Stereo

Many slides adapted from Steve Seitz
Binocular stereo

- Given a calibrated binocular stereo pair, fuse it to produce a depth image.

![image 1](image1.png) ![image 2](image2.png)

Dense depth map
Binocular stereo

- Given a calibrated binocular stereo pair, fuse it to produce a depth image

Where does the depth information come from?
Binocular stereo

- Given a calibrated binocular stereo pair, fuse it to produce a depth image
 - Humans can do it

Stereograms: Invented by Sir Charles Wheatstone, 1838
Binocular stereo

• Given a calibrated binocular stereo pair, fuse it to produce a depth image
 • Humans can do it
Binocular stereo

• Given a calibrated binocular stereo pair, fuse it to produce a depth image
 • Humans can do it

Autostereograms: www.magiceye.com
Basic stereo matching algorithm

• For each pixel in the first image
 • Find corresponding epipolar line in the right image
 • Examine all pixels on the epipolar line and pick the best match
 • Triangulate the matches to get depth information

• Simplest case: epipolar lines are corresponding scanlines
 • When does this happen?
Simplest Case: Parallel images

• Image planes of cameras are parallel to each other and to the baseline
• Camera centers are at same height
• Focal lengths are the same
Simplest Case: Parallel images

- Image planes of cameras are parallel to each other and to the baseline
- Camera centers are at same height
- Focal lengths are the same
- Then epipolar lines fall along the horizontal scan lines of the images
The y-coordinates of corresponding points are the same!

Essential matrix for parallel images

Epipolar constraint:
\[x''^T E x = 0, \quad E = [t_x]R \]

\[
R = I \quad t = (T, 0, 0)
\]

\[
E = [t_x]R = \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & -T \\
0 & T & 0
\end{bmatrix}
\]

\[
\begin{bmatrix} u' & v' & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\
0 & 0 & -T \\
0 & T & 0 \end{bmatrix} \begin{bmatrix} u \\
v \\
1 \end{bmatrix} = 0
\]

\[
\begin{bmatrix} 0 \\
0 \\
Tv \end{bmatrix}
\]

\[
T v' = Tv
\]
Depth from disparity

Disparity is inversely proportional to depth!
Depth from disparity

\[
x = \frac{B_1}{f} \quad \quad \quad x' = \frac{B_2}{f}
\]

\[
x - x' = \frac{B_1 - B_2}{f}
\]

\[
\text{disparity} = x - x' = \frac{B \cdot f}{z}
\]
Triangulation: History

From Wikipedia: Gemma Frisius's 1533 diagram introducing the idea of triangulation into the science of surveying. Having established a baseline, e.g. the cities of Brussels and Antwerp, the location of other cities, e.g. Middelburg, Ghent etc., can be found by taking a compass direction from each end of the baseline, and plotting where the two directions cross. This was only a theoretical presentation of the concept — due to topographical restrictions, it is impossible to see Middelburg from either Brussels or Antwerp. Nevertheless, the figure soon became well known all across Europe.
Stereo image rectification
Stereo image rectification

- Reproject image planes onto a common plane parallel to the line between optical centers
- Pixel motion is horizontal after this transformation
- Two homographies (3x3 transform), one for each input image reprojection

Rectification example
Correspondence search

- Slide a window along the right scanline and compare contents of that window with the reference window in the left image
- Matching cost: SSD or normalized correlation
Correspondence search

Left

Right

scanline

SSD
Correspondence search

Left

Right

scanline

Norm. corr
Basic stereo matching algorithm

- If necessary, rectify the two stereo images to transform epipolar lines into scanlines
- For each pixel x in the first image
 - Find corresponding epipolar scanline in the right image
 - Examine all pixels on the scanline and pick the best match x'
 - Compute disparity $x-x'$ and set $\text{depth}(x) = B \cdot f / (x-x')$
Failures of correspondence search

- Textureless surfaces
- Occlusions, repetition
- Non-Lambertian surfaces, specularities
Effect of window size

- Smaller window
 + More detail
 - More noise

- Larger window
 + Smoother disparity maps
 - Less detail
Results with window search

Data

Window-based matching

Ground truth
Better methods exist...

Y. Boykov, O. Veksler, and R. Zabih,
Fast Approximate Energy Minimization via Graph Cuts, PAMI 2001

For the latest and greatest: http://www.middlebury.edu/stereo/
How can we improve window-based matching?

• The similarity constraint is **local** (each reference window is matched independently)
• Need to enforce **non-local** correspondence constraints
Non-local constraints

- **Uniqueness**
 - For any point in one image, there should be at most one matching point in the other image.

![Diagram showing uniqueness constraint](image-url)
Non-local constraints

- **Uniqueness**
 - For any point in one image, there should be at most one matching point in the other image

- **Ordering**
 - Corresponding points should be in the same order in both views
Non-local constraints

- **Uniqueness**
 - For any point in one image, there should be at most one matching point in the other image

- **Ordering**
 - Corresponding points should be in the same order in both views

Ordering constraint doesn’t hold
Non-local constraints

• Uniqueness
 • For any point in one image, there should be at most one matching point in the other image

• Ordering
 • Corresponding points should be in the same order in both views

• Smoothness
 • We expect disparity values to change slowly (for the most part)
Scanline stereo

- Try to coherently match pixels on the entire scanline
- Different scanlines are still optimized independently
“Shortest paths” for scan-line stereo

Can be implemented with dynamic programming
Ohta & Kanade ’85, Cox et al. ‘96

Slide credit: Y. Boykov
Coherent stereo on 2D grid

- Scanline stereo generates streaking artifacts

- Can’t use dynamic programming to find spatially coherent disparities/ correspondences on a 2D grid
Stereo matching as energy minimization

\[E(D) = \sum_i \left(W_1(i) - W_2(i + D(i)) \right)^2 + \lambda \sum_{\text{neighbors } i,j} \rho(D(i) - D(j)) \]

- Energy functions of this form can be minimized using graph cuts

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy Minimization via Graph Cuts, PAMI 2001
Stereo matching as energy minimization

- Probabilistic interpretation: we want to find a Maximum A Posteriori (MAP) estimate of disparity image D:

$$P(D | I_1, I_2) \propto P(I_1, I_2 | D)P(D)$$

$$- \log P(D | I_1, I_2) \propto - \log P(I_1, I_2 | D) - \log P(D)$$

$$E = E_{data} (I_1, I_2, D) + \lambda E_{smooth} (D)$$
Stereo matching as energy minimization

- Note: the above formulation does not treat the two images symmetrically, does not enforce uniqueness, and does not take occlusions into account
- It is possible to come up with an energy that does all these things, but it’s a bit more complex
 - Defined over all possible sets of matches, not over all disparity maps with respect to the first image
 - Includes an *occlusion term*
 - The smoothness term looks different and more complicated

V. Kolmogorov and R. Zabih,
Computing Visual Correspondence with Occlusions using Graph Cuts, ICCV 2001
Optical flow estimation for stereo

Source: http://people.csail.mit.edu/celiu/OpticalFlow/
Active stereo with structured light

- Project “structured” light patterns onto the object
 - Simplifies the correspondence problem
 - Allows us to use only one camera

Rapid Shape Acquisition Using Color Structured Light and Multi-pass Dynamic Programming. 3DPVT 2002
Active stereo with structured light

Rapid Shape Acquisition Using Color Structured Light and Multi-pass Dynamic Programming. 3DPVT 2002
Active stereo with structured light

Kinect: Structured infrared light

Laser scanning

Optical triangulation

- Project a single stripe of laser light
- Scan it across the surface of the object
- This is a very precise version of structured light scanning

Digital Michelangelo Project
Levoy et al.
http://graphics.stanford.edu/projects/mich/

Source: S. Seitz
Laser scanned models

The Digital Michelangelo Project, Levoy et al.

Source: S. Seitz
Laser scanned models

The Digital Michelangelo Project, Levoy et al.

Source: S. Seitz
Laser scanned models

The Digital Michelangelo Project, Levoy et al.

Source: S. Seitz
Laser scanned models

The Digital Michelangelo Project, Levoy et al.

Source: S. Seitz
Laser scanned models

1.0 mm resolution (56 million triangles)

The Digital Michelangelo Project, Levoy et al.

Source: S. Seitz
Aligning range images

- A single range scan is not sufficient to describe a complex surface
- Need techniques to register multiple range images

B. Curless and M. Levoy,
Aligning range images

• A single range scan is not sufficient to describe a complex surface
• Need techniques to register multiple range images

… which brings us to \textit{multi-view stereo}