Image alignment
A look into the past

A look into the past

Leningrad during the blockade

http://komen-dant.livejournal.com/345684.html
Bing streetside images

Image alignment: Applications

Panorama stitching

AutoStitch Panorama
By Cloudburst Research Inc.
Open iTunes to buy and download apps.

View In iTunes
Image alignment: Applications

Recognition of object instances
Image alignment: Challenges

Small degree of overlap
Intensity changes

Occlusion, clutter
Feature-based alignment

- Search sets of feature matches that agree in terms of:
 a) Local appearance
 b) Geometric configuration
Feature-based alignment: Overview

- Alignment as fitting
 - Affine transformations
 - Homographies
- Robust alignment
 - Descriptor-based feature matching
 - RANSAC
- Large-scale alignment
 - Inverted indexing
 - Vocabulary trees
- Application: searching the night sky
Alignment as fitting

• Previous lectures: fitting a model to features in one image

Find model M that minimizes

$$\sum_i \text{residual}(x_i, M)$$
Alignment as fitting

• Previous lectures: fitting a model to features in one image

\[
\sum_i \text{residual}(x_i, M)
\]

Find model \(M \) that minimizes \(\sum_i \text{residual}(x_i, M) \)

• Alignment: fitting a model to a transformation between pairs of features (matches) in two images

\[
\sum_i \text{residual}(T(x_i), x'_i)
\]

Find transformation \(T \) that minimizes \(\sum_i \text{residual}(T(x_i), x'_i) \)
2D transformation models

- Similarity (translation, scale, rotation)
- Affine
- Projective (homography)
Let’s start with affine transformations

- Simple fitting procedure (linear least squares)
- Approximates viewpoint changes for roughly planar objects and roughly orthographic cameras
- Can be used to initialize fitting for more complex models
Fitting an affine transformation

• Assume we know the correspondences, how do we get the transformation?

\[
\begin{bmatrix}
 x'_i \\
 y'_i
\end{bmatrix} =
\begin{bmatrix}
 m_1 & m_2 \\
 m_3 & m_4
\end{bmatrix}
\begin{bmatrix}
 x_i \\
 y_i
\end{bmatrix} +
\begin{bmatrix}
 t_1 \\
 t_2
\end{bmatrix}
\]

Want to find \(\mathbf{M}, \mathbf{t} \) to minimize

\[
\sum_{i=1}^{n} || x'_i - \mathbf{M}x_i - \mathbf{t} ||^2
\]
Fitting an affine transformation

- Assume we know the correspondences, how do we get the transformation?

\[
\begin{bmatrix}
 x'_i \\
y'_i
\end{bmatrix} = \begin{bmatrix}
m_1 & m_2 \\
m_3 & m_4
\end{bmatrix} \begin{bmatrix}
x_i \\
y_i
\end{bmatrix} + \begin{bmatrix}
t_1 \\
t_2
\end{bmatrix}
\]
Fitting an affine transformation

\[\begin{bmatrix} x_i & y_i & 0 & 0 & 1 & 0 \\ 0 & 0 & x_i & y_i & 0 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix} \begin{bmatrix} m_1 \\ m_2 \\ m_3 \\ m_4 \\ t_1 \\ t_2 \end{bmatrix} = \begin{bmatrix} x'_i \\ y'_i \\ \vdots \end{bmatrix} \]

- Linear system with six unknowns
- Each match gives us two linearly independent equations: need at least three to solve for the transformation parameters
Fitting a plane projective transformation

- **Homography**: plane projective transformation (transformation taking a quad to another arbitrary quad)
Homography

• The transformation between two views of a planar surface

• The transformation between images from two cameras that share the same center
Application: Panorama stitching

Source: Hartley & Zisserman
Fitting a homography

• Recall: homogeneous coordinates

\[(x, y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \quad \begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w)\]

Converting \textit{to} homogeneous image coordinates

Converting \textit{from} homogeneous image coordinates
Fitting a homography

- Recall: homogeneous coordinates

\[(x, y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \]

Converting to homogeneous image coordinates

\[
\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w)
\]

Converting from homogeneous image coordinates

- Equation for homography:

\[
\lambda \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}
\]
Fitting a homography

• Equation for homography:

\[
\lambda \begin{bmatrix} x'_i \\ y'_i \\ 1 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}
\]

\[
\lambda x'_i = H x_i
\]

\[
x'_i \times H x_i = 0
\]

\[
\begin{bmatrix} x'_i \\ y'_i \\ 1 \end{bmatrix} \times \begin{bmatrix} h_1^T x_i \\ h_2^T x_i \\ h_3^T x_i \end{bmatrix} = \begin{bmatrix} y'_i h_3^T x_i - h_2^T x_i \\ h_1^T x_i - x'_i h_3^T x_i \\ x'_i h_2^T x_i - y'_i h_1^T x_i \end{bmatrix}
\]

\[
\begin{bmatrix} 0^T & -x_i^T & y_i^T x_i^T \\ x_i^T & 0^T & -x'_i x_i^T \\ -y'_i x_i^T & x'_i x_i^T & 0^T \end{bmatrix} \begin{bmatrix} h_1 \\ h_2 \\ h_3 \end{bmatrix} = 0
\]

3 equations, only 2 linearly independent
Direct linear transform

\[
\begin{bmatrix}
0^T & x_1^T & -y_1'x_1^T \\
x_1^T & 0^T & -x_1'x_1^T \\
\cdots & \cdots & \cdots \\
0^T & x_n^T & -y_n'x_n^T \\
x_n^T & 0^T & -x_n'x_n^T \\
\end{bmatrix}
\begin{pmatrix}
h_1 \\
h_2 \\
h_3 \\
\end{pmatrix} = 0 \\
A\mathbf{h} = 0
\]

- \(H \) has 8 degrees of freedom (9 parameters, but scale is arbitrary)
- One match gives us two linearly independent equations
- Homogeneous least squares: find \(h \) minimizing \(||Ah||^2 \)
 - Eigenvector of \(A^TA \) corresponding to smallest eigenvalue
 - Four matches needed for a minimal solution
Robust feature-based alignment

- So far, we’ve assumed that we are given a set of “ground-truth” correspondences between the two images we want to align
- What if we don’t know the correspondences?
Robust feature-based alignment

- So far, we’ve assumed that we are given a set of “ground-truth” correspondences between the two images we want to align
- What if we don’t know the correspondences?
Robust feature-based alignment
Robust feature-based alignment

- Extract features
Robust feature-based alignment

- Extract features
- Compute *putative matches*
Robust feature-based alignment

- Extract features
- Compute *putative matches*
- Loop:
 - *Hypothesize* transformation T
Robust feature-based alignment

- Extract features
- Compute *putative matches*
- Loop:
 - Hypothesize transformation T
 - Verify transformation (search for other matches consistent with T)
Robust feature-based alignment

- Extract features
- Compute *putative matches*
- Loop:
 - *Hypothesize* transformation T
 - *Verify* transformation (search for other matches consistent with T)
Generating putative correspondences
Generating putative correspondences

- Need to compare feature descriptors of local patches surrounding interest points
Feature descriptors

- Recall: feature detection and description
Feature descriptors

- Simplest descriptor: vector of raw intensity values
- How to compare two such vectors?
 - Sum of squared differences (SSD)
 \[
 \text{SSD}(\mathbf{u}, \mathbf{v}) = \sum_i (u_i - v_i)^2
 \]
 - Not invariant to intensity change
 - Normalized correlation
 \[
 \rho(\mathbf{u}, \mathbf{v}) = \frac{(\mathbf{u} - \overline{\mathbf{u}}) \cdot (\mathbf{v} - \overline{\mathbf{v}})}{||\mathbf{u} - \overline{\mathbf{u}}|| \cdot ||\mathbf{v} - \overline{\mathbf{v}}||} = \frac{\sum_i (u_i - \overline{u})(v_i - \overline{v})}{\sqrt{\left(\sum_j (u_j - \overline{u})^2\right) \left(\sum_j (v_j - \overline{v})^2\right)}}
 \]
 - Invariant to affine intensity change
Disadvantage of intensity vectors as descriptors

• Small deformations can affect the matching score a lot
Feature descriptors: SIFT

- Descriptor computation:
 - Divide patch into 4x4 sub-patches
 - Compute histogram of gradient orientations (8 reference angles) inside each sub-patch
 - Resulting descriptor: $4 \times 4 \times 8 = 128$ dimensions

Feature descriptors: SIFT

- Descriptor computation:
 - Divide patch into 4x4 sub-patches
 - Compute histogram of gradient orientations (8 reference angles) inside each sub-patch
 - Resulting descriptor: 4x4x8 = 128 dimensions

- Advantage over raw vectors of pixel values
 - Gradients less sensitive to illumination change
 - Pooling of gradients over the sub-patches achieves robustness to small shifts, but still preserves some spatial information

Feature matching

• Generating *putative matches*: for each patch in one image, find a short list of patches in the other image that could match it based solely on appearance.
Problem: Ambiguous putative matches

Source: Y. Furukawa
Rejection of unreliable matches

- How can we tell which putative matches are more reliable?
- Heuristic: compare distance of nearest neighbor to that of second nearest neighbor
 - Ratio of closest distance to second-closest distance will be high for features that are not distinctive

RANSAC

- The set of putative matches contains a very high percentage of outliers

RANSAC loop:

1. Randomly select a seed group of matches
2. Compute transformation from seed group
3. Find inliers to this transformation
4. If the number of inliers is sufficiently large, re-compute least-squares estimate of transformation on all of the inliers

Keep the transformation with the largest number of inliers
RANSAC example: Translation

Putative matches
RANSAC example: Translation

Select *one* match, count *inliers*
RANSAC example: Translation

Select *one* match, count *inliers*
RANSAC example: Translation

Select translation with the most inliers
Scalability: Alignment to large databases

- What if we need to align a test image with thousands or millions of images in a model database?
 - Efficient putative match generation
 - Approximate descriptor similarity search, inverted indices
Large-scale visual search

Inverted indexing

Model images or exemplars

Input features in new image

Local feature descriptors from model images

Candidate matches based on descriptor similarity

Reranking/Geometric verification

Figure from: Kristen Grauman and Bastian Leibe, Visual Object Recognition, Synthesis Lectures on Artificial Intelligence and Machine Learning, April 2011, Vol. 5, No. 2, Pages 1-181
Example indexing technique: Vocabulary trees

Goal: find a set of representative prototypes or cluster centers to which descriptors can be quantized.
K-means clustering

• Want to minimize sum of squared Euclidean distances between points x_i and their nearest cluster centers m_k

$$D(X, M) = \sum_{\text{cluster } k} \sum_{\text{point } i \text{ in cluster } k} (x_i - m_k)^2$$

Algorithm:
• Randomly initialize K cluster centers
• Iterate until convergence:
 • Assign each data point to the nearest center
 • Recompute each cluster center as the mean of all points assigned to it
K-means demo

Source: http://shabal.in/visuals/kmeans/1.html
Another demo: http://www.kovan.ceng.metu.edu.tr/~maya/kmeans/
Recall: Visual codebook for generalized Hough transform
Hierarchical k-means clustering of descriptor space (vocabulary tree)
Vocabulary tree/inverted index
Populating the vocabulary tree/inverted index

Model images
Populating the vocabulary tree/inverted index

Slide credit: D. Nister
Populating the vocabulary tree/inverted index

Model images

Slide credit: D. Nister
Populating the vocabulary tree/inverted index
Looking up a test image

Slide credit: D. Nister
Cool application of large-scale alignment: searching the night sky

http://www.astrometry.net/