed as the center of the minimum enclosing ball of the samples assigned to that
region. It is clear that the decoder step locally minimizes the worst-case error (the largest
distance of any sample from the center). Using a simple randomized algorithm, the mini-
mum enclosing ball can be found inO((D + 1)!(D + 1)N) time, whereN is the number
of samples in the region [10]. Because of this dependence onD, the running time of the
Lloyd algorithm becomes prohibitive in high dimensions, and even forD < 10 it is an
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Figure 1: Training and test error vs. codebook size on the swiss roll (Figure 2 (a)). Dashed line:
r = 2 (k-means), dash-dot:r =∞ (Lloyd-type), solid:r =∞ (greedy).
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Figure 2: (a) The swiss roll (20,000 samples). (b) Plot of rate vs. negative log of the quantizer
error (log-log curves), together with parametric curves fitted using linear least squares (see text). (c)
Slope (dimension) estimates: 1.88 (training) and 2.04 (test). (d) Toroidal spiral (20,000 samples). (e)
Log-log curves, exhibiting two distinct linear parts. (f) Dimension estimates: 1.04 (training), 2.02
(test) in the low-rate region, 0.79 (training), 1.11 (test) in the high-rate region.

order of magnitude slower thank-means. Thus, we were compelled to also implement a
greedy algorithm reminiscent of Ḱegl’s algorithm for estimating the packing number [4]:
supposing thatk−1 codevectors have already been selected, thekth one is chosen to be the
sample point with the largest distance from the nearest codevector. Because this is the point
that gives the worst-case error for codebook sizek−1, adding it to the codebook lowers the
error. We generate several codebooks, initialized with different random samples, and then
choose the one with the smallest error. For the experiment shown in Figure 3, the training
error curves produced by this greedy algorithm were on average21% higher than those of
the Lloyd algorithm, but the test curves were only8% higher. In many cases, the two test
curves are visually almost coincident (Figure 1). Therefore, in the sequel, we report only
the results for the greedy algorithm for ther = ∞ case.

Our first synthetic dataset (Fig. 2 (a)) is the 2D “swiss roll” embedded inIR3 [2]. We split
the samples into 4 equal parts and use each part in turn for training and the rest for testing.
This cross-validation setup produces four sets of error curves, which we average to obtain
an improved estimate. We sample quantizer rates in increments of0.1 bits. The lowest rate
is 5 bits, and the highest rate is chosen aslog(n/2), wheren is the size of the training set.

The high-rate approximation suggests the asymptotic formΘ(k−1/d) for the quantizer error



as a function of codebook sizek. To validate this approximation, we use linear least squares
to fit curves of the forma + b k−1/2 to ther = 2 training and test distortion curves for the
the swiss roll. The fitting procedure yields estimates of−0.22 + 29.70k−1/2 and0.10 +
28.41k−1/2 for the training and test curves, respectively. These estimates fit the observed
data well, as shown in Fig. 2(b), a plot of rate vs. the negative logarithm of the training
and test error (“log-log curves” in the following). Note that the additive constant for the
training error is negative, reflecting the fact that the training error of the empirical quantizer
is identically zero whenn = k (each sample becomes a codevector). On the other hand,
the test error has a positive additive constant as a consequence of quantizer suboptimality.
Significantly, the fit deteriorates asn/k → 1, as the average number of training samples
per quantizer cell becomes too small to sustain the exponentially slow decay required for
the high-rate approximation.

Fig. 2(c) shows the slopes of the training and test log-log curves, obtained by fitting a line to
each successive set of 10 points. These slopes are, in effect, rate-dependent dimensionality
estimates for the dataset. Note that the training slope is always below the test slope; this is
a consequence of the “optimism” of the training error and the “pessimism” of the test error
(as reflected in the additive constants of the parametric fits). The shapes of the two slope
curves are typical of many “well-behaved” datasets. At low rates, both the training and the
test slopes are close to the extrinsic dimension, reflecting the global geometry of the dataset.
As rate increases, the local manifold structure is revealed, and the slope yields its intrinsic
dimension. However, asn/k → 1, the quantizer begins to “see” isolated samples instead
of the manifold structure. Thus, the training slope begins to fall to zero, and the test slope
rises, reflecting the failure of the quantizer to generalize to the test set. For most datasets
in our experiments, a good intrinsic dimensionality estimate is given by the first minimum
of the test slope where the line-fitting residual is sufficiently low (marked by a diamond in
Fig. 2(c)). For completeness, we also report the slope of the training curve at the same rate
(note that the training curve may not have local minima because of its tendency to fall as
the rate increases). Interestingly, some datasets yield several well-defined dimensionality
estimates at different rates. Fig. 2(d) shows a toroidal spiral embedded inIR3, which at
larger scales “looks” like a torus, while at smaller scales the 1D curve structure becomes
more apparent. Accordingly, the log-log plot of the test error (Fig. 2(e)) has two distinct
linear parts, yielding dimension estimates of 2.02 and 1.11, respectively (Fig. 2(f)).

Recall from Sec. 2.1 that the high-rate approximation for regular probability distributions
is based on the assumption that the intersection of each quantizer cell with the manifold is a
d-dimensional neighborhood of that manifold. Because we compute our dimensionality es-
timate at a rate for which this approximation is valid, we know that the empirically optimal
quantizer at this rate partitions the data into clusters that are locallyd-dimensional. Thus,
our dimensionality estimation procedure is also useful for finding a clustering of the data
that respects the intrinsic neighborhood structure of the manifold from which it is sampled.
As an expample, for the toroidal spiral of Fig. 2(c), we obtain two distinct dimensionality
estimates of 2 and 1 at rates 6.6 and 9.4, respectively (Fig. 2(f)). Accordingly, quantizing
the spiral at the lower (resp. higher) rate yields clusters that are locally two-dimensional
(resp. one-dimensional).

To ascertain the effect of noise and extrinsic dimension on our method, we have embedded
the swiss roll in dimensions 4 to 8 by zero-padding the coordinates and applying a random
orthogonal matrix, and added isotropic zero-mean Gaussian noise in the high-dimensional
space, withσ = 0.2, 0.4, . . . , 1. First, we have verified that ther = 2 estimator behaves in
agreement with the Wasserstein bound from Sec. 2.3. The top part of Fig. 3(a) shows the
maximum differences between the noisy and the noiseless test error curves for each combi-
nation ofD andσ, and the bottom part shows the corresponding values of the Wasserstein
boundσ

√
D for comparison. For each value ofσ, the test error of the empirically designed

quantizer differs from the noiseless case byO(
√

D), while, for a fixedD, the difference
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Figure 3:(a) Top: empirically observed differences between noisy and noiseless test curves; bottom:
theoretically derived bound̀σ

√
D

´
. (b) Height plot of dimension estimates for ther = 2 algorithm

as a function ofD andσ. Top: training estimates, bottom: test estimates. (c) Dimension estimates
for r = ∞. Top: training, bottom: test. Note that the training estimates are consistently lower than
the test estimates: the average difference is 0.17 (resp. 0.28) for ther = 2 (resp.r =∞) case.

of the noisy and noiseless test errors grows asO(σ). As predicted by the bound, the ad-
ditive constant in the parametric form of the test error increases withσ, resulting in larger
slopes of the log-log curve and therefore higher dimension estimates. This is reflected in
Figs. 3(b) and (c), which show training and test dimensionality estimates forr = 2 and
r = ∞, respectively. Ther = ∞ estimates are much less stable than those forr = 2 be-
cause ther = ∞ (worst-case) error is controlled by outliers and often stays constant over a
range of rates. The piecewise-constant shape of the test error curves (see Fig. 1) results in
log-log plots with unstable slopes.

Table 1 shows a comparative evaluation on the MNIST handwritten digits database2 and a
face video.3 The MNIST database contains 70,000 images at resolution28×28 (D = 784),
and the face video has 1965 frames at resolution28 × 20 (D = 560). For each of the re-
sulting 11 datasets (taking each digit separately), we used half the samples for training
and half for testing. The first row of the table shows dimension estimates obtained using
a baseline regression method [3]: for each sample point, a local estimate is given by the
first local minimum of the curve d log `

d log ε(`) , whereε(`) is the distance from the point to its
`th nearest neighbor, and a global estimate is then obtained by averaging the local esti-
mates. The rest of the table shows the estimates obtained from the training and test curves
of the r = 2 quantizer and the (greedy)r = ∞ quantizer. Comparative examination of
the results shows that ther = ∞ estimates tend to be fairly low, which is consistent with
the experimental findings of Ḱegl [4]. By contrast, ther = 2 estimates seem to be most
resistant to negative bias. The relatively high values of the dimension estimates reflect the
many degrees of freedom found in handwritten digits, including different scale, slant and
thickness of the strokes, as well as the presence of topological features (i.e., loops in 2’s or
extra horizontal bars in 7’s). The lowest dimensionality is found for 1’s, while the highest
is found for 8’s, reflecting the relative complexities of different digits. For the face dataset,
the different dimensionality estimates range from 4.25 to 8.30. This dataset certainly con-
tains enough degrees of freedom to justify such high estimates, including changes in pose

2http://yann.lecun.com/exdb/mnist/
3http://www.cs.toronto.edu/˜roweis/data.html , B. Frey and S. Roweis.



Table 1: Performance on the MNIST dataset and on the Frey faces dataset.
Handwritten digits (MNIST data set) Faces

# samples 6903 7877 6990 7141 6824 6313 6876 7293 6825 69581965
Regression 11.14 7.86 12.79 13.39 11.98 13.05 11.19 10.42 13.79 11.265.63
r = 2 train 12.39 6.51 16.04 15.38 13.22 14.63 12.05 12.32 19.80 13.445.70
r = 2 test 15.47 7.11 20.89 19.78 16.79 19.80 16.02 16.02 20.07 17.468.30
r = ∞ train 10.33 8.19 10.15 12.63 9.87 8.49 9.85 8.10 10.88 7.404.25
r = ∞ test 9.02 6.61 13.98 12.21 7.26 10.46 9.08 9.92 14.03 9.596.39

and facial expression, as well as camera jitter.4 Finally, for both the digits and the faces,
significant noise in the dataset additionally inflated the estimates.

4. Discussion

We have demonstrated an approach to intrinsic dimensionality estimation based on high-
rate vector quantization. A crucial distinguishing feature of our method is the use of an
independent test sequence to ensure statistical consistency and avoid underestimating the
dimension. Many existing methods are well-known to exhibit a negative bias in high di-
mensions [4, 5]. This can have serious implications in practice, as it may result in low-
dimensional representations that lose essential features of the data. Our results raise the
possibility that this negative bias may be indicative of overfitting. In the future we plan to
integrate our proposed method into a unified package of quantization-based algorithms for
estimating the intrinsic dimension of the data, obtaining its dimension-reduced manifold
representation, and compressing the low-dimensional data [11].
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4Interestingly, Brand [3] reports an intrinsic dimension estimate of 3 for this data set. However,
he used only a 500-frame subsequence and introduced additional mirror symmetry.


