Object Detection

Sihao Liang Jiajun Lu Kevin Perkins

Intro

Part I: Two Stage Detection

Part II: Unified Detection

Part III: Others

Summary and comparison

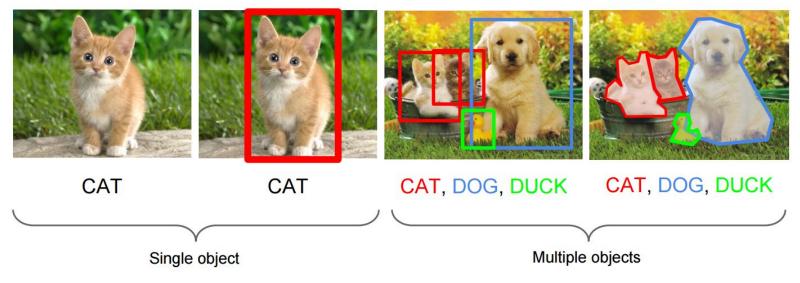
What is object detection

Classification

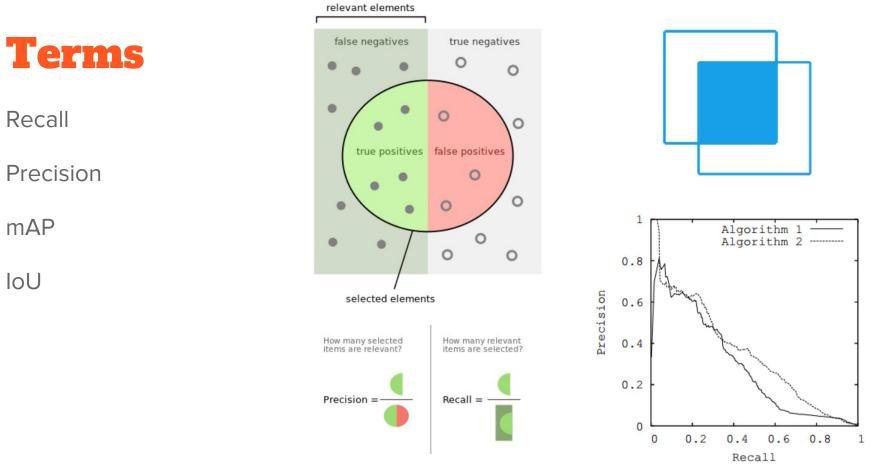
Classification + Localization

Object Detection

Instance Segmentation



http://cs231n.stanford.edu/slides/winter1516_lecture8.pdf



https://en.wikipedia.org/wiki/Precision_and_recall

Detection Competitions

VOC: 20 classes

COCO: 200 classes

http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html#introduction

Pascal VOC

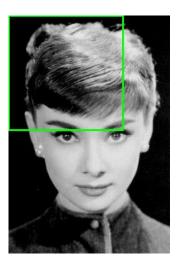
COCO

ImageNet ILSVRC

Before Deep Learning

Sliding windows.

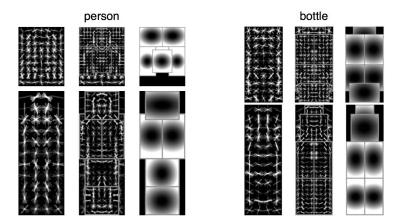
- Score every subwindow.



http://www.pyimagesearch.com/2014/11/10/histogram-oriented-gradients-object-detection/

Deformable part models (DPM)

- Uses HOG features
- Very fast



https://cs.brown.edu/~pff/papers/lsvm-pami.pdf

Selective Search

http://www.huppelen.nl/publications/selectiveSearchDraft.pdf

Hard Negative Mining

Imbalance between positive and negative examples.

Use negative examples with higher confidence score.

Non Maximum Suppression

If output boxes overlap, only consider the most confident.

Bounding Box Regression

Regression used to find bounding box parameters

Applied in one of two ways

- Bounding box refinement
- Complete object detection

Example Loss Function

$$\sum_{i \ in \ I} [(x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 + (\sqrt{w_i} - \sqrt{\hat{w}_i})^2 + (\sqrt{h_i} - \sqrt{\hat{h}_i})^2]$$

I is the set of all matching bounding boxes (Highest IoU with ground truth)

Two Stage Detection

Part I

RCNN : Region Proposal + CNN

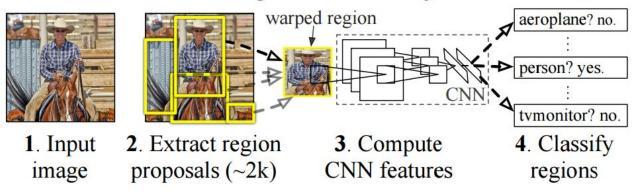
Use selective search to come up with regional proposal

First object detection method using CNN

Rich feature hierarchies for accurate object detection and semantic segmentation Ross Girshick Jeff Donahue Trevor Darrell Jitendra Malik Nov 2013

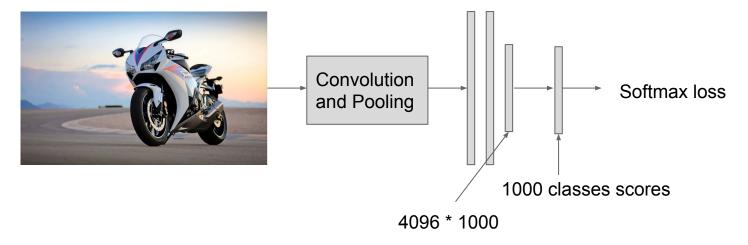
https://people.eecs.berkeley.edu/~rbg/papers/r-cnn-cvpr.pdf

R-CNN: Regions with CNN features



https://people.eecs.berkeley.edu/~rbg/papers/r-cnn-cvpr.pdf

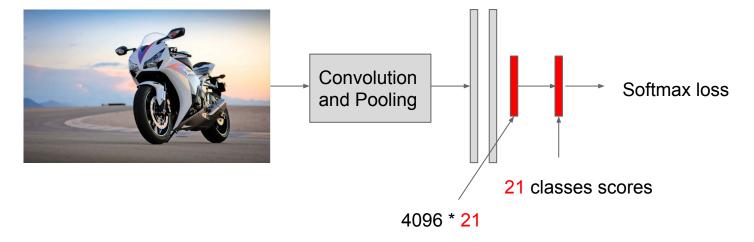
Step1: train your own CNN model for classification (or use existing model), using ImageNet dataset.



Fully connected layer

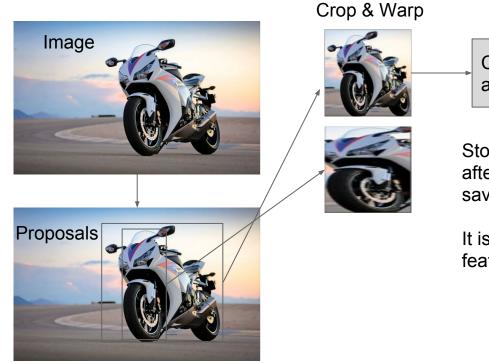
Image source : http://www.shunvmall.com/bike-pic/47539009.html

Step2: focus on 20 classes + 1 background. Remove the last FC layer and replace it with a smaller layer and fine-tune the model using PASCAL VOC dataset



Fully connected layer

Step3: extract feature

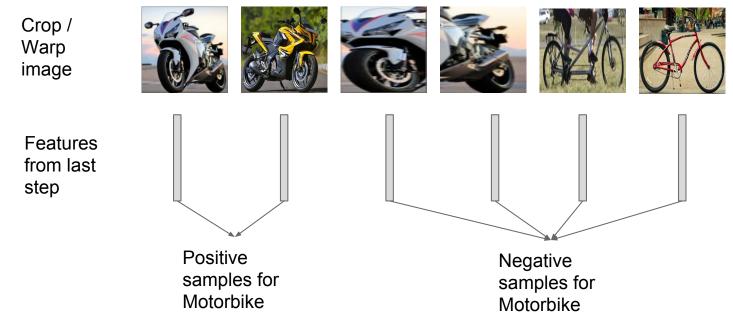


Convolution and Pooling

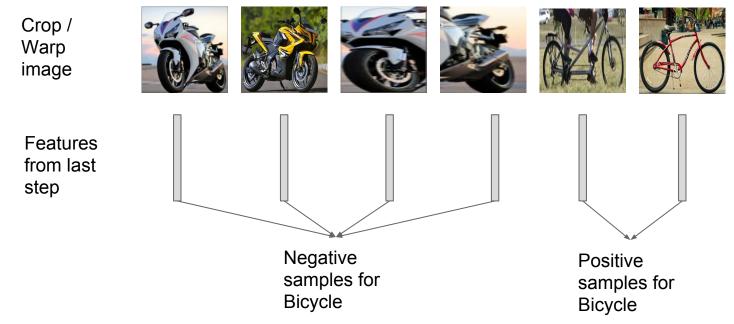
Store all the features after pool 5 layer and save to disk

It is about ~ 200G features

Step4: train SVM for each class



Step4: train SVM for each class



Share convolution layers for proposals from the same image

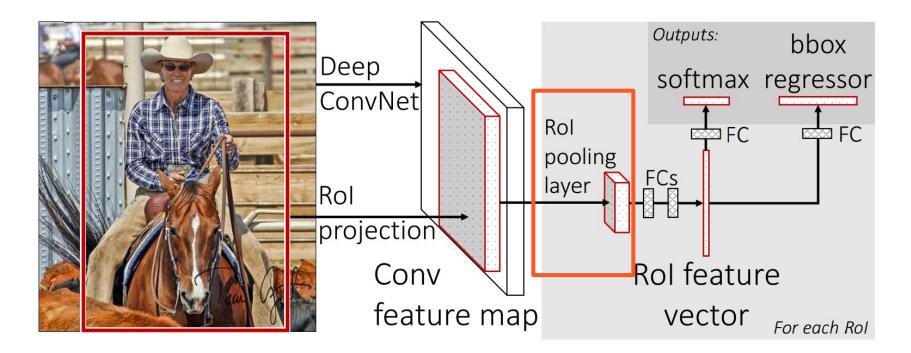
Faster and More accurate than RCNN

ROI Pooling

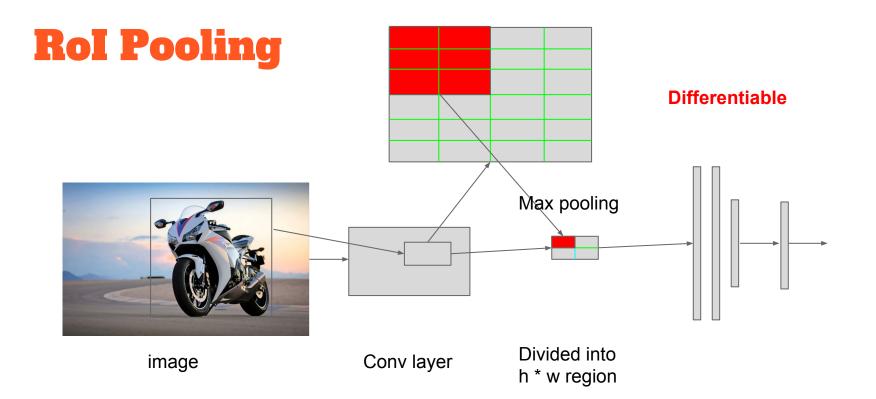
Fast R-CNN Ross Girshick Apr 2015

https://arxiv.org/pdf/1504.08083v2.pdf

Fast RCNN



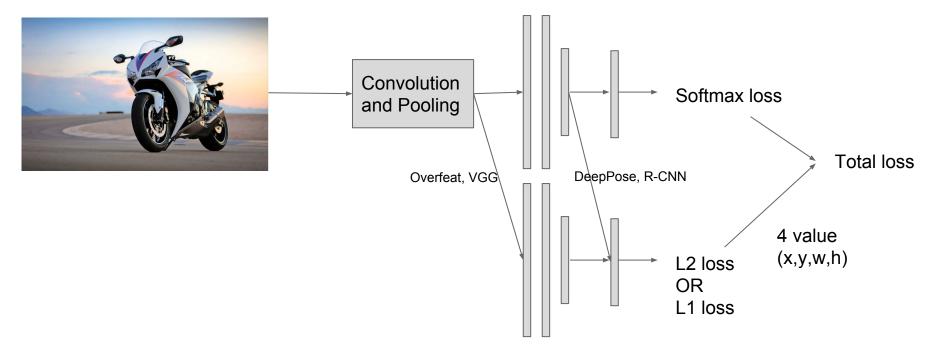
https://arxiv.org/pdf/1504.08083v2.pdf

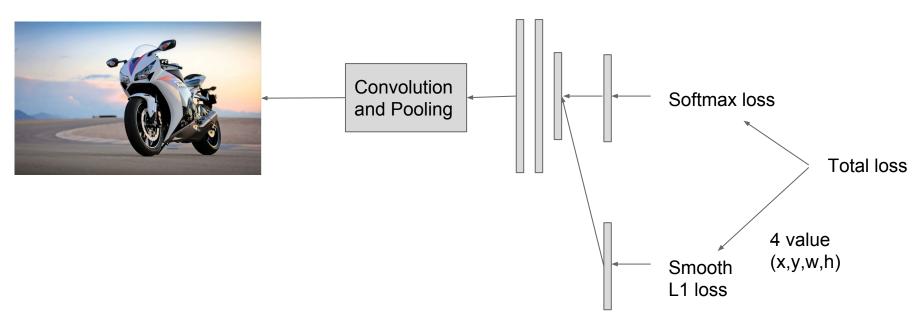


What is bbox-regressor?

Bounding box regression

Fully connected layer





Fully connected layer

Result compare

	Fast R-CNN	R-CNN
Train time (h)	9.5	84
-speedup	8.8x	1x
Test time/image	0.32s	47.00 s
-test speedup	146x	1x
mAP	66.9	66

Trained using VGG 16 on Pascal VOC 2007 dataset Not including proposal time

Source: R. Girshick

Result compare

	Fast R-CNN	R-CNN
Test time/image	0.32s	47.00 s
-test speedup	146x	1x
Test time/image with proposal	2s	50 s
-test speedup	25x	1x

Source: cs231 standford

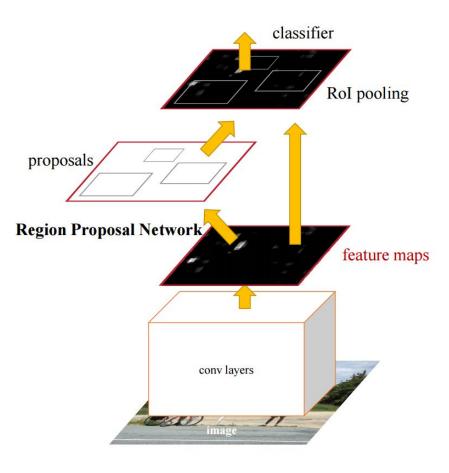
Don't need to have external regional proposals

RPN - Regional Proposal Network

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun Jun 2015

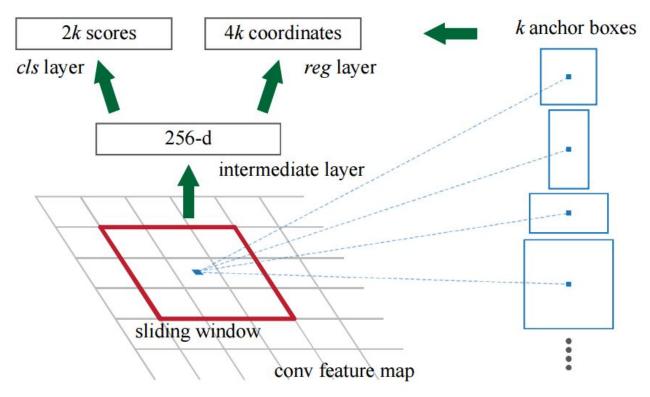
https://arxiv.org/pdf/1506.01497v3.pdf

Faster RCNN



https://arxiv.org/pdf/1506.01497v3.pdf

Faster RCNN



https://arxiv.org/pdf/1506.01497v3.pdf

Result compare

	Faster R-CNN	Fast R-CNN	R-CNN
Test time/image With proposal	0.2S	2s	50s
-test speedup	250x	25x	1x
mAP	66.9	66.9	66

Trained using Pascal VOC 2007 dataset

Source: cs231 standford

R-FCN :Region-based Fully Convolutional Networks

Use position sensitive score map

Share all conv and fc layers between all proposals for the same image

R-FCN: Object Detection via Region-based Fully Convolutional Networks Jifeng Dai, Yi Li, Kaiming He, Jian Sun May 2016

https://arxiv.org/pdf/1605.06409v2.pdf

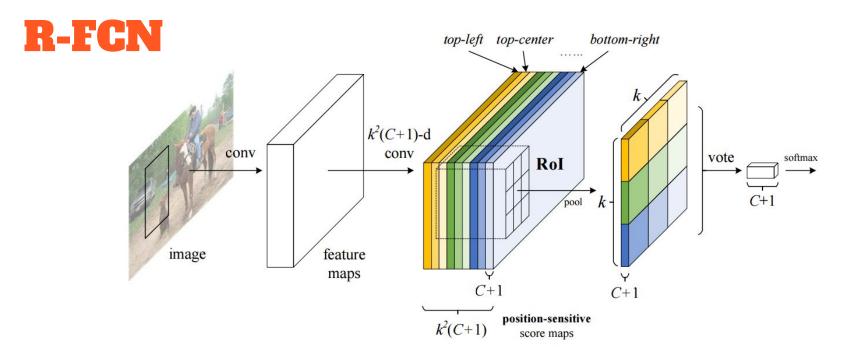
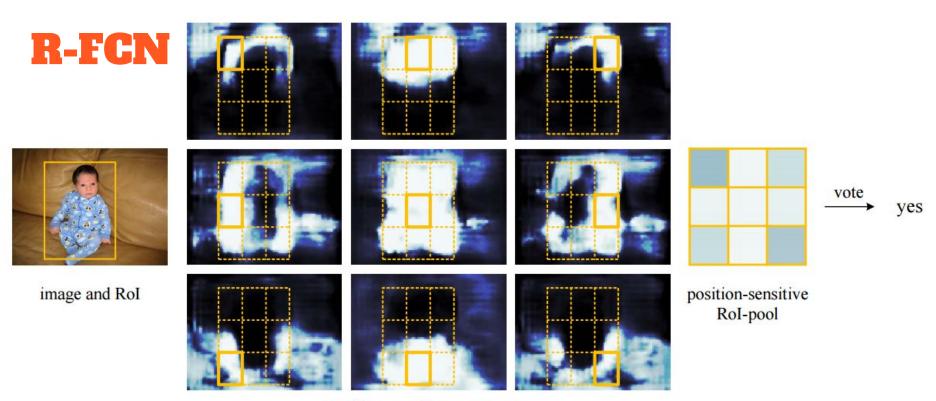


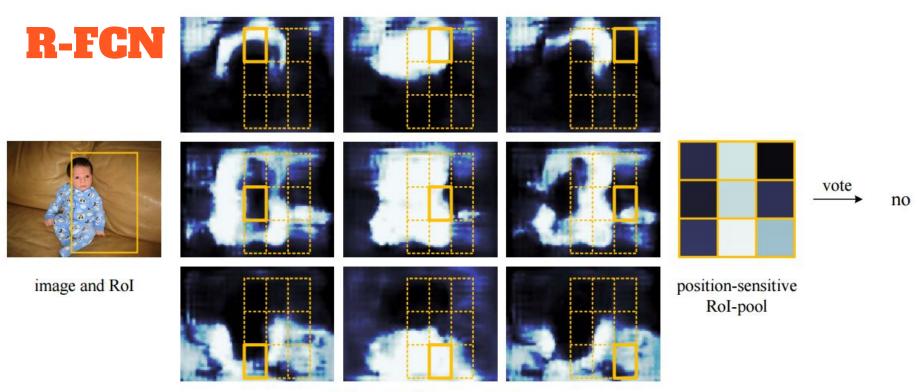
Figure 1: Key idea of **R-FCN** for object detection. In this illustration, there are $k \times k = 3 \times 3$ position-sensitive score maps generated by a fully convolutional network. For each of the $k \times k$ bins in an RoI, pooling is only performed on one of the k^2 maps (marked by different colors).



position-sensitive score maps

Figure 3: Visualization of R-FCN ($k \times k = 3 \times 3$) for the *person* category.

https://arxiv.org/pdf/1605.06409v2.pdf



position-sensitive score maps

Figure 4: Visualization when an RoI does not correctly overlap the object.

https://arxiv.org/pdf/1605.06409v2.pdf

Methodologies Compare

	RCNN	Faster RCNN	RFCN
Depth of shared convolutional subnetwork	0	91	101
Depth of ROI-wise subnetwork	101	10	0

Trained using ResNet 101

Result compare

	Faster R-CNN	R-FCN
Test time/image With proposal	0.42S	0.2s
mAP	76.4	76.6

Trained using ResNet 101 on Pascal VOC 2007 dataset

Unified Detection

Part II

Problems with 2 step detection.

Complex Pipeline

Slow (Cannot run in real time)

Hard to optimize each component

Yolo: You Only Look Once

Consider detection a regression problem

Use a single ConvNet

Runs once on entire image. Very Fast!

You only look once: Unified, real-time object detection. Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi June 2015

How it works

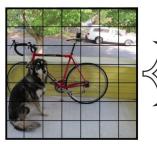
The following predictions are made for each cell in an S x S grid.

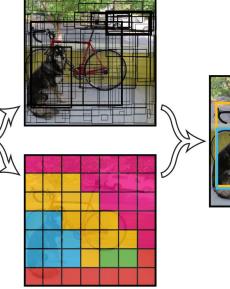
C conditional class probabilities **Pr(Class**, **I Obj)**

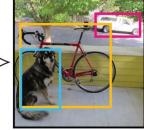
B bounding boxes (4 parameters each)

B confidence scores Pr(Obj)*IoU

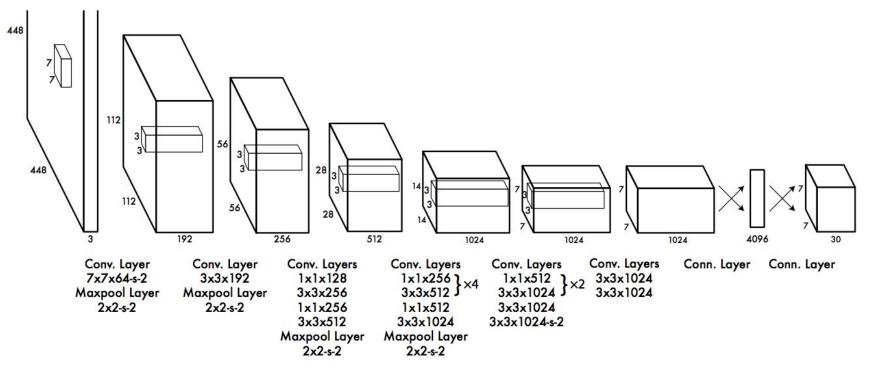
Output is **S x S x (5B+C)** tensor







Architecture



https://arxiv.org/pdf/1506.02640v5.pdf

Performance (VOC 2007)

	Yolo	Faster R-CNN (VGG-16)
mAP	63.4	73.2
FPS	45	7

Trained on Pascal VOC 2007 + 2012 dataset

https://arxiv.org/pdf/1506.02640v5.pdf

Limitations of Yolo

Struggles with small objects

Struggles with unusual aspect ratios

Poor localization

SSD Single Shot Detector

Faster than Yolo, as accurate as Faster R-CNN

Predicts categories and box offsets

Uses small convolutional filters applied to feature maps

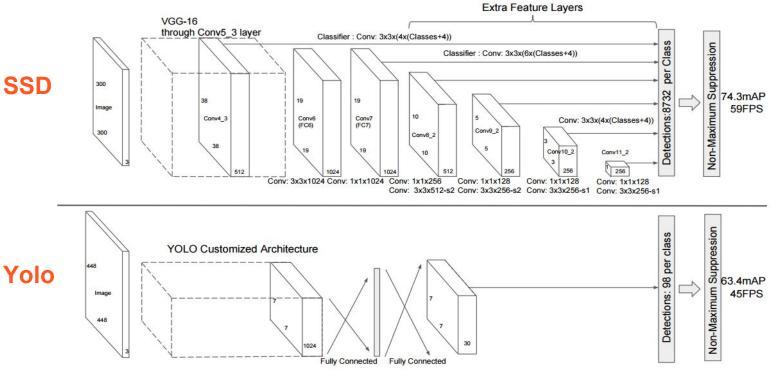
Makes predictions using feature maps of different scales

SSD: Single shot multibox detector

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, Alexander C. Berg

Dec 2015

Comparison to Yolo



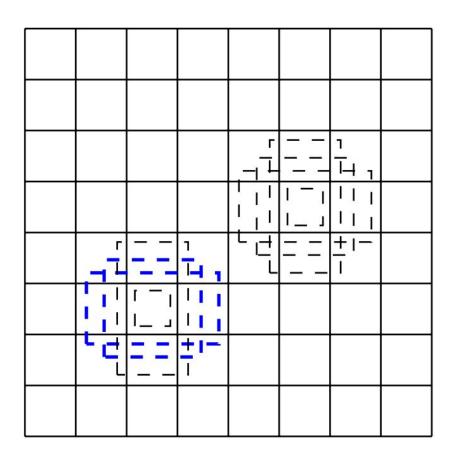
https://arxiv.org/pdf/1512.02325v5.pdf

Default Boxes

Multiple aspect ratios per cell.

Similar to Faster R-CNN Anchor Boxes.

- Applied to many feature maps.



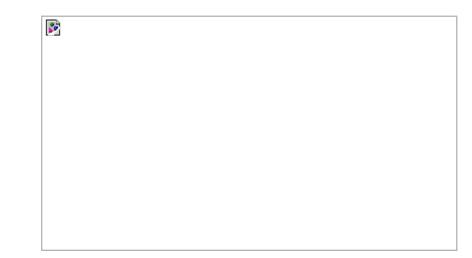
SSD Detector

Detectors are convolutional filters.

Each detector outputs a single value.

Predict class probabilities.

Predict bounding box offsets.



(classes + 4) detectors are needed for a detection.

(classes + 4) x (#default boxes) x m x n outputs for a mxn feature map.

Results (VOC 2007)

	SSD*	Yolo*	Faster R-CNN*
mAP	74.3	66.4	73.2
FPS	46	21	7

*VGG16

Trained on Pascal VOC 2007 + 2012 dataset

Others

Part III

Feature Pyramid Networks

Uses ConvNet as Feature Pyramid

Includes low level feature maps to detect small objects

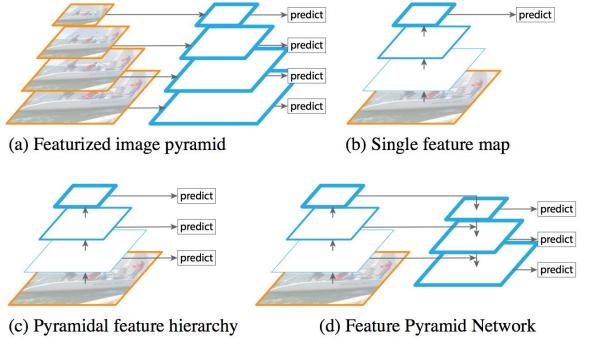
Top down pathway provides contextual information

Feature Pyramid Networks for Object Detection.

Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, Serge Belongie. Dec 2016

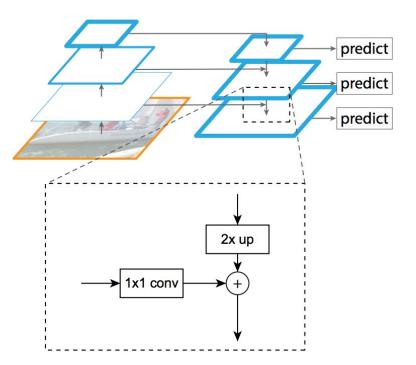
Comparison to prior methods

- a. Accurate but slow.
- b. Misses low level information. (Yolo)
- c. Misses context in low level predictions.(SSD)
- d. Accurate and fast.



Top down pathway

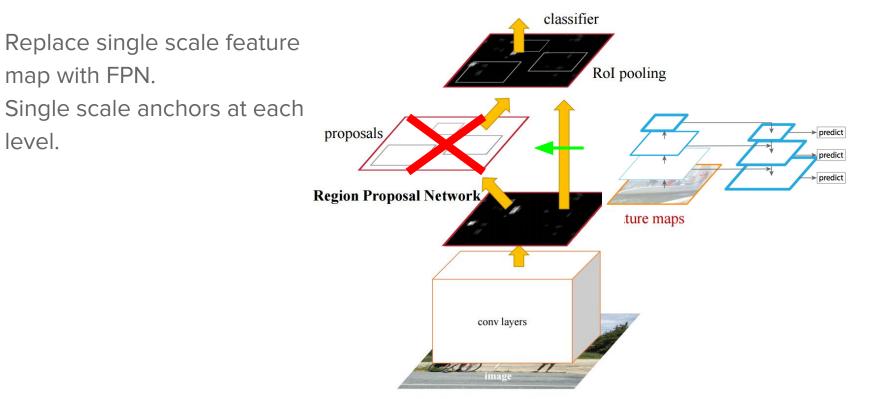
- High level (semantically strong) feature maps are upsampled.
- Lateral connections merge feature maps from bottom up pathway.



Feature Pyramid Networks for RPN

-

-



- COCO
- State of the art single-model

	Faster R-CNN on FPN*	Faster R-CNN +++*	ION**
mAP	36.2	34.9	31.2
mAP (small images)	18.2	15.6	12.8

* ResNet-101 ** VGG-16

ION : Inside-Outside Network

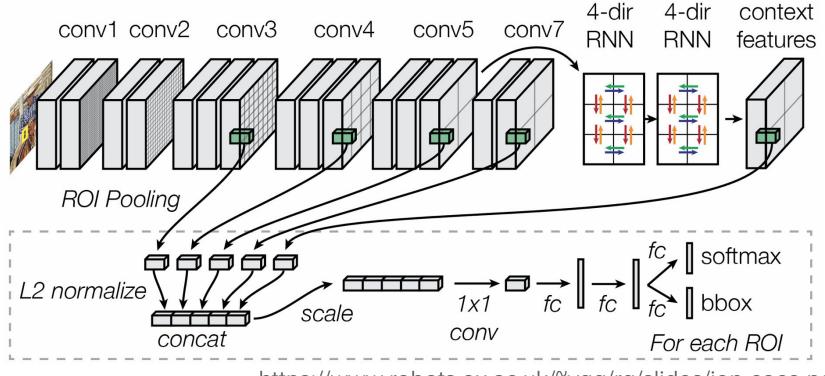
Use multi-scale Conv features for inside region

Use four direction RNN features for outside region

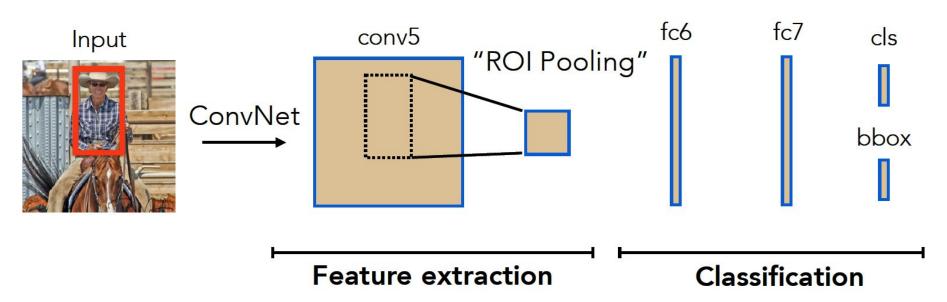
Inside-Outside Net: Detecting Objects in Context with Skip Pooling and Recurrent Neural Networks Sean Bell, C.Lawrence Zitnick, Kavita Bala, Ross Girshick Cornell University, Microsoft Research CVPR 2016

https://people.eecs.berkeley.edu/~rbg/papers/r-cnn-cvpr.pdf

ION: Inside-Outside Net



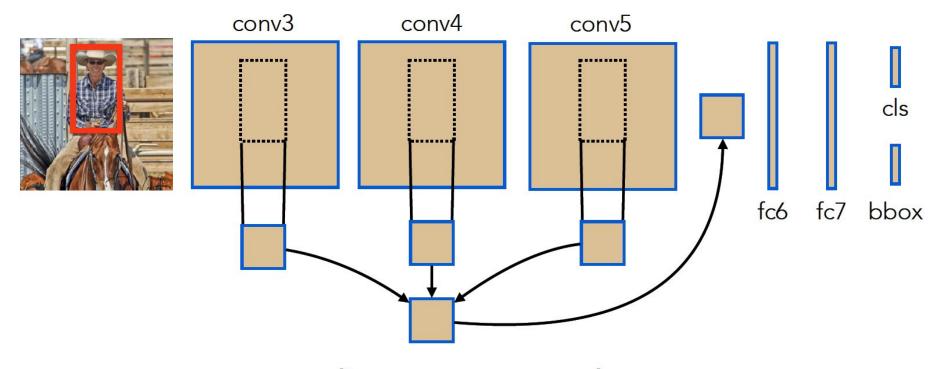
https://www.robots.ox.ac.uk/~vgg/rg/slides/ion-coco.pdf



Can we improve on feature extraction?

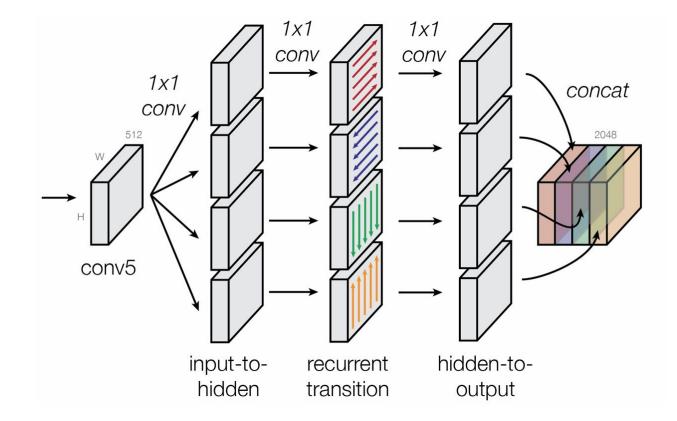
- For small objects, the footprint on conv5 might only cover a 1x1 cell, which gets upsampled to 7x7
- Only local features (inside the ROI) are used for classification

COMBINING ACROSS LAYERS

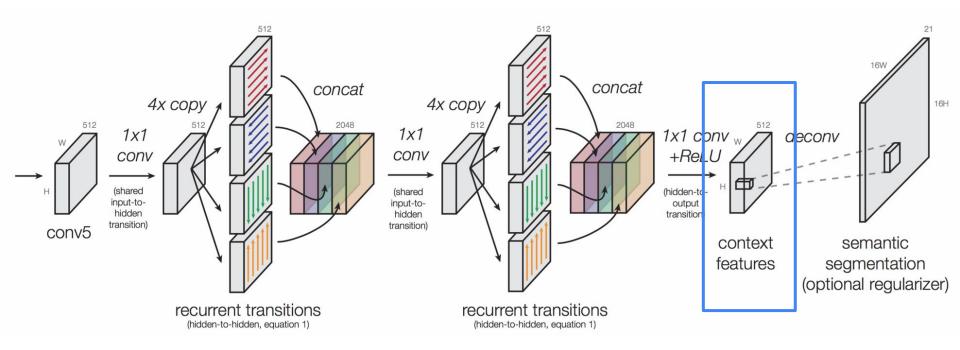


normalize, concatenate, re-scale

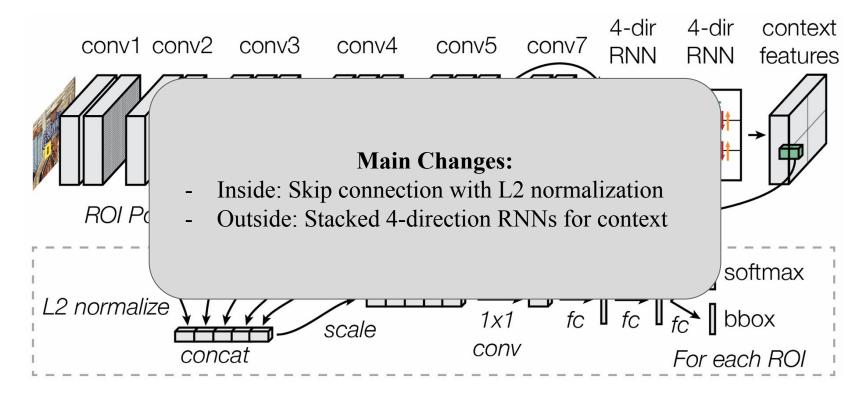
Uses RNNs to capture context info from outside bounding box.



Stack 2 RNNs together



ION: Inside-Outside Net



Results (VOC 2007)

METHOD	MAP
FAST R-CNN [GIRSHICK 2014]	70.0
FASTER R-CNN [GIRSHICK 2015]	73.2
CONV3+CONV4+CONV5	75.6
+ RNN + SEGMENTATION LOSS	76.5
+ SECOND BBOX REGRESSION + WEIGHTED VOTING	78.5
— DROPOUT	79.2

https://www.robots.ox.ac.uk/~vgg/rg/slides/ion-coco.pdf Trained on Pascal VOC 2007 + 2012 dataset

Summary and Comparison

Part IV

Speed / Accuracy Trade-off

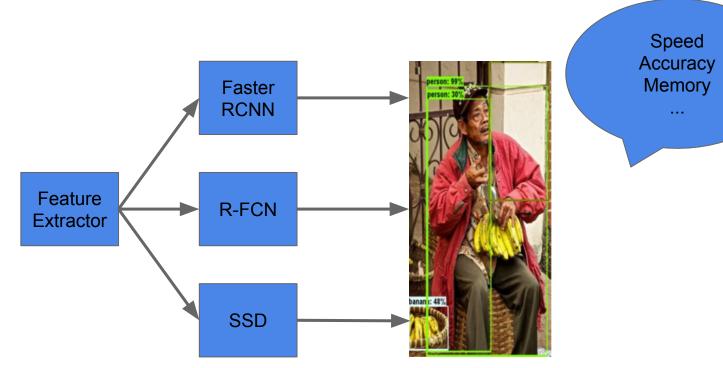
Unified tensorflow architecture

Compare speed, accuracy and memory usage

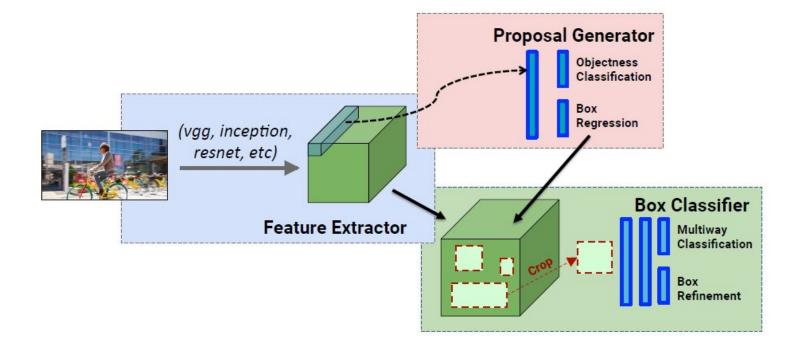
Speed/Accuracy trade-offs for modern convolutional object detectors Jonathan Huang, Kevin Murphy et al. Nov 2016

https://people.eecs.berkeley.edu/~rbg/papers/r-cnn-cvpr.pdf

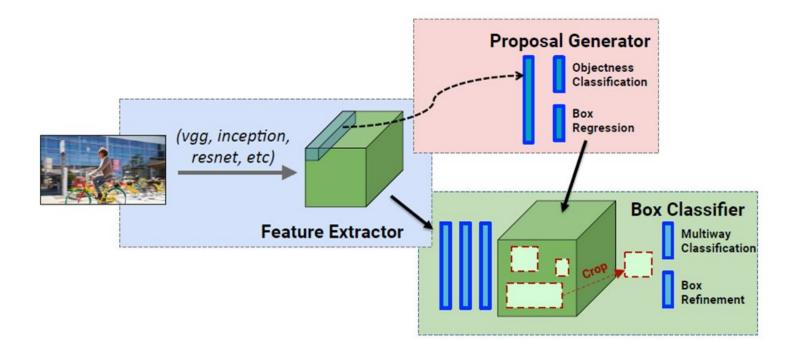
Same Architectures

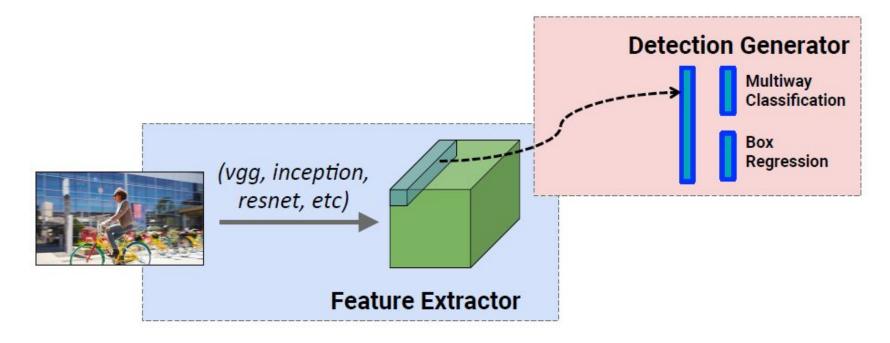


Recap: Faster RCNN

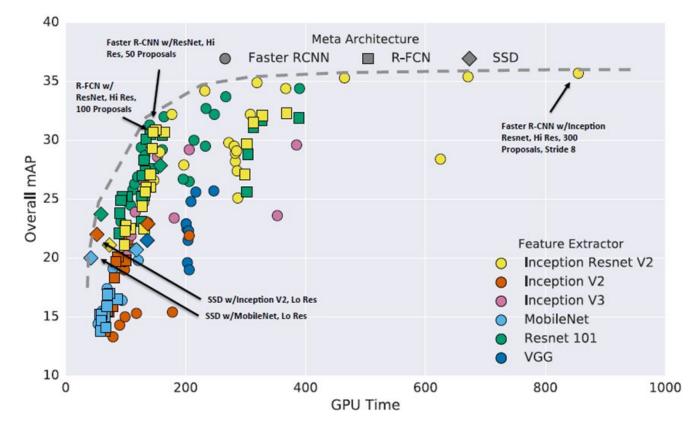


Recap: R-FCN

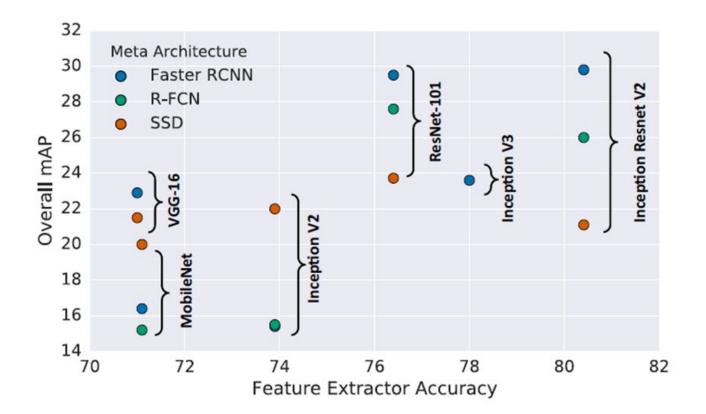




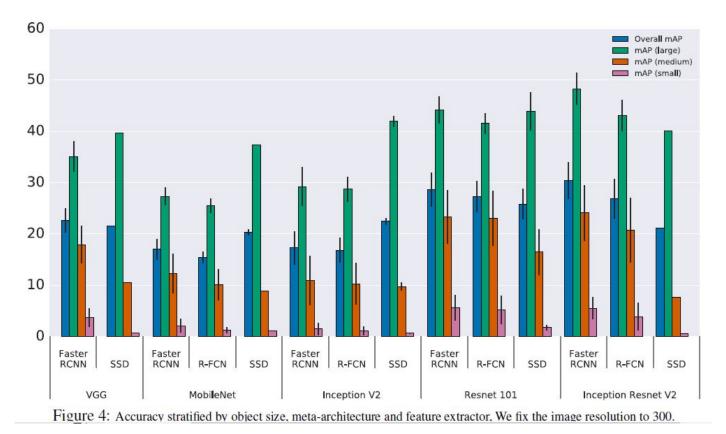
Accuracy VS Speed



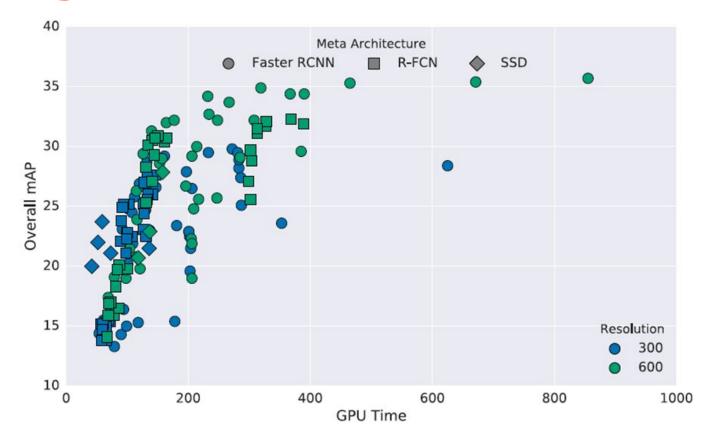
1. Different Feature Extractor



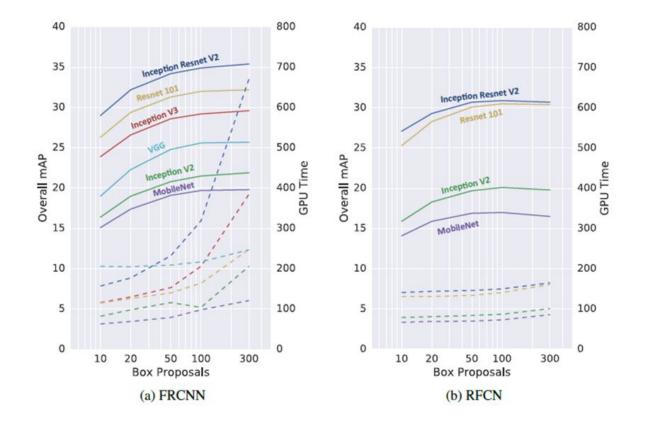
2. Detect Object Size



3. Image Resolution

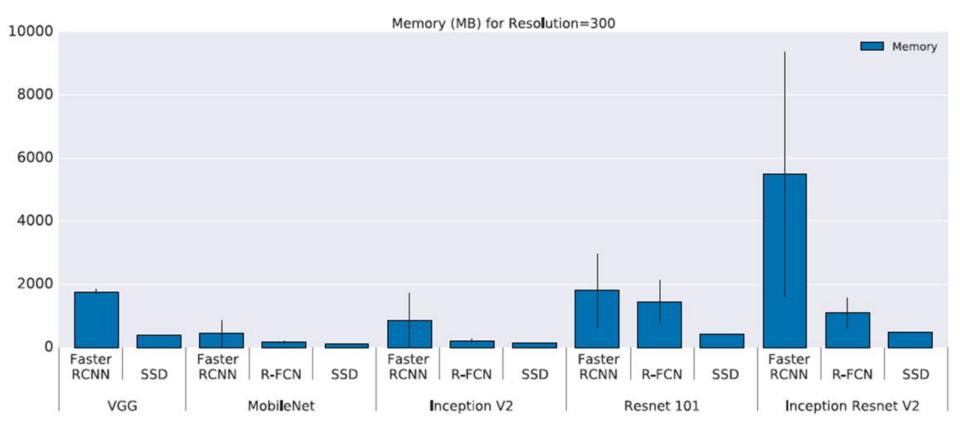


4. Region Proposal Number



5. GPU Time





• Speed First: SSD

• Balance Speed and Accuracy: R-FCN

• Accuracy First: Faster RCNN (Reduce proposals, it can speed up a lot with some accuracy loss)

Questions?

Girshick, Ross and Donahue, Jeff and Darrell, Trevor and Malik, Jitendra, Rich feature hierarchies for accurate object detection and semantic segmentation, CVPR 2014

He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian, Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition, ECCV 2014

Girshick, Ross, Fast R-CNN, ICCV 2015

Ren, Shaoqing and He, Kaiming and Girshick, Ross and Sun, Jian, Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, CVPR 2015

Jifeng Dai, Yi Li, Kaiming He, Jian Sun R-FCN: Object Detection via Region-based Fully Convolutional Networks, NIPS 2016

Erhan, Dumitru and Szegedy, Christian and Toshev, Alexander and Anguelov, Dragomir, Scalable Object Detection using Deep Neural Networks, CVPR 2014

Bell, Sean and Lawrence Zitnick, C and Bala, Kavita and Girshick, Ross, Inside-Outside Net: Detecting Objects in Context with Skip Pooling and Recurrent Neural Networks, CVPR 2016

Redmon, Joseph and Divvala, Santosh and Girshick, Ross and Farhadi, Ali, You Only Look Once: Unified, Real-Time Object Detection, CVPR 2016

Liu, Wei and Anguelov, Dragomir and Erhan, Dumitru and Szegedy, Christian and Reed, Scott and Fu, Cheng-Yang and Berg, Alexander C, <u>SSD: Single Shot MultiBox Detector</u>, ECCV 2016

Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, Serge Belongie, Feature Pyramid Networks for Object Detection, arXiv 2016

Huang, Jonathan and Rathod, Vivek and Sun, Chen and Zhu, Menglong and Korattikara, Anoop and Fathi, Alireza and Fischer, Ian and Wojna, Zbigniew and Song, Yang and Guadarrama, Sergio and others, <u>Speed/accuracy trade-offs for modern convolutional object detectors</u>, arXiv 2016

Bonus Material

Part V

Yolo v2 Faster, Better Stronger

	YOLO								YOLOv2
batch norm?		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	~	\checkmark
hi-res classifier?			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	 ✓
convolutional?				\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
anchor boxes?				\checkmark	\checkmark				
new network?					\checkmark	\checkmark	\checkmark	\checkmark	~
dimension priors?						\checkmark	\checkmark	\checkmark	1
location prediction?						\checkmark	\checkmark	\checkmark	~
passthrough?							\checkmark	\checkmark	1
multi-scale?								\checkmark	1
hi-res detector?									\checkmark
VOC2007 mAP	63.4	65.8	69.5	69.2	69.6	74.4	75.4	76.8	78.6

Performance on MS COCO

		Avg. Precision				Avg. Recall							
Method	Data	loU			Area		#Dets			Area			
		0.5:0.95	0.5	0.75	S	M	L	1	10	100	S	Μ	L
Fast R-CNN	train	19.7	35.9	-	-	-	-	-	-	-	-	-	-
Fast R-CNN	train	20.5	39.9	19.4	4.1	20.0	35.8	21.3	29.5	30.1	7.3	32.1	52.0
Faster R-CNN	trainval	21.9	42.7	-	-	-	-	-	-	-	-		-
ION	train	23.6	43.2	23.6	6.4	24.1	38.3	23.2	32.7	33.5	10.1	37.7	53.6
Faster R-CNN	trainval	24.2	45.3	23.5	7.7	26.4	37.1	23.8	34.0	34.6	12.0	38.5	54.4
SSD300	trainval35k	23.2	41.2	23.4	5.3	23.2	39.6	22.5	33.2	35.3	9.6	37.6	56.5
SSD512	trainval35k	26.8	46.5	27.8	9.0	28.9	41.9	24.8	37.5	39.8	14.0	43.5	59.0
YOLOv2	trainval35k	21.6	44.0	19.2	5.0	22.4	35.5	20.7	31.6	33.3	9.8	36.5	54.4

Fast RCNN vs Faster RCNN

method	# proposals	data	mAP (%) 66.9 [†]		
SS	2000	07			
SS	2000	07+12	70.0		
RPN+VGG, unshared	300	07	68.5		
RPN+VGG, shared	300	07	69.9		
RPN+VGG, shared	300	07+12	73.2		
RPN+VGG, shared	300	COCO+07+12	78.8		

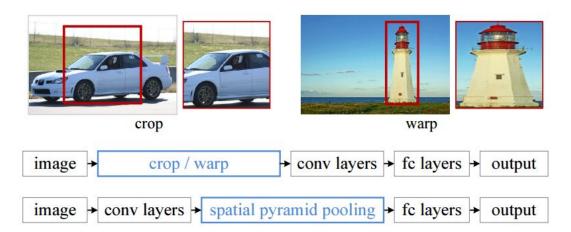
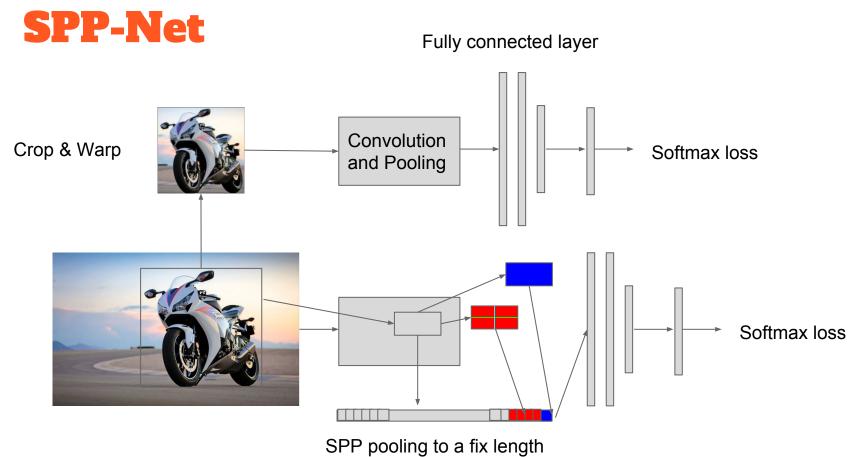


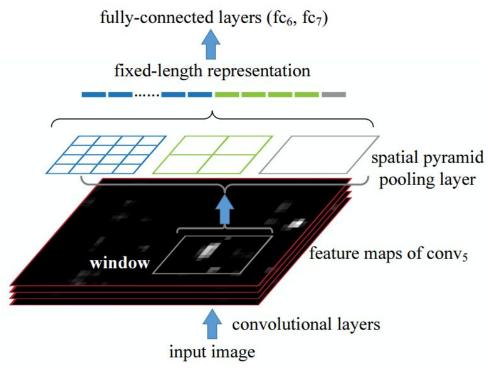
Figure 1: Top: cropping or warping to fit a fixed size. Middle: a conventional CNN. Bottom: our spatial pyramid pooling network structure.

https://arxiv.org/pdf/1406.4729v4.pdf

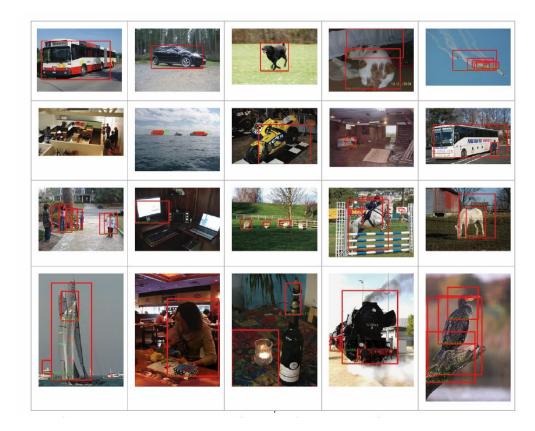


layer (max pooling)

SPP-Net



https://arxiv.org/pdf/1406.4729v4.pdf



Goal: Achieve a class-agnostic scalable object detection by predicting a set of bounding boxes.

Train a neural network to directly predict:

- The upper-left and lower-right coordinates of each bounding box
- The confidence score for the box containing an object

Produce fixed number of bounding boxes with confidence, such as K=100 or 200.

$$F(x, l, c) = \alpha F_{\text{match}}(x, l) + F_{\text{conf}}(x, c)$$

$$\begin{aligned} x^* &= \arg\min_x F(x,l,c) \\ \text{subject to} & x_{ij} \in \{0,1\}, \sum_i x_{ij} = 1, \end{aligned}$$

Number of Windows

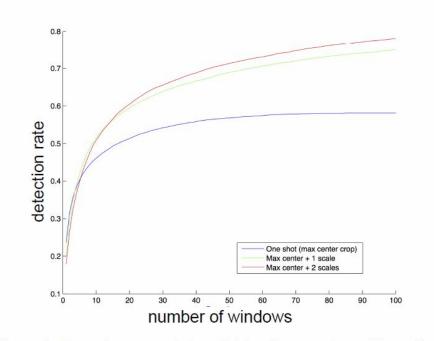


Figure 1. Detection rate of class "object" vs number of bounding boxes per image. The model, used for these results, was trained on VOC 2012.