1. Advanced CNN architectures
 ○ Mostly covered by Lana: GoogLeNet-v1, ResNet
 ○ Beyond ResNets: GoogLeNet-v4, FractalNet, DenseNets
 ○ Attempts to explain ResNets: identity mappings in ResNets, ensembles of shallow networks, connections to RNNs and visual cortex
 ○ Other noteworthy architectures: Spatial Transformer, Wide And Deep, NoPooling, Highway Networks
 ○ Transfer Functions: ELU, PReLU, Leaky ReLU

2. Advanced training techniques
 ○ Gradient Descent Algos: Overview, another overview, Adagrad, RMSProp, Adam, Eve
 ○ Regularization: DropOut, Batch normalization
 ○ Network Initializations: Xavier/Glorot, Orthogonal, Data Dependent, Good Init

3. Network Compression and speeding up networks
 ○ Quantization, Pruning + Quantization + Encoding
 ○ XNORNet, Low Precision, Limited Precision
 ○ Low-rank expansions, CP-Decompositions, Non-linear Approx, Fastfood
 ○ Factorized/Separable Conv: Flattened Conv, Factored Conv
 ○ SqueezeNet, PerforatedCNN

4. Object Detection
 ○ Lana’s object detection slides from CS543
 ○ RCNN, SPPNet, Fast RCNN, Faster-RCNN, MultiBox, ION, YOLO, SSD, Feature pyramid networks
 ○ Speed/accuracy trade-offs for modern convolutional object detectors

5. Semantic segmentation, dense pixel labeling
 ○ ZoomOut, Hypercolumns
 ○ FCN, DeepLab, CRFasRNN, DeepMask, SharpMask
 ○ Dilated Conv
 ○ PixelNet
 ○ Optical Flow, Edge Detection
 ○ Fully connected deep structured networks
 ○ Stacked hourglass networks for human pose estimation

6. Similarity learning with CNNs
 ○ Siamese Networks, Triplet Loss, Overview
 ○ Applications: Patch Match, Visual Similarity, Overhead To Street, LIFT

7. Visualizing CNNs, adversarial examples
 ○ Visualizing and Understanding Convolutional Networks
○ Synthesizing the preferred inputs for neurons in neural networks via deep generator networks
○ Understanding Deep Image Representations by Inverting Them
○ Inverting Visual Representations with Convolutional Networks
○ Deep Inside Convolutional Networks
○ Deep networks are easily fooled
○ Intriguing properties of neural networks
○ Explaining and harnessing adversarial examples
○ Adversarial examples in the real world
○ Universal Adversarial Perturbations
○ Analysis of robustness to adversarial perturbations
○ Dense Associative Memory is Robust to Adversarial Inputs

8. Generative Adversarial Networks
○ Tutorial by Ian Goodfellow
○ GAN, Laplacian Pyramid of GANs, InfoGAN, EBGAN, Conditional GAN
○ Applications: Segmentation, Image-to-image translation, Video Generation, Text2Im
○ Advanced models: Coupled GANs, Stacked GANs

9. Variational Autoencoders
○ Original VAE paper
○ Tutorial by Carl Doersch
○ Conditional VAEs: Attribute2Im, Future Prediction
○ Plug n Play generative networks
○ Hybrid models: adversarial autoencoders, VAE+GAN with learned similarity
○ Other generative models (optional): Mixture Density Network, Gumbel Softmax

10. Other image generation methods
○ DRAW: A Recurrent Neural Network For Image Generation
○ Towards Conceptual Compression
○ Generative Image Modeling Using Spatial LSTMs
○ Pixel Recurrent Neural Networks
○ Conditional Image Generation with PixelCNN Decoders
○ Style transfer, transfer with perceptual losses

11. 3D + graphics
○ Deep Convolutional Inverse Graphics Network
○ DeepStereo: Learning to Predict New Views from the World’s Imagery
○ PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization
○ Perspective Transformer Nets
○ Unsupervised Learning of 3D Structure from Images
○ Single Image 3D Interpreter Network
12. Self-supervised learning
 - 3D face from image
 - Context as Supervisory Signal
 - Unsupervised Learning of Visual Representations using Videos
 - Slow and steady feature analysis
 - Learning Visual Features from Large Weakly Supervised Data
 - Split-brain Autoencoders
 - Context Encoders
 - Colorful Image Colorization, Automatic Colorization
 - Ambient Sound Provides Supervision for Visual Learning
 - Unsupervised learning through video prediction

13. Deep reinforcement learning: Q Learning
 - Deep RL tutorial
 - Q Learning Tutorial
 - Playing Atari with DQN
 - Deep Reinforcement Learning with Double Q-learning
 - Learning to Play in a Day with DQNs
 - Application to recognition (optional): Object Localization

14. DRL II: Policy Gradients, planning
 - Blog: http://karpathy.github.io/2016/05/31/rl/
 - REINFORCE - historic paper
 - AlphaGo
 - PGQ: Combining policy gradient and Q-learning
 - Reinforcement Learning with Unsupervised Auxiliary Tasks
 - Value iteration networks
 - The Predictron: End-To-End Learning and Planning
 - Applications to recognition (optional): Recurrent Models of Visual Attention, Action Detection

15. Deep learning for manipulation, navigation (both RL and self-supervised)
 - End-to-end training of deep visuomotor policies
 - Learning to poke by poking
 - Learning hand-eye coordination with large-scale data collection
 - The curious robot
 - Supersizing self-supervision
 - Learning to Navigate in Complex Environments
 - Real single-image flight without a single real image
16. Recurrent architectures: LSTM, GRU, RNN
 ○ Mostly covered by Arun:
 ■ LSTM: A Search Space Odyssey
 ■ An Empirical Exploration of Recurrent Network Architectures
 ○ Visualizing and understanding recurrent networks
 ○ Identity RNN
 ○ Unitary Evolution Recurrent Neural Networks
 ○ Recurrent Dropout without Memory Loss
 ○ Recurrent Batch Normalization
 ○ Architectural Complexity Measures of RNNs
 ○ Collection of useful papers and applications:
 https://github.com/kjw0612/awesome-rnn#applications
 ○ Application of recurrent models to recognition: Feedback networks

17. Image captioning with recurrent models, attention
 ○ Show And Tell, Follow-up
 ○ NeuralTalk
 ○ From Captions to Visual Concepts and Back
 ○ Attributes for Captioning
 ○ Show, Attend, and Tell
 ○ Attention Correctness in Neural Image Captioning

18. Image-text embeddings, grounding
 ○ Datasets: Flickr30k Entities, Visual Genome
 ○ Deep structure-preserving embeddings
 ○ Order embeddings
 ○ Grounding by Reconstruction
 ○ DenseCap

19. Visual Question Answering
 ○ The VQA dataset
 ○ Simple Baseline for Visual Question Answering
 ○ Revisiting Visual Question Answering Baselines
 ○ Where To Look: Focus Regions for Visual Question Answering
 ○ Hierarchical Question-Image Co-Attention for Visual Question Answering
 ○ Multimodal Compact Bilinear Pooling (original CBP)
 ○ Neural module networks
 ○ CLEVR

20. Deep learning for NLP
 ○ Word Embeddings: Word2Vec, Glove, Doc2Vec, Skip Thought
 - **Semantic Parsing**
 - **Language Modeling with Gated Convolutional Networks**
 - **Language Modeling with Outrageously Large Neural Networks**

22. Deep learning for audio
 - **Recognition:** LSTM for Acoustic Modeling, RNN, Deep Speech, Raw Waveform
 - **Generation:** WaveNet

23. Architectures with memory
 - **Neural Turing Machines**
 - **Memory Networks**
 - **End-to-End Memory Networks**
 - **Pointer Networks**
 - **Differentiable Neural Computers**

24. Meta-algorithms
 - **Learning to learn by gradient descent by gradient descent**
 - **Neural architecture search with reinforcement learning**
 - **Designing Neural Network Architectures using Reinforcement Learning**
 - **HyperNetworks**
 - **Learning to learn for global optimization of black box functions**