
Some RNN Variants!

Arun Mallya!

Best viewed with Computer Modern fonts installed!

Outline!
•  Why Recurrent Neural Networks (RNNs)?!
•  The Vanilla RNN unit!
•  The RNN forward pass!
•  Backpropagation refresher!
•  The RNN backward pass!
•  Issues with the Vanilla RNN!
•  The Long Short-Term Memory (LSTM) unit!
•  The LSTM Forward & Backward pass!
•  LSTM variants and tips!

–  Peephole LSTM!
–  GRU!

The Vanilla RNN Cell!

3	

ht!

 xt!
!
!
ht-1!
!

ht = tanhW
xt
ht−1

⎛
⎝⎜

⎞
⎠⎟

W!

The Vanilla RNN Forward!

4	

h1!

 x1 h0!
!

C1!

y1!

h2!

 x2 h1!
!

C2!

y2!

h3!

 x3 h2!
!

C3!

y3!

ht = tanhW
xt
ht−1

⎛
⎝⎜

⎞
⎠⎟

yt = F(ht)
Ct = Loss(yt ,GTt)

The Vanilla RNN Forward!

5	

h1!

 x1 h0!
!

C1!

y1!

h2!

 x2 h1!
!

C2!

y2!

h3!

 x3 h2!
!

C3!

y3!

ht = tanhW
xt
ht−1

⎛
⎝⎜

⎞
⎠⎟

yt = F(ht)
Ct = Loss(yt ,GTt)

indicates shared weights!

The Vanilla RNN Backward!

6	

h1!

 x1 h0!
!

C1!

y1!

h2!

 x2 h1!
!

C2!

y2!

h3!

 x3 h2!
!

C3!

y3!

ht = tanhW
xt
ht−1

⎛
⎝⎜

⎞
⎠⎟

yt = F(ht)
Ct = Loss(yt ,GTt)

∂Ct

∂h1
= ∂Ct

∂yt

⎛
⎝⎜

⎞
⎠⎟

∂yt
∂h1

⎛
⎝⎜

⎞
⎠⎟

= ∂Ct

∂yt

⎛
⎝⎜

⎞
⎠⎟

∂yt
∂ht

⎛
⎝⎜

⎞
⎠⎟

∂ht
∂ht−1

⎛
⎝⎜

⎞
⎠⎟
!

∂h2
∂h1

⎛
⎝⎜

⎞
⎠⎟

The Popular LSTM Cell!

it! ot!

ft!

Input Gate! Output Gate!

Forget Gate!

ht!

7	

xt ht-1!
 !

Cell!

ct-1!

ct = ft ⊗ ct−1 +

it ⊗ tanhW
xt
ht−1

⎛
⎝⎜

⎞
⎠⎟

xt ht-1!
 !

xt ht-1!
 !

 xt!
!
!
ht-1!
!

W!

Wi! Wo!

Wf!

ft =σ Wf

xt
ht−1

⎛
⎝⎜

⎞
⎠⎟
+ bf

⎛
⎝⎜

⎞
⎠⎟

ht = ot ⊗ tanhct

Similarly for it, ot!

* Dashed line indicates time-lag!
!

LSTM – Forward/Backward!

8	

Go	 To:	 Illustrated LSTM Forward and Backward Pass!

Class Exercise!

9	

•  Consider the problem of translation of English to French!
•  E.g. What is your name Comment tu t'appelle!
•  Is the below architecture suitable for this problem?!
!

Adapted from http://www.cs.toronto.edu/~rgrosse/csc321/lec10.pdf !

E1! E2! E3!

F1! F2! F3!

Class Exercise!

10	

•  Consider the problem of translation of English to French!
•  E.g. What is your name Comment tu t'appelle!
•  Is the below architecture suitable for this problem?!

•  No, sentences might be of different length and words
might not align. Need to see entire sentence before
translating!

!

E1! E2! E3!

F1! F2! F3!

Adapted from http://www.cs.toronto.edu/~rgrosse/csc321/lec10.pdf !

Class Exercise!

11	

•  Consider the problem of translation of English to French!
•  E.g. What is your name Comment tu t'appelle!
•  Sentences might be of different length and words might

not align. Need to see entire sentence before translating!
!

•  Input-Output nature depends on the structure of the
problem at hand!

Seq2Seq Learning with Neural Networks, Sutskever et al., 2014!

F1! F2! F3!

E1! E2! E3!

F4!

Multi-layer RNNs!

12	

•  We can of course design RNNs with multiple hidden layers!

x1! x2! x3! x4! x5! x6!

y1! y2! y3! y4! y5! y6!

•  Think exotic: Skip connections across layers, across time, …!

Bi-directional RNNs!

13	

•  RNNs can process the input sequence in forward and in the
reverse direction!

x1! x2! x3! x4! x5! x6!

y1! y2! y3! y4! y5! y6!

•  Popular in speech recognition!

Recap!

14	

•  RNNs allow for processing of variable length inputs and
outputs by maintaining state information across time steps!

•  Various Input-Output scenarios are possible !
(Single/Multiple)!

•  RNNs can be stacked, or bi-directional!

•  Vanilla RNNs are improved upon by LSTMs which address
the vanishing gradient problem through the CEC!

•  Exploding gradients are handled by gradient clipping!
!

The Popular LSTM Cell!

it! ot!

ft!

Input Gate! Output Gate!

Forget Gate!

ht!

15	

xt ht-1!
 !

Cell!

ct-1!

ct = ft ⊗ ct−1 +

it ⊗ tanhW
xt
ht−1

⎛
⎝⎜

⎞
⎠⎟

xt ht-1!
 !

xt ht-1!
 !

 xt!
!
!
ht-1!
!

W!

Wi! Wo!

Wf!

ft =σ Wf

xt
ht−1

⎛
⎝⎜

⎞
⎠⎟
+ bf

⎛
⎝⎜

⎞
⎠⎟

ht = ot ⊗ tanhct

Similarly for it, ot!

* Dashed line indicates time-lag!
!

Extension I: Peephole LSTM!

it! ot!

ft!

Input Gate! Output Gate!

Forget Gate!

ht!

16	

xt ht-1!
 !

Cell!

ct-1!

ct = ft ⊗ ct−1 +

it ⊗ tanhW
xt
ht−1

⎛
⎝⎜

⎞
⎠⎟

xt ht-1!
 !

xt ht-1!
 !

 xt!
!
!
ht-1!
!

W!

Wi! Wo!

Wf!

ft =σ Wf

xt
ht−1
ct−1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
+ bf

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

ht = ot ⊗ tanhct

Similarly for it, ot (uses ct)!

* Dashed line indicates time-lag!
!

The Popular LSTM Cell!

it! ot!

ft!

Input Gate! Output Gate!

Forget Gate!

ht!

17	

xt ht-1!
 !

Cell!

ct-1!

ct = ft ⊗ ct−1 +

it ⊗ tanhW
xt
ht−1

⎛
⎝⎜

⎞
⎠⎟

xt ht-1!
 !

xt ht-1!
 !

 xt!
!
!
ht-1!
!

W!

Wi! Wo!

Wf!

ft =σ Wf

xt
ht−1

⎛
⎝⎜

⎞
⎠⎟
+ bf

⎛
⎝⎜

⎞
⎠⎟

ht = ot ⊗ tanhct

Similarly for it, ot!

* Dashed line indicates time-lag!
!

Extension I: Peephole LSTM!

it! ot!

ft!

Input Gate! Output Gate!

Forget Gate!

ht!

18	

xt ht-1!
 !

Cell!

ct-1!

ct = ft ⊗ ct−1 +

it ⊗ tanhW
xt
ht−1

⎛
⎝⎜

⎞
⎠⎟

xt ht-1!
 !

xt ht-1!
 !

 xt!
!
!
ht-1!
!

W!

Wi! Wo!

Wf!

ft =σ Wf

xt
ht−1
ct−1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
+ bf

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

ht = ot ⊗ tanhct

Similarly for it, ot (uses ct)!

* Dashed line indicates time-lag!
!

Peephole LSTM!
•  Gates can only see the output from the previous time step,

which is close to 0 if the output gate is closed. However,
these gates control the CEC cell. !

•  Helped the LSTM learn better timing for the problems
tested – Spike timing and Counting spike time delays!

!

Recurrent nets that time and count, Gers et al., 2000!

Other minor variants!
•  Coupled Input and Forget Gate!

ft =σ Wf

xt
ht−1
ct−1
it−1
ft−1
ot−1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+ bf

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

ft = 1− it

•  Full Gate Recurrence!

LSTM: A Search Space Odyssey!
•  Tested the following variants, using Peephole LSTM as

standard:!
1.  No Input Gate (NIG) !
2.  No Forget Gate (NFG) !
3.  No Output Gate (NOG) !
4.  No Input Activation Function (NIAF) !
5.  No Output Activation Function (NOAF) !
6.  No Peepholes (NP) !
7.  Coupled Input and Forget Gate (CIFG) !
8.  Full Gate Recurrence (FGR)!

•  On the tasks of:!
–  Timit Speech Recognition: Audio frame to 1 of 61 phonemes!
–  IAM Online Handwriting Recognition: Sketch to characters!
–  JSB Chorales: Next-step music frame prediction!

LSTM: A Search Space Odyssey, Greff et al., 2015!

LSTM: A Search Space Odyssey!
•  The standard LSTM performed reasonably well on multiple

datasets and none of the modifications significantly
improved the performance!

•  Coupling gates and removing peephole connections
simplified the LSTM without hurting performance much!

•  The forget gate and output activation are crucial!

•  Found interaction between learning rate and network size
to be minimal – indicates calibration can be done using a
small network first!

LSTM: A Search Space Odyssey, Greff et al., 2015!

Gated Recurrent Unit (GRU)!
•  A very simplified version of the LSTM!

–  Merges forget and input gate into a single ‘update’ gate!
–  Merges cell and hidden state!

•  Has fewer parameters than an LSTM and has been shown
to outperform LSTM on some tasks!

Learning Phrase Representations using RNN Encoder-Decoder for !
Statistical Machine Translation, Cho et al., 2014!

GRU!

zt!

rt!

Update Gate!

Reset Gate!

ht!

24	

xt ht-1!
 !

xt ht-1!
 !

ht-1!
!

W!

Wz!

Wf!

 xt!
h’t!

rt =σ Wr

xt
ht−1

⎛
⎝⎜

⎞
⎠⎟
+ bf

⎛
⎝⎜

⎞
⎠⎟

ht = (1− zt)⊗ ht−1 + zt ⊗ h 't

zt =σ Wz

xt
ht−1

⎛
⎝⎜

⎞
⎠⎟
+ bf

⎛
⎝⎜

⎞
⎠⎟

h 't = tanhW
xt

rt ⊗ ht−1

⎛
⎝⎜

⎞
⎠⎟

GRU!

rt! Reset Gate!

25	

xt ht-1!
 !

Wf!

rt =σ Wr

xt
ht−1

⎛
⎝⎜

⎞
⎠⎟
+ bf

⎛
⎝⎜

⎞
⎠⎟

GRU!

rt! Reset Gate!

26	

xt ht-1!
 !

ht-1!
!

W!

Wf!

 xt!
h’t!

rt =σ Wr

xt
ht−1

⎛
⎝⎜

⎞
⎠⎟
+ bf

⎛
⎝⎜

⎞
⎠⎟

h 't = tanhW
xt

rt ⊗ ht−1

⎛
⎝⎜

⎞
⎠⎟

GRU!

zt!

rt!

Update Gate!

Reset Gate!

27	

xt ht-1!
 !

xt ht-1!
 !

ht-1!
!

W!

Wz!

Wf!

 xt!
h’t!

rt =σ Wr

xt
ht−1

⎛
⎝⎜

⎞
⎠⎟
+ bf

⎛
⎝⎜

⎞
⎠⎟

zt =σ Wz

xt
ht−1

⎛
⎝⎜

⎞
⎠⎟
+ bf

⎛
⎝⎜

⎞
⎠⎟

h 't = tanhW
xt

rt ⊗ ht−1

⎛
⎝⎜

⎞
⎠⎟

GRU!

zt!

rt!

Update Gate!

Reset Gate!

ht!

28	

xt ht-1!
 !

xt ht-1!
 !

ht-1!
!

W!

Wz!

Wf!

rt =σ Wr

xt
ht−1

⎛
⎝⎜

⎞
⎠⎟
+ bf

⎛
⎝⎜

⎞
⎠⎟

ht = (1− zt)⊗ ht−1 + zt ⊗ h 't

 xt!
h’t!

zt =σ Wz

xt
ht−1

⎛
⎝⎜

⎞
⎠⎟
+ bf

⎛
⎝⎜

⎞
⎠⎟

h 't = tanhW
xt

rt ⊗ ht−1

⎛
⎝⎜

⎞
⎠⎟

An Empirical Exploration of Recurrent
Network Architectures!

•  Given the rather ad-hoc design of the LSTM, the authors
try to determine if the architecture of the LSTM is
optimal!

•  They use an evolutionary search for better architectures!

An Empirical Exploration of Recurrent Network Architectures, Jozefowicz et al., 2015!

Evolutionary Architecture Search!
•  A list of top-100 architectures so far is maintained,

initialized with the LSTM and the GRU!
•  The GRU is considered as the baseline to beat!
•  New architectures are proposed, and retained based on

performance ratio with GRU!
!

•  All architectures are evaluated on 3 problems!
–  Arithmetic: Compute digits of sum or difference of two numbers

provided as inputs. Inputs have distractors to increase difficulty!
3e36d9-h1h39f94eeh43keg3c = 3369 – 13994433 = -13991064!

–  XML Modeling: Predict next character in valid XML modeling!
–  Penn Tree-Bank Language Modeling: Predict distributions over

words !

An Empirical Exploration of Recurrent Network Architectures, Jozefowicz et al., 2015!

Evolutionary Architecture Search!
•  At each step!

–  Select 1 architecture at random, evaluate on 20 randomly chosen
hyperparameter settings. !

–  Alternatively, propose a new architecture by mutating an existing
one. Choose probability p from [0,1] uniformly and apply a
transformation to each node with probability p!
•  If node is a non-linearity, replace with {tanh(x), sigmoid(x), ReLU(x), Linear(0,

x), Linear(1, x), Linear(0.9, x), Linear(1.1, x)}!
•  If node is an elementwise op, replace with {multiplication, addition,

subtraction}!
•  Insert random activation function between node and one of its parents!
•  Replace node with one of its ancestors (remove node)!
•  Randomly select a node (node A). Replace the current node with either the

sum, product, or difference of a random ancestor of the current node and a
random ancestor of A.!

–  Add architecture to list based on minimum relative accuracy wrt
GRU on 3 different tasks!

An Empirical Exploration of Recurrent Network Architectures, Jozefowicz et al., 2015!

Evolutionary Architecture Search!
•  3 novel architectures are presented in the paper!
•  Very similar to GRU, but slightly outperform it!

•  LSTM initialized with a large positive forget gate bias
outperformed both the basic LSTM and the GRU!!

An Empirical Exploration of Recurrent Network Architectures, Jozefowicz et al., 2015!

LSTM initialized with large positive
forget gate bias?!

•  Recall!

An Empirical Exploration of Recurrent Network Architectures, Jozefowicz et al., 2015!

ct = ft ⊗ ct−1 + it ⊗ tanhW
xt
ht−1

⎛
⎝⎜

⎞
⎠⎟

ft =σ Wf

xt
ht−1

⎛
⎝⎜

⎞
⎠⎟
+ bf

⎛
⎝⎜

⎞
⎠⎟

δct−1 = δct ⊗ ft

•  Gradients will vanish if f is close to 0. Using a large positive bias
ensures that f has values close to 1, especially when training begins!

•  Helps learn long-range dependencies!
•  Originally stated in

Learning to forget: Continual prediction with LSTM, Gers et al., 2000,
but forgotten over time!

Summary!

34	

•  LSTMs can be modified with Peephole Connections, Full
Gate Recurrence, etc. based on the specific task at hand!

•  Architectures like the GRU have fewer parameters than the
LSTM and might perform better!

•  An LSTM with large positive forget gate bias works best!!

Other Useful Resources / References!

35	

•  http://cs231n.stanford.edu/slides/winter1516_lecture10.pdf !
•  http://www.cs.toronto.edu/~rgrosse/csc321/lec10.pdf !

•  R. Pascanu, T. Mikolov, and Y. Bengio,
On the difficulty of training recurrent neural networks, ICML 2013!

•  S. Hochreiter, and J. Schmidhuber, Long short-term memory, Neural computation,
1997 9(8), pp.1735-1780!

•  F.A. Gers, and J. Schmidhuber, Recurrent nets that time and count, IJCNN 2000!
•  K. Greff , R.K. Srivastava, J. Koutník, B.R. Steunebrink, and J. Schmidhuber,

LSTM: A search space odyssey, IEEE transactions on neural networks and learning
systems, 2016 !

•  K. Cho, B. Van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio,
Learning phrase representations using RNN encoder-decoder for statistical machine
translation, ACL 2014!

•  R. Jozefowicz, W. Zaremba, and I. Sutskever,
An empirical exploration of recurrent network architectures, JMLR 2015!

