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Need for Similarity Measures

Image Source: Google, PyImageSearch

Several applications of Similarity Measures exists in today’s world:

• Recognizing handwriting in checks. 

• Automatic detection of faces in a camera image. 

• Search Engines, such as Google, matching a query (could be text, 
image, etc.) with a set of indexed documents on the web. 



Notion of a Metric

• A Metric is a function that quantifies a 
“distance” between every pair of elements in a 
set, thus inducing a measure of similarity. 

• A metric f(x,y) must satisfy the following 
properties for all x, y, z belonging to the set:
• Non-negativity: f(x, y) ≥ 0
• Identity of Discernible: f(x, y) = 0 <=> x = y
• Symmetry: f(x, y) = f(y, x)
• Triangle Inequality: f(x, z) ≤ f(x, y) + f(y, z)



Types of Metrics
In broad strokes metrics are of two kinds:
• Pre-defined Metrics: Metrics which are fully 

specified without the knowledge of data. 
E.g. Euclidian Distance: f(x, y) = (x – y)T(x – y)

• Learned Metrics: Metrics which can only be defined 
with the knowledge of the data.
E.g. Mahalanobis Distance: f(x, y) = (x - y) TM(x - y) ; 
where M is a matrix that is estimated from the data.
Learned Metrics are of two types:

• Unsupervised : Use unlabeled data
• Supervised : Use labeled data



UNSUPERVISED METRIC LEARNING



Mahalanobis Distance
• Mahalanobis Distance weighs the Euclidian 

distance between two points, by the standard 
deviation of the data.
• f(x, y) = (x - y) T∑-1(x - y); where ∑ is the mean-

subtracted covariance matrix of all data points.

Chandra, M.P., 1936. On the generalised distance in statistics. In Proceedings of the National 
Institute of Sciences of India (Vol. 2, No. 1, pp. 49-55).

Image Source:
Google



SUPERVISED METRIC LEARNING



Supervised Metric Learning
• In this setting, we have access to labeled data 

samples (z = {x, y}).
• The typical strategy is to use a 2-step procedure:

• Apply some supervised domain transform.
• Then use one of the unsupervised metrics for 

performing the mapping. 

Bellet, A., Habrard, A. and Sebban, M., 2013. A survey on metric learning for feature 
vectors and structured data. arXiv preprint arXiv:1306.6709.

Image Source:
Google



Linear Discriminant Analysis (LDA)
• In Fisher-LDA, the goal is to project the data to 

a space such that the ratio of “between class 
covariance” to “within class covariance” is 
maximized.

• This is given by: J(w) = maxw (wTSBw)/(wTSWw)

Fisher, R.A., 1936. The use of multiple measurements in taxonomic problems. Annals 
of eugenics, 7(2), pp.179-188.

Image Source:
Google



TRADITIONAL MATCHING TECHNIQUES



Traditional Approaches for Matching

The traditional approach for matching images, 
relies on the following pipeline:
1. Extract Features: For instance, color 

histograms of the input images.
2. Learn Similarity: Use L1-norm on the 

features.

Stricker, M.A. and Orengo, M., 1995, March. Similarity of color images. In IS&T/SPIE's Symposium on Electronic Imaging: 
Science & Technology (pp. 381-392). International Society for Optics and Photonics.



Challenges with Traditional Methods for Matching

The principal shortcoming of traditional metric 
learning based methods is that the feature 
representation of the data and the metric are 
not learned jointly.



Outline – This Section
• Why do we need Similarity Measures
• Metric Learning as a measure of Similarity
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• Challenges with Traditional Similarity Measures
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• Loss Function
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• Application of Siamese Network to different 
tasks



Deep Learning to the Rescue!

CNNs can jointly optimize the representation 
of the input data conditioned on the 
“similarity” measure being used, aka end-to-
end learning.

Image Source:
Google



Revisit the Problem

• Input: Given a pair of input images, we want to 
know how “similar” they are to each other.

• Output: The output can take a variety of forms:
• Either a binary label, i.e. 0 (same) or 1 

(different).
• A Real number indicating how similar a pair 

of images are.



Typical Siamese CNN

• Input: A pair of input signatures.
• Output (Target): A label, 0 for similar, 1 else.

Bromley, J., Bentz, J.W., Bottou, L., Guyon, I., LeCun, 
Y., Moore, C., Säckinger, E. and Shah, R., 1993. 
Signature Verification Using A "Siamese" Time Delay 
Neural Network. IJPRAI, 7(4), pp.669-688.

Image Source:
Google

Share 
Weights



SIAMESE CNN - ARCHITECTURE



Standard architecture of Siamese CNN

||D(x1) – D(x2)||2

Simo-Serra, E., Trulls, E., Ferraz, L., Kokkinos, I., Fua, P. and Moreno-Noguer, F., 2015. Discriminative learning of deep convolutional
feature point descriptors. In Proceedings of the IEEE International Conference on Computer Vision (pp. 118-126).



Popular Architecture Varieties

• No one “architecture” fits all!
• Design largely governed by what performs well 

empirically on the task at hand.

Inputs are 
merged right 
at the onset

Inputs are first embedded 
independently, then 
merged.

Zagoruyko, S. and Komodakis, N., 2015. Learning to compare image patches via convolutional neural networks. In 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 4353-4361).



TRIPLET NETWORK

• Compare triplets in one go.
• Check if the sample in the topmost channel, is more similar 
to the one in the middle or the one in the bottom.
• Allows us to learn ranking between samples.

Siamese CNN – Variants

Vo, N.N. and Hays, J., 2016, October. Localizing and orienting street views using overhead imagery. In European 
Conference on Computer Vision (pp. 494-509).

D(f(A), f(B)) < D(f(A), f(C))+

-



SIAMESE CNN – LOSS FUNCTION



Siamese CNN – Loss Function

Chopra, S., Hadsell, R. and LeCun, Y., 2005, June. Learning a similarity metric discriminatively, with application to face 
verification. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on (Vol. 1, pp. 
539-546). IEEE.

• Is there a problem with this 
formulation?
- Yes.
- The model could learn to 

embed every input to the 
same point, i.e. predict a 
constant as output.

- In such a case, every pair of 
input would be categorized 
as a positive pair.



Siamese CNN – Loss Function

Chopra, S., Hadsell, R. and LeCun, Y., 2005, June. Learning a similarity metric discriminatively, with application to face 
verification. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on (Vol. 1, pp. 
539-546). IEEE.

The final loss is defined as :
L = ∑loss of positive pairs + ∑ loss of negative pairs



Siamese CNN – Loss Function

Bell, S. and Bala, K., 2015. Learning visual similarity for product design with convolutional neural networks. ACM 
Transactions on Graphics (TOG), 34(4), p.98.

We can use different loss functions for the two types of input 
pairs.

• Typical positive pair (xp, xq) loss: L(xp, xq) = ||xp – xq||2 

(Euclidian Loss)



Siamese CNN – Loss Function

Bell, S. and Bala, K., 2015. Learning visual similarity for product design with convolutional neural networks. ACM 
Transactions on Graphics (TOG), 34(4), p.98.

• Typical negative pair (xn, xq) loss : 
L(xn, xq) = max(0, m2 - ||xn – xq||2) (Hinge Loss)



Choices of Loss Function
• Several choices for the Loss Functions are available. 

Choice depends on the task at hand.
• Loss Functions for 2-Stream Networks:

• Margin Based: 
• Contrastive Loss:  Loss(xp, xq, y) = 
y * ||xp-xq||2 +  (1 –y)  * max(0, m2- ||xp -xq||2)

• Allows us to learn a margin of separation.
• Extensible for Triplet Networks

• Non-Margin Based:
• Distance-Based Logistic Loss: 
P(xp, xq) = (1+ exp(-m) )/( 1+ exp(||xp - xq|| - m) )
Loss(xp, xq, y) = LogLoss(P(xp, xq), y)

• Good for quicker convergence.



Choices of Loss Function
• Contrastive Loss:  
For similar samples: 
Loss(xp, xq) = ||xp-xq||2

• Distance-Based Logistic Loss: 
For similar pairs
P(xp, xq) = (1+ exp(-m) )/( 1+ exp(||xp - xq|| - m) ) -> 1 quickly
Loss(xp, xq, y) = LogLoss(P(xp, xq), y)

Vo, N.N. and Hays, J., 2016, October. Localizing and orienting street views using overhead imagery. In European Conference on Computer Vision (pp. 494-509).



SIAMESE CNN – TRAINING



Siamese CNN – Training

• Update each of the two streams independently and 
then average the weights.

• Does this technique remind us of anything?
- Training in RNNs.

• Data augmentation may be used for more effective 
training.
- Typically we hallucinate more examples by 

performing random crops, image flipping, etc.

∂l/ ∂D(x1)

∂l/ ∂D(x2)



Outline – This Section
• Why do we need Similarity Measures
• Metric Learning as a measure of Similarity
• Traditional Approaches for Similarity Learning
• Challenges with Traditional Similarity Measures
• Deep Learning as a Potential Solution
• Application of Siamese Network to different 

tasks
– Generating invariant and robust descriptors
– Person Re-Identification
– Rendering a street from Different Viewpoints
– Newer nets for Person Re-Id, Viewpoint 

Invariance and Multimodal Data.
– Use of Siamese Networks for Sentence 

Matching



APPLICATIONS



Discriminative Descriptors for Local Patches

Learn a discriminative representation of patches from different 
views of 3D points

Simo-Serra, E., Trulls, E., Ferraz, L., Kokkinos, I., Fua, P. and Moreno-Noguer, F., 2015. Discriminative learning of deep convolutional
feature point descriptors. In Proceedings of the IEEE International Conference on Computer Vision (pp. 118-126).



Deep Descriptor

Use the CNN outputs of our Siamese networks as descriptor

Simo-Serra, E., Trulls, E., Ferraz, L., Kokkinos, I., Fua, P. and Moreno-Noguer, F., 2015. Discriminative learning of deep convolutional
feature point descriptors. In Proceedings of the IEEE International Conference on Computer Vision (pp. 118-126).



Evaluation

Simo-Serra, E., Trulls, E., Ferraz, L., Kokkinos, I., Fua, P. and Moreno-Noguer, F., 2015. Discriminative learning of deep convolutional
feature point descriptors. In Proceedings of the IEEE International Conference on Computer Vision (pp. 118-126).

Dataset SIFT (Non-deep) [23](Non-deep) Ours

ND 0.346 0.663 0.667

TO 0.425 0.709 0.545

LY 0.226 0.558 0.608

All 0.370 0.693 0.756

Comparison of area under precision-recall curve

SIFT: hand-crafted features
[23]: descriptor via convex optimization

Robustness to Rotation
SIFT
Ours
[23]



Person Re-Identification

CUHK03 Dataset



Quick Test

Ahmed, E., Jones, M. and Marks, T.K., 2015. An improved deep learning architecture for person re-identification. In 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 3908-3916).

Are they the same person?



Person Re-Identification

True 
positive

True 
negative

Ahmed, E., Jones, M. and Marks, T.K., 2015. An improved deep learning architecture for person re-identification. In 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 3908-3916).



Proposed Architecture

Ahmed, E., Jones, M. and Marks, T.K., 2015. An improved deep learning architecture for person re-identification. In 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 3908-3916).



Proposed Architecture

Ahmed, E., Jones, M. and Marks, T.K., 2015. An improved deep learning architecture for person re-identification. In 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 3908-3916).



Proposed Architecture

CNN

CNN

Ahmed, E., Jones, M. and Marks, T.K., 2015. An improved deep learning architecture for person re-identification. In 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 3908-3916).



Proposed Architecture

CNN

Loss

CNN

Ahmed, E., Jones, M. and Marks, T.K., 2015. An improved deep learning architecture for person re-identification. In 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 3908-3916).



Tied Convolution

• Use convolutional
layers to compute 
higher-order features

• Shared weights

Ahmed, E., Jones, M. and Marks, T.K., 2015. An improved deep learning architecture for person re-identification. In 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 3908-3916).



Cross-Input Neighborhood Differences 

• Compute neighborhood 
difference of two feature 
maps, instead of 
elementwise difference.

5 7 2

1 4 2

3 4 4

f g 1 4 1

2 3 5

1 2 3

Example: f, g are feature maps 
of two input images

Ahmed, E., Jones, M. and Marks, T.K., 2015. An improved deep learning architecture for person re-identification. In 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 3908-3916).



Cross-Input Neighborhood Differences 

• Compute neighborhood 
difference of two feature 
maps, instead of 
elementwise difference.

5 7 2

1 4 2

3 4 4

f g 1 4 1

2 3 5

1 2 3

K(1,1) = 
5 5
5 5

1 4
2 3

- =
4 4
3 2

Example: f, g are feature maps 
of two input images

Ahmed, E., Jones, M. and Marks, T.K., 2015. An improved deep learning architecture for person re-identification. In 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 3908-3916).



Cross-Input Neighborhood Differences 

• Compute neighborhood 
difference of two feature 
maps, instead of 
elementwise difference.

• A neighborhood-patch 
size of 5 was used in the 
paper:

• Another neighborhood 
difference map K’ was 
also computed where f
and g were revised.

Ki(x,y)=fi(x,y)I(5,5)-N[gi(x,y)]
where

I(5,5) is a 5x5 matrix of 1s,
N[gi(x,y)] is the 5x5 neighborhood of 

gi centered at (x,y)



Patch Summary Features

• Convolutional layers with 
5x5 filters and stride 5 
(the size of neighborhood 
patch).

• Provides a high-level 
summary of the cross-
input differences in a 
neighborhood patch.

Ahmed, E., Jones, M. and Marks, T.K., 2015. An improved deep learning architecture for person re-identification. In 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 3908-3916).



Across-Patch Features

• Convolutional layers with 
3x3 filters and stride 1.

• Learn spatial relationships 
across neighborhood 
differences

Ahmed, E., Jones, M. and Marks, T.K., 2015. An improved deep learning architecture for person re-identification. In 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 3908-3916).



Across-Patch Features

• Fully connected layer.

• Combine information 
from patches that are far 
from each other.

• Output: 2 softmax units

Ahmed, E., Jones, M. and Marks, T.K., 2015. An improved deep learning architecture for person re-identification. In 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 3908-3916).



Visualization of Learned Features

Ahmed, E., Jones, M. and Marks, T.K., 2015. An improved deep learning architecture for person re-identification. In 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 3908-3916).



Evaluation

Method Elementwise Difference Neighborhood Difference

Identification rate 27.66% 54.74%

Method Regular Siamese Network This work

Identification rate 42.19% 54.74%



Street-View to Overhead-View Image Matching

Vo, N.N. and Hays, J., 2016, October. Localizing and orienting street views using overhead imagery. In European 
Conference on Computer Vision (pp. 494-509).



Street-View to Overhead-View Image Matching

Vo, N.N. and Hays, J., 2016, October. Localizing and orienting street views using overhead imagery. In European 
Conference on Computer Vision (pp. 494-509).

Query:

Matching
Image:



Quick Test

Vo, N.N. and Hays, J., 2016, October. Localizing and orienting street views using overhead imagery. In European 
Conference on Computer Vision (pp. 494-509).

Query Image

Which one is the correct match?

A B C D E



CNN Architectures

Classification CNN:

I = concatenation(A, B)
f = AlexNet
l = {0, 1}, label

L(A, B, l) = LogLossSoftMax(f(I), l)

Vo, N.N. and Hays, J., 2016, October. Localizing and orienting street views using overhead imagery. 
In European Conference on Computer Vision (pp. 494-509).



CNN Architectures

Classification CNN:

Siamese-like CNN:

I = concatenation(A, B)
f = AlexNet
l = {0, 1}, label

D = ||f(A) – f(B)||2
m = margin parameter

L(A, B, l) = LogLossSoftMax(f(I), l)

L(A, B, l) = l * D + (1- l) * max(0, m – D)

Vo, N.N. and Hays, J., 2016, October. Localizing and orienting street views using overhead imagery. 
In European Conference on Computer Vision (pp. 494-509).



CNN Architectures

Classification CNN:

Siamese-like CNN:

Siamese-classification hybrid network:

I = concatenation(A, B)
f = AlexNet
l = {0, 1}, label

D = ||f(A) – f(B)||2
m = margin parameter

Iconv = concatenation(fconv(A), fconv(B))

L(A, B, l) = LogLossSoftMax(f(I), l) L(A, B, l) = LogLossSoftMax(ffc(Iconv), l)

L(A, B, l) = l * D + (1- l) * max(0, m – D)

Vo, N.N. and Hays, J., 2016, October. Localizing and orienting street views using overhead imagery. 
In European Conference on Computer Vision (pp. 494-509).



CNN Architectures

Classification CNN:

Siamese-like CNN:

Siamese-classification hybrid network:

Triplet network CNN:

I = concatenation(A, B)
f = AlexNet
l = {0, 1}, label

D = ||f(A) – f(B)||2
m = margin parameter (A, B) is a match pair

(A, C) is a non-match pair

Iconv = concatenation(fconv(A), fconv(B))

L(A, B, l) = LogLossSoftMax(f(I), l) L(A, B, l) = LogLossSoftMax(ffc(Iconv), l)

L(A, B, l) = l * D + (1- l) * max(0, m – D)
L(A, B, C) = max(0, m + D(A, B) – D(A, C))

Vo, N.N. and Hays, J., 2016, October. Localizing and orienting street views using overhead imagery. 
In European Conference on Computer Vision (pp. 494-509).



Distance-based Logistic Loss 

Matched/Nonmatched
instances are pushed away from 
the “boundary” in the 
inward/outward direction. 

L(A, B, l) = LogLoss (p(A, B), l)

where
D = ||f(A) – f(B)||2
m = margin parameter



Performance of Different Networks

Vo, N.N. and Hays, J., 2016, October. Localizing and orienting street views using overhead imagery. In European 
Conference on Computer Vision (pp. 494-509).

Siamese-like CNN: Triplet network CNN:

Test set Denver Detroit Seattle

Siamese 85.6 83.2 82.9

Triplet 88.8 86.8 86.4

Matching accuracy

Observation 1: 
• Triplet network outperforms the Siamese by a large margin



Performance of Different Networks

Vo, N.N. and Hays, J., 2016, October. Localizing and orienting street views using overhead imagery. In European 
Conference on Computer Vision (pp. 494-509).

Siamese-like CNN: Triplet network CNN:

Test set Denver Detroit Seattle

Siamese 85.6 83.2 82.9

Siamese-DBL 90.0 88.0 88

Triplet 88.8 86.8 86.4

Triplet-DBL 90.2 88.4 87.6

Matching accuracy

Observation 2: 
• Distance-based logistic (DBL) Nets significantly outperform the 

original network. 

L(A, B, l) = LogLoss (p(A, B), l)

Distance-based logistic 
(DBL) loss:



Performance of Different Networks

Vo, N.N. and Hays, J., 2016, October. Localizing and orienting street views using overhead imagery. In European 
Conference on Computer Vision (pp. 494-509).

Siamese-like CNN: Triplet network CNN:

Test set Denver Detroit Seattle

Siamese Net 85.6 83.2 82.9

Triplet Net 88.8 86.8 86.4
Classification Net 90.0 87.8 87.7

Hybrid Net 91.5 88.7 89.4

Classification CNN: Classification-siamese
hybrid:

Observation 3: 
• Classification networks achieved better accuracy than 

Siamese and triplet networks.
• Jointly extract and exchange information from both input 

images.

Matching accuracy



MORE VARIANTS OF SIAMESE CNNs



Siamese CNN – Variants
SIAMESE CNN – INTERMEDIATE MERGING

Subramaniam, A., Chatterjee, M. and Mittal, A., 2016. Deep Neural Networks with Inexact Matching for Person Re-
Identification. In Advances in Neural Information Processing Systems (pp. 2667-2675).

• Combining at an intermediate stage allows us to 
capture patch-level variability.
• Performing inexact (soft) matching yields superior 
performance. Match(X, Y) = (X-μX)(Y- μY)/σXσY



Siamese CNN – Variants
SIAMESE CNN – INTERMEDIATE MERGING

Subramaniam, A., Chatterjee, M. and Mittal, A., 2016. Deep Neural Networks with Inexact Matching for Person Re-
Identification. In Advances in Neural Information Processing Systems (pp. 2667-2675).

Results:
• Handling Partial Occlusion:

Baseline:

Proposed 
Method:



Siamese CNN – Variants
SIAMESE CNN – FOR VIEWPOINT INVARIANCE

Kan, M., Shan, S. and Chen, X., 2016. Multi-view deep network for cross-view classification. In Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition (pp. 4847-4855).

Viewpoint invariance is incorporated by considering the similarity of 
response across the individual streams.



Siamese CNN – Variants
SIAMESE CNN – FOR VIEWPOINT INVARIANCE

Kan, M., Shan, S. and Chen, X., 2016. Multi-view deep network for cross-view classification. In Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition (pp. 4847-4855).

Results on the CMU MultiPIE Dataset, for 
recognition across 7 poses.

Methods -45 deg -30 deg -15 deg 15deg 30 deg 45 deg

CCA 0.73 0.96 1.00 0.99 0.96 0.69

KCCA (RBF) 0.80 0.98 0.99 1.00 0.98 0.72

FIP+LDA 0.93 0.96 1.00 0.99 0.96 0.90

MVP+LDA 0.93 1.00 1.00 1.00 0.99 0.96

Proposed 0.99 0.99 1.00 1.00 0.99 0.98



Siamese CNN – Variants
TWO STREAM CNN – FOR CROSS-MODAL EMBEDDING

Wang, L., Li, Y. and Lazebnik, S., 2016. Learning deep structure-preserving image-text embeddings. In Proceedings of the 
IEEE Conference on Computer Vision and Pattern Recognition (pp. 5005-5013).

Two stream networks have also been used for cross-modal embedding 
tasks. Here  inputs from different modalities are mapped to a common 
space.

Man in black 
shirt playing a 
guitar



Siamese CNN - Variants

Hu, Baotian, et al., Convolutional neural network architectures for matching natural language sentences, NIPS 2014

Example:
x  : Damn, I have to work overtime this weekend!
y+: Try to have some rest buddy.
y-: It is hard to find a job, better start polishing your resume.

Application: Sentence completion, response to tweet, paraphrase 
identification

word2vec



DEMO OF SIAMESE NETWORK



Demo: Architecture

FC3
(2 units)

Loss 
(contrastive loss)

FC2
(1024 units)

FC1
(1024 units)

Code: @ywpkwon

MNIST Digit Similarity Assessment



Demo: Results

1

3

0

Code: @ywpkwon



Summary

• Quantifying “similarity” is an essential 
component of data analytics.

• Deep Learning approaches, such as “Siamese” 
Convolution Neural Nets, have shown promise 
recently.

• Several variants of Siamese CNN are available 
for making our life easier for a variety of tasks.
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