Review: Binocular stereo

- If necessary, rectify the two stereo images to transform epipolar lines into scanlines.

- For each pixel x in the first image:
 - Find corresponding epipolar scanline in the right image.
 - Examine all pixels on the scanline and pick the best match x'.
 - Compute disparity $x - x'$ and set $\text{depth}(x) = B * f / (x - x')$.

HON. ABRAHAM LINCOLN, President of United States.
Multi-view stereo

Many slides adapted from S. Seitz
Multi-view stereo or 3D photography

- Generic problem formulation: given several images of the same object or scene, compute a representation of its 3D shape
Multi-view stereo or 3D photography

- Generic problem formulation: given several images of the same object or scene, compute a representation of its 3D shape
- “Images of the same object or scene”
 - Arbitrary number of images (from two to thousands)
 - Arbitrary camera positions (camera network or video sequence)
 - Calibration may be initially unknown
- “Representation of 3D shape”
 - Depth maps
 - Meshes
 - Point clouds
 - Patch clouds
 - Volumetric models
 - Layered models
 - …
Beyond two-view stereo

- A single depth map cannot adequately capture complex 3D structure
Multi-view stereo: Basic idea

Source: Y. Furukawa
Multiple-baseline stereo

- Pick a reference image, and slide the corresponding window along the corresponding epipolar lines of all other images, using \textit{inverse depth} relative to the first image as the search parameter.

Multiple-baseline stereo

- For larger baselines, must search larger area in second image

(pixel matching score graph)

\[\frac{1}{z} \]
Multiple-baseline stereo

Use the sum of SSD scores to rank matches

Fig. 5. SSD values versus inverse distance: (a) \(B = 6 \); (b) \(B = 26 \); (c) \(B = 36 \); (d) \(B = 46 \); (e) \(B = 56 \); (f) \(B = 66 \); (g) \(B = 76 \); (h) \(B = 86 \).

The horizontal axis is normalized such that \(5kF = 1 \).

Fig. 7. Combining multiple baseline stereo pairs.
Multiple-baseline stereo results

Plane Sweep Stereo

• Choose a reference view
• Sweep family of planes at different depths with respect to the reference camera

• Each plane defines a homography warping each input image into the reference view
• What can we say about the warped images of the points that are at the right depth for a given homography?

Plane Sweep Stereo

- For each depth plane
 - For each pixel in the composite image stack, compute the variance
 - For each pixel, select the depth that gives the lowest variance
Plane Sweep Stereo

• For each depth plane
 • For each pixel in the composite image stack, compute the variance

• For each pixel, select the depth that gives the lowest variance

Can be accelerated using graphics hardware

R. Yang and M. Pollefeys.
Multi-Resolution Real-Time Stereo on Commodity Graphics Hardware, CVPR 2003
Volumetric stereo

- In plane sweep stereo, the sampling of the scene depends on the reference view
- We can use a voxel volume to get a view-independent representation
Volumetric Stereo / Voxel Coloring

Goal: Assign RGB values to voxels in V *photo-consistent* with images
Photo-consistency

- A *photo-consistent scene* is a scene that exactly reproduces your input images from the same camera viewpoints.
- You can’t use your input cameras and images to tell the difference between a photo-consistent scene and the true scene.
Space Carving

Space Carving Algorithm

- Initialize to a volume V containing the true scene
- Choose a voxel on the outside of the volume
- Project to visible input images
- Carve if not photo-consistent
- Repeat until convergence

K. N. Kutulakos and S. M. Seitz, A Theory of Shape by Space Carving, ICCV 1999
Which shape do you get?

The **Photo Hull** is the UNION of all photo-consistent scenes in V
- It is a photo-consistent scene reconstruction
- Tightest possible bound on the true scene

Source: S. Seitz
Space Carving Results: African Violet

Input Image (1 of 45)

Reconstruction

Reconstruction

Reconstruction

Source: S. Seitz
Space Carving Results: Hand

Input Image
(1 of 100)

Views of Reconstruction
Reconstruction from Silhouettes

- The case of binary images: a voxel is photo-consistent if it lies inside the object’s silhouette in all views.
Reconstruction from Silhouettes

- The case of binary images: a voxel is photo-consistent if it lies inside the object’s silhouette in all views.

Finding the silhouette-consistent shape (*visual hull*):
- *Backproject* each silhouette
- Intersect backprojected volumes
Volume intersection

Photo-consistency vs. silhouette-consistency

True Scene Photo Hull Visual Hull
Carved visual hulls

- The visual hull is a good starting point for optimizing photo-consistency
 - Easy to compute
 - Tight outer boundary of the object
 - Parts of the visual hull (rims) already lie on the surface and are already photo-consistent

Yasutaka Furukawa and Jean Ponce, Carved Visual Hulls for Image-Based Modeling, ECCV 2006.
Carved visual hulls

1. Compute visual hull
2. Use dynamic programming to find rims (photo-consistent parts of visual hull)
3. Carve the visual hull to optimize photo-consistency keeping the rims fixed

Yasutaka Furukawa and Jean Ponce,
Carved Visual Hulls for Image-Based Modeling, ECCV 2006.
From feature matching to dense stereo

1. Extract features
2. Get a sparse set of initial matches
3. Iteratively expand matches to nearby locations
4. Use visibility constraints to filter out false matches
5. Perform surface reconstruction

Yasutaka Furukawa and Jean Ponce,
Accurate, Dense, and Robust Multi-View Stereopsis, CVPR 2007.
From feature matching to dense stereo

http://www.cs.washington.edu/homes/furukawa/gallery/

Yasutaka Furukawa and Jean Ponce,
Accurate, Dense, and Robust Multi-View Stereopsis, CVPR 2007.
Stereo from community photo collections

• Up to now, we’ve always assumed that camera calibration is known

• For photos taken from the Internet, we need *structure from motion* techniques to reconstruct both camera positions and 3D points
Towards Internet-Scale Multi-View Stereo

YouTube video, high-quality video

The Visual Turing Test for Scene Reconstruction

Q. Shan, R. Adams, B. Curless, Y. Furukawa, and S. Seitz,
Fast stereo for Internet photo collections

• Start with a cluster of registered views
• Obtain a depth map for every view using plane sweeping stereo with normalized cross-correlation

Plane sweeping stereo

• Need to register individual depth maps into a single 3D model
• Problem: depth maps are very noisy

Robust stereo fusion using a heightmap

- Enforces vertical facades
- One continuous surface, no holes
- Fast to compute, low memory complexity

David Gallup, Marc Pollefeys, Jan-Michael Frahm, “3D Reconstruction using an n-Layer Heightmap”, DAGM 2010
Results

Kinect: Structured infrared light

KinectFusion: Real-time 3D Reconstruction and Interaction Using a Moving Depth Camera

Shahram Izadi¹, David Kim¹,³, Otmar Hilliges¹, David Molyneaux¹,⁴, Richard Newcombe², Pushmeet Kohli¹, Jamie Shotton¹, Steve Hodges¹, Dustin Freeman¹,⁵, Andrew Davison², Andrew Fitzgibbon¹

¹Microsoft Research Cambridge, UK ²Imperial College London, UK ³Newcastle University, UK ⁴Lancaster University, UK ⁵University of Toronto, Canada

Figure 1: KinectFusion enables real-time detailed 3D reconstructions of indoor scenes using only the depth data from a standard Kinect camera. A) user points Kinect at coffee table scene. B) Phong shaded reconstructed 3D model (the wireframe frustum shows current tracked 3D pose of Kinect). C) 3D model texture mapped using Kinect RGB data with real-time particles simulated on the 3D model as reconstruction occurs. D) Multi-touch interactions performed on any reconstructed surface. E) Real-time segmentation and 3D tracking of a physical object.

Paper link (ACM Symposium on User Interface Software and Technology, October 2011)

YouTube Video