Semantic Segmentation, Dense Labeling

Liwei Wang CS@UIUC

Semantic segmentation

object classes	building	grass	tree	cow	sheep	sky	airplane	water	face	car
bicycle	flower	sign	bird	book	chair	road	cat	dog	body	boat

From CS543 LAZ

Why Semantic Segmentation ?

- Road Scene Understanding
- Useful for Self-Driving Car and autonomous drones

From cityscape dataset

Why Semantic Segmentation ?

• Medical Image Analysis

From web

Very Challenging Problem

History

- Problem: label each pixel by one of C classes
- Define an energy function where unaries correspond to local classifier responses and smoothing potentials correspond to contextual terms
- Solve a multi-class graph cut problem

History

Superpixels

Retrieval set of similar images

Sky

Car

Per-class likelihood

Semantic Classes

CRF energy function is defined on super-pixels:

- Unaries are based on nearest • neighbor retrieval
- Pairwise potentials capture class co-٠ occurrence statistics

J. Tighe and S. Lazebnik, SuperParsing, ECCV 2010

Now, what is happening

- How deep neural networks can be used for Semantic Segmentation?
- How to model local and contextual information with Deep Nets ?
- Differences and Similarities among methods ?

- A simple Feed-Forward Network
- Feature Concatenation from Different Scales
- Strong features + Softmax Classification

Sub-scene Level Features

- Bounding box of superpixels within radius three from the superpixel at hand
- Warp bounding box to 256 x 256 pixels
- Activations of the last fully connected layer

• Scene Level Features

- Warp image to 256 x 256 pixels
- Activations of the last fully connected layer

Feedforward Semantic Segmentation With Zoom-Out Features, CVPR 2015

Hypercolumns Representation

<u>Hypercolumns for object segmentation and fine-grained</u> <u>localization</u> CVPR 2015

Hypercolumn Representation

Hypercolumn Representation

Hypercolumns for object segmentation and fine-grained localization CVPR 2015

Evaluation

• Mean IoU

Per-class evaluation: an intersection of the predicted and true sets of pixels for a given class, divided by their union (IoU)

seg. accuracy = $\frac{\text{true pos.}}{\text{true pos.} + \text{false pos.} + \text{false neg.}}$

	VOC 2012
Zoom-out	69.6
Hypercolumn	62.6

Evaluation

Hypercolumn and Zoom out

- Both uses the multi-scale features from intermediate layers in CNN
- Both use upsampling operations for each scale

Any Pixel to Pixel ways ? Can upsampling be learned ?

FCN for Semantic Segmentation

Convnets for Classification

Convnets for Segmentation ?

From Convnets to FCN

Pixel in , Pixel out

Kernel/filter:

/ 0	1	2
$\begin{pmatrix} 0\\2 \end{pmatrix}$	2	$\begin{pmatrix} 0\\2 \end{pmatrix}$
0	1	2/

3	3,	22	1	0	
02	02	1,0	3	1	1
3	1	2,	2	3	1
2	0	0	2	2	9
2	0	0	0	1	

Kernel/filter:

02	0,	0,	0	0	0	0
0,	2_0	2_0	3	3	3	0
0,	0,	1_1	3	0	3	0
0	2	3	0	1	3	0
0	3	3	2	1	2	0
0	3	3	0	2	3	0
0	0	0	0	0	0	0

1	6	5
7	10	9
7	10	8

Convolution as a matrix operation

			T
$(w_{0,0})$	0	0	$0 \uparrow^T$
$w_{0,1}$	$w_{0,0}$	0	0
$w_{0,2}$	$w_{0,1}$	0	0
0	$w_{0,2}$	0	0
$w_{1,0}$	0	$w_{0,0}$	0
$w_{1,1}$	$w_{1,0}$	$w_{0,1}$	$w_{0,0}$
$w_{1,2}$	$w_{1,1}$	$w_{0,2}$	$w_{0,1}$
0	$w_{1,2}$	0	$w_{0,2}$
$w_{2,0}$	0	$w_{1,0}$	0
$w_{2,1}$	$w_{2,0}$	$w_{1,1}$	$w_{1,0}$
$w_{2,2}$	$w_{2,1}$	$w_{1,2}$	$w_{1,1}$
0	$w_{2,2}$	0	$w_{1,2}$
0	0	$w_{2,0}$	0
0	0	$w_{2,1}$	$w_{2,0}$
0	0	$w_{2,2}$	$w_{2,1}$
0	0	0	$w_{2,2}$

From Theano Document Website

Upsampling is backwards strided convolution

Transposed convolution

From Theano Document Website

Actually, we can build deconv networks...

DCGAN

Deconv Layers for generating image !

Framework of FCN

Framework of FCN

More than one upsampling layer

Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

FCN is still not good ? Ground Truth Image FCN-8s

Very coarse feature maps --- FCN-8s is still very coarse

Dilated Convolution

Discrete Convolution Operation:

$$(F * k)(\mathbf{p}) = \sum_{\mathbf{s}+\mathbf{t}=\mathbf{p}} F(\mathbf{s}) k(\mathbf{t})$$

Dilated Convolution Operation:

$$(F *_l k)(\mathbf{p}) = \sum_{\mathbf{s}+l\mathbf{t}=\mathbf{p}} F(\mathbf{s}) k(\mathbf{t}).$$

Dilated Convolution

Dilated Convolution

- Following FCN structure
- Using VGG-16 networks with modifications
- Called Front End and greatly improve performance

	<pre>print 'VGG-16 with Dilated Convs for Dense Prediction\n'</pre>
print 'VGG-16'	<pre>print 'Pascal VOC front end'</pre>
network = [network = [
{'k': 3, 'p': 1}, 'conv1_1',	{'k': 3}, 'conv1_1',
{'k': 3, 'p': 1}, 'conv1 2',	{'k': 3}, 'conv1 2',
{'k': 2, 's': 2}, 'pool1',	{'k': 2, 's': 2}, 'pool1',
{'k': 3, 'p': 1}, 'conv2_1',	{'k': 3}, 'conv2 1',
{'k': 3, 'p': 1}, 'conv2_2',	{'k': 3}, 'conv2 2',
{'k': 2, 's': 2}, 'pool2',	{'k': 2, 's': 2}, 'pool2',
{'k': 3, 'p': 1}, 'conv3_1',	{'k': 3}, 'conv3 1',
{'k': 3, 'p': 1}, 'conv3_2',	{'k': 3}, 'conv3_2',
{'k': 3, 'p': 1}, 'conv3_3',	{'k': 3}, 'conv3 3',
{'k': 2, 's': 2}, 'pool3',	{'k': 2, 's': 2}, 'pool3',
{'k': 3, 'p': 1}, 'conv4_1',	{'k': 3}, 'conv4 1',
{'k': 3, 'p': 1}, 'conv4_2',	$\{'k': 3\}, 'conv4 2',$
{'k': 3, 'p': 1}, 'conv4_3',	$\{'k': 3\}, 'conv4_3',$
{'k': 2, 's': 2}, 'pool4',	$\{ k: 3, d: 2\}, conv5_1, \$
{'k': 3, 'p': 1}, 'conv5_1',	
{'k': 3, 'p': 1}, 'conv5_2',	{'k': 3, 'd': 2}, 'conv5_2',
{'k': 3, 'p': 1}, 'conv5_3',	{ 'k': 3, 'd': 2}, 'conv5_3',
{'k': 2, 's': 2}, 'pool5',	{'k': 7, 'd': 4}, 'fc6',
{'k': 7}, 'fc6',	{'K': 1}, 'fc/',
{'k': 1}, 'fc7',	{'k': 1}, 'fc-final',
{'k': 1}, 'fc8',]
]	

From <u>arunmallya</u>

	aero	bike	bird	boat	bottle	pus	car	cat	chair	сош	table	dog	horse	mbike	person	plant	sheep	sofa	train	tv	mean IoU
FCN-8s	76.8	34.2	68.9	49.4	60.3	75.3	74.7	77.6	21.4	62.5	46.8	71.8	63.9	76.5	73.9	45.2	72.4	37.4	70.9	55.1	62.2
DeepLab	72	31	71.2	53.7	60.5	77	71.9	73.1	25.2	62.6	49.1	68.7	63.3	73.9	73.6	50.8	72.3	42.1	67.9	52.6	62.1
DeepLab-Msc	74.9	34.1	72.6	52.9	61.0	77.9	73.0	73.7	26.4	62.2	49.3	68.4	64.1	74.0	75.0	51.7	72.7	42.5	67.2	55.7	62.9
Our front end	82.2	37.4	72.7	57.1	62.7	82.8	77.8	78.9	28	70	51.6	73.1	72.8	81.5	79.1	56.6	77.1	49.9	75.3	60.9	67.6

Multi-scale Context Aggregation

Layer	1	2	3	4	5	6	7	8	
Convolution	3×3	3×3	3×3	3×3	3×3	3×3	3×3	1×1	
Dilation	1	1	2	4	8	16	1	1	
Truncation	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	
Receptive field	3×3	5×5	9×9	17×17	33×33	65×65	67×67	67×67	
Output channels									
Basic	C	C	C	C	C	C	C	C	
Large	2C	2C	4C	8C	16C	32C	32C	C	

Multi-scale Context Aggregation

	regation Module Receptive Field	Effective Stride	Output Size
 Input			66
ct_conv1_1	3	1	130
ct_conv1_2	5	1	128
ct_conv2_1	9	1	124
ct_conv3_1	17	1	116
ct_conv4_1	33	1	100
ct_conv5_1	65	1	68
ct_fc1	67	1	66
ct_final	67	1	66

From <u>arunmallya</u>

Front End + Context Net

	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbike	person	plant	sheep	sofa	train	tv	mean loU
Front end	86.3	38.2	76.8	66.8	63.2	87.3	78.7	82	33.7	76.7	53.5	73.7	76	76.6	83	51.9	77.8	44	79.9	66.3	69.8
Front + Basic	86.4	37.6	78.5	66.3	64.1	89.9	79.9	84.9	36.1	79.4	55.8	77.6	81.6	79	83.1	51.2	81.3	43.7	82.3	65.7	71.3
Front + Large	87.3	39.2	80.3	65.6	66.4	90.2	82.6	85.8	34.8	81.9	51.7	79	84.1	80.9	83.2	51.2	83.2	44.7	83.4	65.6	72.1
Front end + CRF	89.2	38.8	80	69.8	63.2	88.8	80	85.2	33.8	80.6	55.5	77.1	80.8	77.3	84.3	53.1	80.4	45	80.7	67.9	71.6
Front + Basic + CRF	89.1	38.7	81.4	67.4	65	91	81	86.7	37.5	81	57	79.6	83.6	79.9	84.6	52.7	83.3	44.3	82.6	67.2	72.7
Front + Large + CRF	89.6	39.9	82.7	66.7	67.5	91.1	83.3	87.4	36	83.3	52.5	80.7	85.7	81.8	84.4	52.6	84.4	45.3	83.7	66.7	73.3
Front end + RNN	88.8	38.1	80.8	69.1	65.6	89.9	79.6	85.7	36.3	83.6	57.3	77.9	83.2	77	84.6	54.7	82.1	46.9	80.9	66.7	72.5
Front + Basic + RNN	89	38.4	82.3	67.9	65.2	91.5	80.4	87.2	38.4	82.1	57.7	79.9	85	79.6	84.5	53.5	84	45	82.8	66.2	73.1
Front + Large + RNN	89.3	39.2	83.6	67.2	69	92.1	83.1	88	38.4	84.8	55.3	81.2	86.7	81.3	84.3	53.6	84.4	45.8	83.8	67	73.9

Front End + Context Net

Top to Down Refinement

Learning to refine object segments, ECCV 2016

Refine Deep Mask

(a) DeepMask Output

(b) SharpMask Output

Learning to refine object segments, ECCV 2016

Dense Labeling Task: Learning Optical Flow

FlowNetSimple

FlowNetCorr

Refinement of the coarse feature maps

Examples of Data Pairs

Results

FlowNet: Learning Optical Flow with Convolutional Networks