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Abstract

This paper addresses the problem of designing binary codésgh-dimensional
data such that vectors that are similar in the original spaee to similar bi-
nary strings. We introduce a simple distribution-free ating scheme based on
random projections, such that the expected Hamming distaestwveen the bi-
nary codes of two vectors is related to the value of a shifilant kernel (e.g., a
Gaussian kernel) between the vectors. We present a fullgtieal analysis of the
convergence properties of the proposed scheme, and raporable experimental
performance as compared to a recent state-of-the-art ohethectral hashing.

1 Introduction

Recently, there has been a lot of interest in the problem efgdeng compact binary codes for
reducing storage requirements and accelerating searchesmelal in large collections of high-
dimensional vector data [11, 13, 15]. A desirable propeftguxh coding schemes is that they
should map similar data points to similar binary strings,, istrings with a low Hamming distance.
Hamming distances can be computed very efficiently in hardwasulting in very fast retrieval of
strings similar to a given query, even for brute-force skanca database consisting of millions of
data points [11, 13]. Moreover, if code strings can be eiffett used as hash keys, then similarity
searches can be carried out in sublinear time. In some mgisthemes, e.g. [11, 13], the notion of
similarity between data points comes from supervisoryrimftion, e.g., two documents are similar
if they focus on the same topic or two images are similar if/tbentain the same objects. The
binary encoder is then trained to reproduce this “semastinflarity measure. In this paper, we are
more interested innsupervisedchemes, where the similarity is given by Euclidean distaordoy

a kernel defined on the original feature space. Weiss et 3.Have recently proposedspectral
hashingapproach motivated by the idea that a good encoding scheoutdsminimize the sum of
Hamming distances between pairs of code strings weightetidyalue of a Gaussian kernel be-
tween the corresponding feature vectors. With approphatgistic simplifications, this objective
can be shown to yield a very efficient encoding rule, wheré ddtoof the code is given by the sign
of a sine function applied to a one-dimensional projectibthe feature vector. Spectral hashing
shows promising experimental results, but its behaviootseasy to characterize theoretically. In
particular, it is not clear whether the Hamming distanceveen spectral hashing code strings con-
verges to any function of the Euclidean distance or the keradae between the original vectors as
the number of bits in the code increases.

In this paper, we propose a coding method that is similar &ztsal hashing computationally, but
is derived from completely different considerations, isemable to full theoretical analysis, and
shows better practical behavior as a function of code sizestéft with a low-dimensional mapping
of the original data that is guaranteed to preserve the \@laeshift-invariant kernel (specifically,
the random Fourier feature®f Rahimi and Recht [8]), and convert this mapping to a binamg
with similar guarantees. In particular, we show that tieemalizedHamming distance (i.e., Ham-



ming distance divided by the number of bits in the code) betwamny two embedded points sharply
concentrates around a well-defined continuous functionekernel value. This leads to a Johnson—
Lindenstrauss type result [4] which says that a set of &rpgoints in a Euclidean feature space can
be embedded in a binary cube of dimens@tiog N) in a similarity-preserving way: with high
probability, the binary encodings of any two points thatsimeilar (as measured by the kernel) are
nearly identical, while those of any two points that areididiar differ in a constant fraction of their
bits. Using entropy bounds from the theory of empirical psses, we also prove a stronger result
of this type that holds for angompacidomain ofR”, provided the number of bits is proportional
to theintrinsic dimensiorof the domain. Our scheme is completely distribution-fréthwespect to
the data: its structure depends only on the underlying keiméhis, it is similar tolocality sensitive
hashing(LSH) [1], which is a family of methods for deriving low-dimsional discrete represen-
tations of the data for sublinear near-neighbor search. édew our scheme differs from LSH in
that we obtain both upper and lower bounds on the normalizedrhling distance between any two
embedded points, while in LSH the goal is only to preserveastaeighbors (see [6] for further dis-
cussion of the distinction between LSH and more generalaiityi-preserving embeddings). To the
best of our knowledge, our scheme is among the first randojagiien methods for constructing a
similarity-preserving embedding into a binary cube. Ini&idd to presenting a thorough theoretical
analysis, we have evaluated our approach on both syntheticeal data (images from the LabelMe
database [10] represented by high-dimensional GIST geecsi[7]) and compared its performance
to that of spectral hashing. Despite the simplicity andritistion-free nature of our scheme, we
have been able to obtain very encouraging experimentdtsesu

2 Binary codes for shift-invariant kernels

Consider a Mercer kernd{ (-, -) onR? that satisfies the following for all points, y € R:

(K1) Itis translation-invariant(or shift-invariany, i.e., K (x,y) = K(xz — y).
(K2) Itis normalizedi.e., K(x —y) < landK(x —x) = K(0) = 1.
(K3) For any real numbet > 1, K (ax — ay) < K(x — y).

The Gaussian kernek (z,y) = exp(—[lx — y[|*/2) or the Laplacian kerneK (z,y) =
exp(—v||x — y||1) are two well-known examples. We would like to construct afbeddingF™ of
RP into the binary cubg0, 1} such that for any pait, y the normalized Hamming distance
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~dp (F"(x), F"()) = = > Ur@2rm)
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betweenF"(x) = (Fi(x),..., F,(x)) andF"(y) = (Fi(y), ..., Fn(y)) behaves like
(K@~ y)) < —du(F" (@), F(y)) < ho(K (@ - y)

wherehy, he : [0,1] — RT are continuous decreasing functions, d@ndl) = hy(1) = 0 and
h1(0) = ha(0) = ¢ > 0. In other words, we would like to map-dimensional real vectors into
n-bit binary strings in a locality-sensitive manner, wheme totion of locality is induced by the
kernel K. We will achieve this goal by drawing™ appropriately at random.

Random Fourier features. Recently, Rahimi and Recht [8] gave a scheme that takes ae¥lerc
kernel satisfying (K1) and (K2) and producesandommapping®” : R” — R”, such that,
with high probability, the inner product of any two transfued points approximates the kernel:
O™ (x)- 0" (y) ~ K(x—y) forall x, y. Their scheme exploits Bochner’s theorem [9], a fundamenta
result in harmonic analysis which says that any shcls a Fourier transform of a uniquely defined
probability measuréx onRP. They define theandom Fourier feature¢RFF) via

D, () = V2cos(w - = +b), (1)

wherew ~ Py andb ~ Unif[0, 2x]. For example, for the Gaussian kerdé(s) = e~751°/2 we
takew ~ Normal0,vIpxp). With these features, we ha®{®,, ()P, (y)] = K(z — y).
The scheme of [8] is as follows: draw an i.i.d. samglev1,b:1),...,(wn,,b,)), Where each



w; ~ Pg andb; ~ Unif[0,27], and define a mappin@” : R? — R" via ®"(x) =
ﬁ(‘bwl,bl (), ..., Pu,p,(x)) forz € X. ThenE[@"(x) - ¢"(y)] = K (x — y) forall z, y.

From random Fourier features to random binary codes. We will compose the RFFs with
random binary quantizers Draw a randonthreshold¢ ~ Unif[—1, 1] and define the quantizer

Q: : [-1,1] — {—1,+1} via Q;(u) = sgn(u + t), where we letsgn(u) = —1if u < 0 and
sgn(u) = 41 if u > 0. We note the following basic fact (we omit the easy proof):

Lemma 2.1 For anyu, v € [—1,1], P, {Q:(u) # Qi(v)} = |u — v|/2.

Now, given a kerneK, we define a random mag ., », : R” — {0, 1} through

2

Ft,w,b(m)

wheret ~ Unif[—1,1], w ~ Pk, andb ~ Unif[0, 2] are independent of one another. From now
on, we will often omit the subscriptsw, b and just writeF" for the sake of brevity. We have:

% [+ Qu (cos(w - @ + )], @

Lemma 2.2

8 — mm—my
Elfp@)£ry)) = hx(T — é o Z )7 v,y (3

m=0

Proof: Using Lemma 2.1, we can ShaWl ( () 25 ()} = 3 Bw,b | cos(w - +b) — cos(w -y +b)|.
Using trigonometric identities and the independence aihdb, we can express this expectation as

(21252

We now make use of the Fourier series representation of threttified sine wavey(7) = | sin(7)|:

4
Ep o [cos(w - + b) — cos(w -y + b)| = — Eq
m

o0

2 4 1 ] 4 o= 1—cos(2mT)
9(r) = _+;7nZ:1 1—4m?2 cos(mr) = ;mX::l 4m2 -1
Using this together with the fact th&t, cos(w - s) = K(s) for anys € R? [8], we obtain (3). B
Lemma 2.2 shows that the probability thafx) # F(y) is a well-defined continuous function of
x —y. The infinite series in (3) can, of course, be computed nwakyito any desired precision. In

addition, we have the following upper and lower bounds gaieterms of the kernel valug (z—y):

Lemma 2.3 Define the functions
hi(u) = =1 —u) and hg(u)émin{%\/l—u7é(1—2u/3)},
Vs

whereu € [0,1]. Note thath,(0) = ha(0 ) 4/m% = 0.405 and thath; (1) = ha(1) = 0. Then
hi(K(x —y)) < hi(z—y) < ho(K(z —y)) forall z,y.

Proof: LetA = cos(w - @ + b) — cos(w -y + b). ThenE |A| = EVA2 < VE A (the last step
uses concavity of the square root). Using the propertieh®@RFFE A2 = (1/2) E[(®w »(z) —
(I)w_’b(y))z] =1- K(.’B — y) ThereforeIE 1{F(w)7ﬁF(y)} = (1/2) E |A| < (1/2) 1-— K(.’B — y)
We also have

K(max — my) 4 8 4
Elr@#rw) = 5~ 3 Z < 5-33K@-y) = 5 (1-2K(@-y)/3).

This proves the upper bound in the lemma. On the other hamek & satisfies (K3),

4
hK(m—y)z(l— (x—y 7T224m2 7T2(1—K(ac—y)),
because thenth term of the series in (3) is not smaller thein— K (z — y)) /(4m? — 1). [

Fig. 1 shows a comparison of the kernel approximation pitageof the RFFs [8] with our scheme
for the Gaussian kernel.
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Figure 1:(a) Approximating the Gaussian kernel by random featune=efg and random signs (red). (b) Rela-
tionship of normalized Hamming distance between randomsdig functions of the kernel. The scatter plots in
(a) and (b) are obtained from a synthetic set of 500 uniforidributed 2D points witlh = 5000. (c) Bounds
for normalized Hamming distance in Lemmas 2.2 and 2.3 vsEtldidean distance.

Now we concatenate several mappings of the féim , to construct an embedding &f into the
binary cube{0, 1}"™. Specifically, we draw i.i.d. triples(¢;,w1,b1), ..., (tn, wn, by) and define

F'(z) = (Fi(z),...,F.(y)),  whereF(z) = Fy, w0, (x),i=1,...,n

As we will show next, this construction ensures that, for amy pointsz andy, the fraction of the
bits where the binary stringg™ () and F'"(y) disagree sharply concentrates arobndx — y),
providedn is large enough. Using the results proved above, we conthatefor any two points
x andy that are “similar,” i.e..K (x — y) ~ 1, most of the bits off"(x) and F"(y) will agree,
whereas for any two points andy that are “dissimilar,” i.e. K (x — y) ~ 0, F"(z) and F"(y)
will disagree in about0% or more of their bits.

Analysis of performance. We first prove a Johnson—Lindenstrauss type result which dest,
for any finite subset oR”, the normalized Hamming distance respects the similartiigtween
points. It should be pointed out that the analogy with Johrtdenstrauss is only qualitative:
our embedding is highly nonlinear, in contrast to randoradinprojections used there [4], and the
resulting distortion of the neighborhood structure, altio controllable, does not amount to a mere
rescaling by constants.

Theorem 2.4 Fix ¢, 6 € (0,1). For any finite data seD = {x1,...,zx} C RP, F™is such that

hac(y = x) =6 < =g (F" (), F" (1)) < hc (25— 1) +0 @

hi(K(zj — k) — 0 < %dH(F”(CCj),F"(CCk)) < hy(K(z; — @) +6 (5)

for all j, k with probability > 1 — N2e=2n%° - Moreover, the events (4) and (5) will hold with
probability > 1 — e if n > (1/26%) log(N?/¢). Thus, anyN-point subset oR” can be embedded,
with high probability, into the binary cube of dimensioxilog N) in a similarity-preserving way.

The proof (omitted) is by a standard argument using Hoedfdimequality and the union bound, as
well as the bounds of Lemma 2.3. We also prove a much stroegaltr any compact subsét C

RP can be embedded into a binary cube whose dimension depelydsroite intrinsic dimension
and the diameter ot and on the second momentBf, such that the normalized Hamming distance
behaves in a similarity-preserving way for all pairs of geim X simultaneouslyWe make use of
the following [5]:

Definition 2.5 TheAssouad dimensioaf X c R”, denoted by, is the smallest integet, such
that, for any ballB ¢ RP, the setB N X’ can be covered b§* balls of half the radius of3.

The Assouad dimension is a widely used measure of the irtrisension [2, 6, 3]. For example,
if X is an¢, ball in R?, thendy = O(D); if X is ad-dimensional hyperplane iRR”, then
dx = O(d) [2]. Moreover, if X is ad-dimensional Riemannian submanifold®f with a suitably
bounded curvature, thehy = O(d) [3]. We now have the following result:



Theorem 2.6 Suppose that the kerndl is such thatLx = /Eep, ||w|]?2 < +00. Then there
exists a constant’ > 0 independent oD and K, such that the following holds. Fix afmyd > 0. If

CLKdX diam X 2 2
nzmax 6—2,6—210g - y
then, with probability at least — ¢, the mapping™ is such that, for every pait,y € X,
1
hi(® —y) =0 < —du(F" (), F"(y)) < hx(z —y) +0 (6)

Proof: For every paire,y € X, let A, , be the set of alb = (¢,w,b), such thatF; ., ,(x) #
Fiwp(y), andletd = {4, , : x,y € X'}. Then we can write

1 n 71
EdH(F ( 21{0 €Ay y}-
For any sequenc®™ = (6, ..., ) define the unlform deviation
A(6") = sup Z Loicanyy —ELF (@) #F 0 b))
x,ycx |1

For everyl < i < nandan arbltrarﬁ’ Iet0 denote@" with the ith component replaced 8.

Then|A(6") — A(6(;))| < 1/n for anyi and anyﬂg. Hence, by McDiarmid’s inequality,
P{|A(8") — Egn A(0™)| > B} < 272", V3> 0. (7)

Now we need to bounBg~ A(0™). Using a standard symmetrization technique [14], we catewri

Eg» A(8™) < 2R(A) 2 2Egn on l sup - Zcrll{g CAuy} ] (8)

xz,ycX
wheres” = (o4, ...,0,) is an i.i.d. Rademacher sequen@égfZ = -1} =P(o; = +1} = 1/2.
The quantityR(.4) can be bounded by the Dudley entropy integral [14]
Co [~
<2 [ floaN e Al g e ©)
whereCy > 0 is a universal constant, anld (e, A, || - [|z2(,)) is the e-covering number of the

function class{@ — 1;gcay : A € A} with respect to the (1) norm, wherey is the distribution
of 6 = (t,w, b). We will bound these covering numbers by the covering nusibeit’ with respect
to the Euclidean norm oR”. It can be shown that, for any four pointsz’, y,y’ € X,

2 2
L2(p) — / (1{9€Am,y} - 1{0€Aw/7y/}) dp(0) < p(BzABgr) + 1(By ABy),

where/\ denotes symmetric difference of sets, a@gl = {(t,w,b) : Q;(cos(w - = + b)) = +1}
(details omitted for lack of space). Now,

2u (BgABg) = 2E4p [Pt {Q¢(cos(w - @ + b)) # Qucos(w -y + b))}}
= Egplcos(w -z +b) —cos(w ' +b)| <E,|w- (x—a')| < Lgl|z— 2.
Then 1 (BeABy) + p(ByABy) < E(|lz—2'|+|ly—y'[). This implies that
N(e, A || - l2qu)) < N(€2/Lk, X, ||-||)?, whereN (6, X, || -||) are the covering numbers afw.r..
the Euclidean norrj- ||. By definition of the Assouad dimensiaN,(d, X, || -||) < (2 diam X' /§)4%,
SON (e, A, || - lp2(u)) < (ZL@%M)MX. We can now estimate the integral in (9) by

R(A) < 0y Frdrdam T (10)

for some constar®; > 0. From (10) and (8), we obtaiflgr A(") < Cypy/Lecdadiam 'yhere
Cs = 2C}. Using this and (7) withB = §/2, we obtain (6) withC' = 16C3. |
For example, with the Gaussian kerd#é{s) = e~l#I°/2 onRP, we havel = \/D~. The kernel
bandwidthy is often chosen as o 1/[D(diam X)?] (see, e.g., [12, Sec. 7.8]); with this setting,
the number of bits needed to guarantee the bound (6)=is((dx /5?)log(1/¢)). It is possible,

in principle, to construct @imension-reducingmbedding ofY’ into a binary cube, provided the
number of bits in the embedding is larger than the intringicethsion ofX’.

H 1Am7y - 1Aw’,y’
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Figure 2: Synthetic results. First row: scatter plots of normalizeahtining distance vs. Euclidean distance
for our method (a) and spectral hashing (b) with code sizei®2 Breen indicates pairs of data points that
are considered true “neighbors” for the purpose of rettieSacond row: scatter plots for our method (c) and
spectral hashing (d) with code size 512 bits. Third row: ltgmecision plots for our method (e) and spectral
hashing (f) for code sizes from 8 to 512 hits (best viewed ingo

3 Empirical Evaluation

In this section, we present the results of our scheme withus&an kernel, and compare our perfor-
mance to spectral hashing [15Bpectral hashing is a recently introduced, state-of-thagproach
that has been reported to obtain better results than sevéral well-known methods, including
LSH [1] and restricted Boltzmann machines [11]. Unlike ouethod, spectral hashing chooses
code parameters in a deterministic, data-dependent watyvate by results on convergence of

We use the code made available by the authors of [15] atitgw.cs.huji.ac.il"yweiss/SpectralHashing/.
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Figure 3: Recall-precision curves for the LabelMe database for ouhote (left) and for spectral hashing
(right). Best viewed in color.

eigenvectors of graph Laplacians to Laplacian eigenfonston manifolds. Though spectral hash-
ing is derived from completely different considerationanttour method, its encoding scheme is
similar to ours in terms of basic computation. Namely, eathbfta spectral hashing code is given
by sgn(cos(kw - x)), wherew is a principal direction of the data (instead of a randomipgied
direction, as in our method) aridis a weight that is deterministically chosen according aha-
lytical form of certain kinds of Laplacian eigenfunctio$e structural similarity between spectral
hashing and our method makes comparison between them ajapeop

To demonstrate the basic behavior of our method, we firstrtepsults for two-dimensional syn-
thetic data using a protocol similar to [15] (we have alsocwaried tests on higher-dimensional
synthetic data, with very similar results). We sample 10,0fatabase” and 1,000 “query” points
from a uniform distribution defined on a 2d rectangle witheagpatio 0.5. To distinguish true posi-
tives from false positives for evaluating retrieval pemf@nce, we select a “nominal” neighborhood
radius so that each query point on average has 50 neighbtite ttlatabase. Next, we rescale the
data so that this radius is 1, and set the bandwidth of theektwr = 1. Fig. 2 (a,c) shows scatter
plots of normalized Hamming distance vs. Euclidean distdaceach query point paired with each
database point for 32-bit and 512-bit codes. As more bitadded to our code, the variance of the
scatter plots decreases, and the points cluster tightendtbe theoretically expected curve (Eq. (3),
Fig. 1). The scatter plots for spectral hashing are showmgnZ<b,d). As the number of bits in the
spectral hashing code is increased, normalized Hammitedis does not appear to converge to any
clear function of the Euclidean distance. Because the aliwiv of spectral hashing in [15] includes
several heuristic steps, the behavior of the resultingraeh&ppears to be difficult to analyze, and
shows some undesirable effects as the code size increagase E (e,f) compares recall-precision
curves for both methods using a range of code sizes. Sinaeotinealized Hamming distance for
our method converges to a monotonic function of the Euctid#iatance, its performance keeps
improving as a function of code size. On the other hand, spidtashing starts out with promising
performance for very short codes (up to 32 bits), but theartetates for higher numbers of bits.

Next, we present retrieval results for 14,871 images takem fthe LabelMe database [10]. The
images are represented by 320-dimensional GIST desaipthmwhich have proven to be effective
at capturing perceptual similarity between scenes. Fsrdkperiment, we randomly select 1,000
images to serve as queries, and the rest make up the “databhaséth the synthetic experiments, a
nominal threshold of the average distance to the 50th neaeaghbor is used to determine whether
a database point returned for a given query is considerategtsitive. Figure 3 shows precision-
recall curves for code sizes ranging from 16 bits to 1024 bits in the synthetic experiments,
spectral hashing appears to have an advantage over ourdrfettextremely small code sizes, up to
about 32 bits. However, this low bit regime may not be venyfuisa practice, since below 32 bits,
neither method achieves performance levels that would tisfasztory for real-world applications.
For larger code sizes, our method begins to dominate. Fongbea with a 128-bit code (which is
equivalent to just two double-precision floating point nuarg), our scheme achieves 0.8 precision
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Figure 4: Examples of retrieval for two query images on the LabelMabase. The left column shows top

48 neighbors for each query according to Euclidean distéheequery image is in the top left of the collage).

The middle (resp. right) column shows nearest neighborsrdiotg to hormalized Hamming distance with a

32-bit (resp. 512-bit) code. The precision of retrievahialeated as the proportion of top Hamming neighbors
that are also Euclidean neighbors within the “nominal” uadilncorrectly retrieved images in the middle and
right columns are shown with a red border. Best viewed inrcolo

at 0.2 recall, whereas spectral hashing only achieves &bbuygrecision at the same recall. More-
over, the performance of spectral hashing actually beginetrease for code sizes above 256 bits.
Finally, Figure 4 shows retrieval results for our method @oaple of representative query images.

In addition to being completely distribution-free and éiting more desirable behavior as a func-
tion of code size, our scheme has one more practical adwanthagike spectral hashing, we retain
the kernel bandwidtl as a “free parameter,” which gives us flexibility in terms déating to target
neighborhood size, or setting a target Hamming distancedaghbors at a given Euclidean dis-
tance. This can be especially useful for making sure tharafsgiant fraction of neighbors for each
guery are mapped to strings whose Hamming distance fromubgy/ds no greater than 2. This is a
necesary condition for being able to use binary codes fdnihgsas opposed to brute-force search
(although, as demonstrated in [11, 13], even brute-foraeckewith binary codes can already be
quite fast). To ensure high recall within a low Hamming radiwe can progressively increase the
kernel bandwidth as the code size increases, thus counteracting the inéraasigormalizedHam-
ming distance that inevitably accompanies larger code sReeliminary results (omitted for lack of
space) show that this strategy can indeed increase recétividHamming radius while sacrificing
some precision. In the future, we will evaluate this trafleodre extensively, and test our method
on datasets consisting of millions of data points. At présaur promising initial results, combined
with our comprehensive theoretical analysis, convingirgmonstrate the potential usefulness of
our scheme for large-scale indexing and search application

Acknowledgments

This work was supported by NSF CAREER Award No. 11S 0845629.



References

(1]
(2]

(3]
(4]

(5]
(6]

A. Andoni and P. Indyk. Near-optimal hashing algorithiies approximate nearest neighbor in high
dimensionsCommun. ACM51(1):117-122, 2008.

K. Clarkson. Nearest-neighbor searching and metricsplimensions. IlNearest-Neighbor Methods for
Learning and Vision: Theory and Practiceages 15-59. MIT Press, 2006.

S. Dasgupta and Y. Freund. Random projection trees amdimensional manifolds. I8TOG 2008.

S. Dasgupta and A. Gupta. An elementary proof of a theasédohnson and LindenstrausRandom
Struct. Alg, 22(1):60-65, 2003.

J. Heinonen Lectures on Analysis on Metric Spac&pringer, New York, 2001.

P. Indyk and A. Naor. Nearest-neighbor-preserving esdbggs. ACM Trans. Algorithms3(3):Art. 31,
2007.

[7] A. Oliva and A. Torralba. Modeling the shape of the sceaduolistic representation of the spatial enve-

lope. Int. J. Computer Visiotd2(3):145-175, 2001.

[8] A.Rahimi and B. Recht. Random features for large-scala&l machines. INIPS 2007.

(9]
[10]
[11]

[12]
[13]
[14]
[15]

M. Reed and B. SimonMethods of Modern Mathematical Physics II: Fourier Anasysself-Adjointness
Academic Press, 1975.

B. Russell, A. Torralba, K. Murphy, and W. T. Freeman.bele: a database and web-based tool for
image annotationlnt. J. Computer Vision7/7:157-173, 2008.

R. Salakhutdinov and G. Hinton. Semantic hashing SIGIR Workshop on Inf. Retrieval and App. of
Graphical Models2007.

B. Scholkopf and A. J. Smold.earning With KernelsMIT Press, 2002.

A. Torralba, R. Fergus, and Y. Weiss. Small codes argklaiatabases for recognition. @VPR 2008.
A. W. van der Vaart and J. A. Wellneweak Convergence and Empirical Process&gringer, 1996.
Y. Weiss, A. Torralba, and R. Fergus. Spectral hashingNIPS 2008.



