
Advanced Training 
Techniques
Prajit Ramachandran



Outline

● Optimization
● Regularization
● Initialization



Optimization



Optimization Outline

● Gradient Descent
● Momentum
● RMSProp
● Adam
● Distributed SGD
● Gradient Noise



Optimization Outline

● Gradient Descent
● Momentum
● RMSProp
● Adam
● Distributed SGD
● Gradient Noise



http://weandthecolor.com/wp-content/uploads/2014/11/Hills-in-the-fog-Landscape-photography-by-
Kilian-Sch%C3%B6nberger-a-photographer-from-Cologne-Germany.jpg



Gradient Descent
● Goal: optimize parameters to minimize loss
● Step along the direction of steepest descent (negative gradient)



Gradient Descent

Andrew Ng’s Machine Learning Course



https://www.cs.cmu.edu/~ggordon/10725-F12/slides/05-gd-revisited.pdf



2nd order Taylor series approximation around x



Wikipedia

Hessian measures 
curvature





Approximate Hessian with scaled identity





Set gradient of function to 0 to get minimum



Take the gradient

0



Solve for y



Same 
equation!



Computing the gradient

● Use backpropagation to compute gradients efficiently
● Need a differentiable function

○ Can’t use functions like argmax or hard binary
○ Unless using a different way to compute gradients



Stochastic Gradient Descent

● Gradient over entire dataset is impractical
● Better to take quick, noisy steps
● Estimate gradient over a mini-batch of examples



Mini-batch tips

● Use as large of a batch as possible
● Increasing batch size on GPU is essentially free up to a 

point
● Crank up learning rate when increasing batch size
● Trick: use small batches for small datasets



How to pick the learning rate?



Too big learning rate

https://www.cs.cmu.edu/~g
gordon/10725-F12/slides/0
5-gd-revisited.pdf



Too small learning rate

https://www.cs.cmu.edu/~g
gordon/10725-F12/slides/0
5-gd-revisited.pdf



How to pick the learning rate?

● Too big = diverge, too small = slow convergence
● No “one learning rate to rule them all”
● Start from a high value and keep cutting by half if model 

diverges
● Learning rate schedule: decay learning rate over time



http://cs231n.github.io/assets/nn3/learningrates.jpeg



Optimization Outline

● Gradient Descent
● Momentum
● RMSProp
● Adam
● Distributed SGD
● Gradient Noise



What will SGD do?

Start



Zig-zagging

http://dsdeepdive.blogspot.com/2016/03/optimizations-of-gradient-descent.html



What we would like

● Avoid sliding back and forth along high curvature
● Go fast in along the consistent direction





Same as vanilla gradient descent



https://91b6be3bd2294a24b7b5-da4c182123f5956a3d22aa43eb816232.ssl.cf1.rackcdn.com/c
ontentItem-4807911-33949853-dwh6d2q9i1qw1-or.png



SGD with Momentum

● Move faster in directions with consistent gradient
● Damps oscillating gradients in directions of high 

curvature
● Friction / momentum hyperparameter μ typically set to 

{0.50, 0.90, 0.99}
● Nesterov’s Accelerated Gradient is a variant



Momentum

● Cancels out oscillation
● Gathers speed in direction that matters



Per parameter learning rate

● Gradients of different layers have different magnitudes
● Different units have different firing rates
● Want different learning rates for different parameters
● Infeasible to set all of them by hand





Adagrad

● Gradient update depends on history of magnitude of 
gradients

● Parameters with small / sparse updates have larger 
learning rates

● Square root important for good performance
● More tolerance for learning rate

Duchi et al 2011. “Adaptive Subgradient Methods for Online Learning and Stochastic Optimization”



What happens 
as t increases?



● Maintain entire history of gradients
● Sum of magnitude of gradients always increasing
● Forces learning rate to 0 over time
● Hard to compensate for in advance

Adagrad learning rate goes to 0



Don’t maintain all history

● Monotonically increasing because we hold all the history
● Instead, forget gradients far in the past
● In practice, downweight previous gradients exponentially







RMSProp

● Only cares about recent gradients
● Good property because optimization landscape changes
● Otherwise like Adagrad
● Standard gamma is 0.9

Hinton et al. 2012, 
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf



Momentum

RMSProp





Adam

● Essentially, combine RMSProp and Momentum
● Includes bias correction term from initializing m and v to 0
● Default parameters are surprisingly good
● Trick: learning rate decay still helps
● Trick: Adam first then SGD



What to use

● SGD + momentum and Adam are good first steps
● Just use default parameters for Adam
● Learning rate decay always good



Alec Radford



Optimization Outline

● Gradient Descent
● Momentum
● RMSProp
● Adam
● Distributed SGD
● Gradient Noise



How to scale beyond 1 GPU:

● Model parallelism: partition model across multiple GPUs

Dean et al. 2012. “Large scale 
distributed deep learning”.



Hogwild!

● Lock-free update of parameters across multiple threads
● Fast for sparse updates 
● Surprisingly can work for dense updates

Niu et al. 2011. “Hogwild! A lock-free approach to parallelizing stochastic gradient descent”



Data Parallelism and Async SGD

Dean et al. 2012. “Large scale 
distributed deep learning”.



Async SGD

● Trivial to scale up
● Robust to individual worker failures
● Equally partition variables across parameter server
● Trick: at the start of training, slowly add more workers



Stale Gradients

These are 
gradients 
for w, not 
w’



Stale Gradients

● Each worker has a different copy of parameters
● Using old gradients to update new parameters
● Staleness grows as more workers are added
● Hack: reject gradients that are from too far ago



Chen et al. 2016. “Revisiting 
Distributed Synchronous SGD”

Sync SGD

Wait for all 
gradients 
before 
update



https://github.com/tensorflow/mod
els/tree/master/inception



Sync SGD

● Equivalent to increasing up the batch size N times, but 
faster

● Crank up learning rate
● Problem: have to wait for slowest worker
● Solution: add extra backup workers, and update when N 

gradients received

Chen et al. 2016. “Revisiting 
Distributed Synchronous SGD”



https://research.googleblog.com/2016/04/announcing-tensorflow-08-now-with.html



● Add Gaussian noise to 
each gradient

● Can be a savior for exotic 
models

Gradient Noise

Neelakantan et al. 2016 “Adding gradient noise improves learning for very 
deep networks”

Anandkumar and Ge, 2016 “Efficient approaches for escaping higher order 
saddle points in non-convex optimization”

http://www.offconvex.org/2016/03/22/saddlepoints/



Regularization



Regularization Outline

● Early stopping
● L1 / L2
● Auxiliary classifiers
● Penalizing confident output distributions
● Dropout
● Batch normalization + variants



Regularization Outline

● Early stopping
● L1 / L2
● Auxiliary classifiers
● Penalizing confident output distributions
● Dropout
● Batch normalization + variants



Stephen Marsland



L1 / L2 regularization



L1 / L2 regularization

● L1 encourages sparsity
● L2 discourages large weights

○ Gaussian prior on weight

http://www.efunda.com/math/hyperbolic/images/tanh_plot.gif



Lee et al. 2015. “Deeply Supervised Nets”

Auxiliary Classifiers



Regularization Outline

● Early stopping
● L1 / L2
● Auxiliary classifiers
● Penalizing confident output distributions
● Dropout
● Batch normalization + variants



Penalizing confident distributions

● Do not want overconfident model
● Prefer smoother output distribution
● Invariant to model parameterization
● (1) Train towards smoother distribution
● (2) Penalize entropy

Pereyra et al. 2017 “Regularizing neural networks by 
penalizing confident output distributions”



Szegedy et al. 2015 “Rethinking the Inception architecture for computer vision”

True Label

Baseline

Mixed Target



Szegedy et al. 2015 “Rethinking the Inception architecture for computer vision”

When is uniform 
a good choice? 
Bad?



http://3.bp.blogspot.com/-RK86-WFbeo0/UbRSIqMDclI/AA
AAAAAAAcM/UI6aq-yDEJs/s1600/bernoulli_entropy.png



http://3.bp.blogspot.com/-RK86-WFbeo0/UbRSIqMDclI/AA
AAAAAAAcM/UI6aq-yDEJs/s1600/bernoulli_entropy.png

Enforce entropy to be 
above some threshold



Regularization Outline

● Early stopping
● L1 / L2
● Auxiliary classifiers
● Penalizing confident output distributions
● Dropout
● Batch normalization + variants



Srivastava et al. 2014. “Dropout: a simple way to prevent 
neural networks from overfitting”

Dropout



Dropout

● Complex co-adaptations probably do not generalize
● Forces hidden units to derive useful features on own
● Sampling from 2n possible related networks

Srivastava et al. 2014. “Dropout: a simple way to prevent 
neural networks from overfitting”



Srivastava et al. 2014. “Dropout: a simple way to prevent 
neural networks from overfitting”



Bayesian interpretation of dropout

● Variational inference for Gaussian processes
● Monte Carlo integration over GP posterior
● http://mlg.eng.cam.ac.uk/yarin/blog_3d801aa532c1ce.html

http://mlg.eng.cam.ac.uk/yarin/blog_3d801aa532c1ce.html
http://mlg.eng.cam.ac.uk/yarin/blog_3d801aa532c1ce.html


Dropout for RNNs

● Can dropout layer-wise connections as normal
● Recurrent connections use same dropout mask over time
● Or dropout specific portion of recurrent cell

Zaremba et al. 2014. “Recurrent neural network regularization”
Gal 2015. “A theoretically grounded application of dropout in recurrent neural networks”
Semenuita et al. 2016. “Recurrent dropout without memory loss”



Regularization Outline

● Early stopping
● L1 / L2
● Auxiliary classifiers
● Penalizing confident output distributions
● Dropout
● Batch normalization + variants



https://img.rt.com/files/2016.10/original/57f28764c36188fc0b8b45e8.jpg



Internal Covariate Shift

● Distribution of inputs to a layer is changing during training
● Harder to train: smaller learning rate, careful initialization
● Easier if distribution of inputs stayed same
● How to enforce same distribution?

Ioffe and Szegedy, 2015. “Batch normalization: accelerating deep 
network training by reducing internal covariate shift”



Fighting internal covariate shift

Ioffe and Szegedy, 2015. “Batch normalization: accelerating deep 
network training by reducing internal covariate shift”

● Whitening would be a good first step
● Would remove nasty correlations
● Problems with whitening?



Problems with whitening

Ioffe and Szegedy, 2015. “Batch normalization: accelerating deep 
network training by reducing internal covariate shift”

● Slow (have to do PCA for every layer)
● Cannot backprop through whitening
● Next best alternative?



Normalization

Ioffe and Szegedy, 2015. “Batch normalization: accelerating deep 
network training by reducing internal covariate shift”

● Make mean = 0 and standard deviation = 1
● Doesn’t eliminate correlations
● Fast and can backprop through it
● How to compute the statistics?



How to compute the statistics

Ioffe and Szegedy, 2015. “Batch normalization: accelerating deep 
network training by reducing internal covariate shift”

● Going over the entire dataset is too slow
● Idea: the batch is an approximation of the dataset
● Compute statistics over the batch



Ioffe and Szegedy, 2015. “Batch normalization: accelerating deep 
network training by reducing internal covariate shift”

Mean

Variance

Normalize

Batch size



Distribution of an activation before normalization



Distribution of an activation after normalization



Not all distributions should be normalized

● A rare feature should not be forced to fire 50% of the time
● Let the model decide how the distribution should look
● Even undo the normalization if needed



Ioffe and Szegedy, 2015. “Batch normalization: accelerating deep 
network training by reducing internal covariate shift”



Test time batch normalization

● Want deterministic inference
● Different test batches will give different results
● Solution: precompute mean and variance on training set 

and use for inference
● Practically: maintain running average of statistics during 

training

Ioffe and Szegedy, 2015. “Batch normalization: accelerating deep 
network training by reducing internal covariate shift”



Advantages

● Enables higher learning rate by stabilizing gradients
● More resilient to parameter scale
● Regularizes model, making dropout unnecessary
● Most SOTA CNN models use BN

Ioffe and Szegedy, 2015. “Batch normalization: accelerating deep 
network training by reducing internal covariate shift”



Batch Norm for RNNs?

● Naive application doesn’t work
● Compute different statistics for different time steps?
● Ideally should be able to reuse existing architectures like 

LSTM

Laurent et al. 2015 “Batch normalized recurrent neural networks”



Cooijmans et al. 2016. “Recurrent 
Batch Normalization”



Cooijmans et al. 2016. “Recurrent 
Batch Normalization”



Recurrent Batch Normalization

● Maintain independent statistics for the first T steps
● t > T uses the statistics from time T
● Have to initialize ᶕ to ~0.1

Cooijmans et al. 2016. “Recurrent 
Batch Normalization”



Layer Normalization

Ba et al. 2016. “Layer Normalization”

Hidden

Batch

Hidden

Batch

Batch Normalization



Advantages of LayerNorm

● Don’t have to worry about normalizing across time
● Don’t have to worry about batch size



Practical tips for regularization

● Batch normalization for feedforward structures
● Dropout still gives good performance for RNNs
● Entropy regularization good for reinforcement learning
● Don’t go crazy with regularization



Initialization



Initialization Outline

● Basic initialization
● Smarter initialization schemes
● Pretraining



Initialization Outline

● Basic initialization
● Smarter initialization schemes
● Pretraining



Baseline Initialization

● Weights cannot be initialized to same value because all 
the gradients will be the same

● Instead, draw from some distribution
● Uniform from [-0.1, 0.1] is a reasonable starting spot
● Biases may need special constant initialization



Initialization Outline

● Basic initialization
● Smarter initialization schemes
● Pretraining



● Call variance of input Var[y0] and of last layer activations 
Var[yL]

● If Var[yL] >> Var[y0]?
● If Var[yL] << Var[y0]?

He initialization for ReLU networks

He et al. 2015. “Delving deep into rectifiers: surpassing 
human level performance on ImageNet classification”



He initialization for ReLU networks

● Call variance of input Var[y0] and of last layer activations 
Var[yL]

● If Var[yL] >> Var[y0], exploding activations → diverge
● If Var[yL] << Var[y0], diminishing activations → vanishing 

gradient
● Key idea: Var[yL] = Var[y0]

He et al. 2015. “Delving deep into rectifiers: surpassing 
human level performance on ImageNet classification”



He initialization

Number of inputs to neuron

He et al. 2015. “Delving deep into rectifiers: surpassing 
human level performance on ImageNet classification”





Identity RNN

● Basic RNN with ReLU as nonlinearity (instead of tanh)
● Initialize hidden-to-hidden matrix to identity matrix

Le et al. 2015. “A simple way to initialize recurrent neural 
networks of rectified linear units”



Initialization Outline

● Basic initialization
● Smarter initialization schemes
● Pretraining



Pretraining

● Initialize with weights from a network trained for another 
task / dataset

● Much faster convergence and better generalization
● Can either freeze or finetune the pretrained weights



Zeiler and Fergus, 2013. “Visualizing and 
Understanding Convolutional Networks”



Pretraining for CNNs in vision

http://cs231n.github.io/transfer-learning/

New dataset is small New dataset is large

Pretrained dataset is 
similar to new 
dataset

Freeze weights and 
train linear classifier 
from top level 
features

Fine-tune all layers 
(pretrain for faster 
convergence and 
better generalization)

Pretrained dataset is 
different from new 
dataset

Freeze weights and 
train linear classifier 
from non-top level 
features

Fine-tune all the 
layers (pretrain for 
improved 
convergence speed)



Razavian et al. 2014. “CNN features off-the-shelf: an 
astounding baseline for recognition”



Pretraining for Seq2Seq

Ramachandran et al. 2016. “Unsupervised pretraining for 
sequence to sequence learning”



Progressive networks

Rusu et al 2016. “Progressive Neural Networks”



Key Takeaways

● Adam and SGD + momentum address key issues of SGD, 
and are good baseline optimization methods to use

● Batch norm, dropout, and entropy regularization should be 
used for improved performance

● Use smart initialization schemes when possible



Questions?



Appendix



Proof of He initialization






















































