



#### Similarity Learning with (or without) Convolutional Neural Network

Moitreya Chatterjee, Yunan Luo

Image Source: Google



#### **Outline – This Section**

- Why do we need Similarity Measures
- Metric Learning as a measure of Similarity
  - Notion of a metric
  - Unsupervised Metric Learning
  - Supervised Metric Learning
- Traditional Approaches for Matching
- Challenges with Traditional Matching
  Techniques
- Deep Learning as a Potential Solution
- Application of Siamese Network for different tasks



## **Need for Similarity Measures**

Several applications of Similarity Measures exists in today's world:



• Recognizing handwriting in checks.



• Automatic detection of faces in a camera image.



• Search Engines, such as Google, matching a **query** (could be text, image, etc.) with a set of **indexed documents** on the web.



- A **Metric** is a function that quantifies a "distance" between every pair of elements in a set, thus inducing a measure of similarity.
- A metric f(x,y) must satisfy the following properties for all x, y, z belonging to the set:
  - Non-negativity:  $f(x, y) \ge 0$
  - Identity of Discernible: f(x, y) = 0 <=> x = y
  - *Symmetry*: f(x, y) = f(y, x)
  - Triangle Inequality:  $f(x, z) \le f(x, y) + f(y, z)$



In broad strokes metrics are of two kinds:

Pre-defined Metrics: Metrics which are fully specified without the knowledge of data.

E.g. Euclidian Distance:  $f(x, y) = (x - y)^T(x - y)$ 

• Learned Metrics: Metrics which can only be defined with the knowledge of the data.

E.g. Mahalanobis Distance:  $f(x, y) = (x - y)^T M(x - y)$ ; where **M** is a matrix that is estimated from the data. Learned Metrics are of two types:

- Unsupervised : Use unlabeled data
- Supervised : Use labeled data



# **UNSUPERVISED METRIC LEARNING**



- Mahalanobis Distance weighs the Euclidian distance between two points, by the standard deviation of the data.
  - f(x, y) = (x y)<sup>T</sup>Σ<sup>-1</sup>(x y); where Σ is the meansubtracted covariance matrix of all data points.



Chandra, M.P., 1936. On the generalised distance in statistics. In *Proceedings of the National Institute of Sciences of India* (Vol. 2, No. 1, pp. 49-55).



# SUPERVISED METRIC LEARNING



## Supervised Metric Learning

- In this setting, we have access to labeled data samples (z = {x, y}).
- The typical strategy is to use a 2-step procedure:
  - Apply some **supervised** domain transform.
  - Then use one of the unsupervised metrics for performing the mapping.



Bellet, A., Habrard, A. and Sebban, M., 2013. A survey on metric learning for feature vectors and structured data. *arXiv preprint arXiv:1306.6709*.

# Linear Discriminant Analysis (LDA)

- In Fisher-LDA, the goal is to project the data to a space such that the ratio of "between class covariance" to "within class covariance" is maximized.
- This is given by:  $J(w) = max_w (w^TS_Bw)/(w^TS_Ww)$



Fisher, R.A., 1936. The use of multiple measurements in taxonomic problems. *Annals of eugenics*, 7(2), pp.179-188.



#### TRADITIONAL MATCHING TECHNIQUES

The traditional approach for matching images, relies on the following pipeline:

- **1. Extract Features**: For instance, color histograms of the input images.
- Learn Similarity: Use L<sub>1</sub>-norm on the features.

Stricker, M.A. and Orengo, M., 1995, March. Similarity of color images. In *IS&T/SPIE's Symposium on Electronic Imaging: Science & Technology* (pp. 381-392). International Society for Optics and Photonics.

The principal shortcoming of traditional metric learning based methods is that the **feature representation** of the data and the **metric** are **not learned jointly**.



#### **Outline – This Section**

- Why do we need Similarity Measures
- Metric Learning as a measure of Similarity
- Traditional Approaches for Similarity Learning
- Challenges with Traditional Similarity Measures
- Deep Learning as a Potential Solution
  - Siamese Networks
    - Architectures
    - Loss Function
    - Training Techniques
- Application of Siamese Network to different tasks



CNNs can **jointly optimize** the representation of the input data conditioned on the "similarity" measure being used, aka end-toend learning.



Image Source: Google



- **Input**: Given a pair of input images, we want to know how "similar" they are to each other.
- **Output**: The output can take a variety of forms:
  - Either a binary label, i.e. 0 (same) or 1 (different).
  - A **Real** number indicating how similar a pair of images are.



### **Typical Siamese CNN**

- Input: A pair of input signatures.
- Output (Target): A label, 0 for similar, 1 else.





Image Source: Google

Bromley, J., Bentz, J.W., Bottou, L., Guyon, I., LeCun, Y., Moore, C., Säckinger, E. and Shah, R., 1993. Signature Verification Using A "Siamese" Time Delay Neural Network. *IJPRAI*, 7(4), pp.669-688.



#### **SIAMESE CNN - ARCHITECTURE**

#### Standard architecture of Siamese CNN



Simo-Serra, E., Trulls, E., Ferraz, L., Kokkinos, I., Fua, P. and Moreno-Noguer, F., 2015. Discriminative learning of deep convolutional feature point descriptors. In *Proceedings of the IEEE International Conference on Computer Vision* (pp. 118-126).



- No one "architecture" fits all!
- Design largely governed by what performs well empirically on the task at hand.



Zagoruyko, S. and Komodakis, N., 2015. Learning to compare image patches via convolutional neural networks. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (pp. 4353-4361).



#### **TRIPLET NETWORK**



D(f(A), f(B)) < D(f(A), f(C))

- Compare triplets in one go.
- Check if the sample in the **topmost** channel, is more similar to the one in the middle or the one in the bottom.
- Allows us to learn ranking between samples.

Vo, N.N. and Hays, J., 2016, October. Localizing and orienting street views using overhead imagery. In European Conference on Computer Vision (pp. 494-509).



## SIAMESE CNN – LOSS FUNCTION





Similar images

- Is there a problem with this formulation?
  - Yes.
  - The model could learn to embed every input to the same point, i.e. predict a constant as output.
  - In such a case, every pair of input would be categorized as a positive pair.

Chopra, S., Hadsell, R. and LeCun, Y., 2005, June. Learning a similarity metric discriminatively, with application to face verification. In *Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on* (Vol. 1, pp. 539-546). IEEE.



#### Siamese CNN – Loss Function





#### $L = \Sigma loss$ of positive pairs + $\Sigma loss$ of negative pairs

Chopra, S., Hadsell, R. and LeCun, Y., 2005, June. Learning a similarity metric discriminatively, with application to face verification. In *Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on* (Vol. 1, pp. 539-546). IEEE.



- We can use different loss functions for the two types of input pairs.
- Typical positive pair  $(x_p, x_q)$  loss:  $L(x_p, x_q) = ||x_p x_q||^2$ (Euclidian Loss)



Bell, S. and Bala, K., 2015. Learning visual similarity for product design with convolutional neural networks. ACM *Transactions on Graphics (TOG)*, 34(4), p.98.



#### Siamese CNN – Loss Function

• Typical negative pair  $(x_n, x_q)$  loss :  $L(x_n, x_q) = max(0, m^2 - ||x_n - x_q||^2)$  (Hinge Loss)



Bell, S. and Bala, K., 2015. Learning visual similarity for product design with convolutional neural networks. ACM *Transactions on Graphics (TOG)*, 34(4), p.98.



# **Choices of Loss Function**

- Several choices for the Loss Functions are available. Choice depends on the task at hand.
- Loss Functions for **2-Stream Networks**:
  - Margin Based:
    - Contrastive Loss: Loss(x<sub>p</sub>, x<sub>q</sub>, y) =
    - $y * ||x_p x_q||^2 + (1 y) * max(0, m^2 ||x_p x_q||^2)$ 
      - Allows us to learn a margin of separation.
      - Extensible for Triplet Networks
  - Non-Margin Based:
    - Distance-Based Logistic Loss:

 $P(x_{p}, x_{q}) = (1 + \exp(-m))/(1 + \exp(||x_{p} - x_{q}|| - m))$ Loss(x<sub>p</sub>, x<sub>q</sub>, y) = LogLoss(P(x<sub>p</sub>, x<sub>q</sub>), y)

• Good for quicker convergence.



#### **Choices of Loss Function**

• Contrastive Loss:

For similar samples: Loss( $x_p, x_q$ ) =  $||x_p-x_q||^2$ 



- Distance-Based Logistic Loss:
- For similar pairs

 $P(x_{p}, x_{q}) = (1 + \exp(-m))/(1 + \exp(||x_{p} - x_{q}|| - m)) \rightarrow 1 \text{ quickly}$  $Loss(x_{p}, x_{q}, y) = LogLoss(P(x_{p}, x_{q}), y)$ 

Vo, N.N. and Hays, J., 2016, October. Localizing and orienting street views using overhead imagery. In European Conference on Computer Vision (pp. 494-509).



#### SIAMESE CNN – TRAINING



• Update each of the two streams independently and then average the weights.



- Does this technique remind us of anything?
  - Training in RNNs.
- Data augmentation may be used for more effective training.
  - Typically we hallucinate more examples by performing random crops, image flipping, etc.



#### **Outline – This Section**

- Why do we need Similarity Measures
- Metric Learning as a measure of Similarity
- Traditional Approaches for Similarity Learning
- Challenges with Traditional Similarity Measures
- Deep Learning as a Potential Solution
- Application of Siamese Network to different tasks
  - Generating invariant and robust descriptors
  - Person Re-Identification
  - Rendering a street from Different Viewpoints
  - Newer nets for Person Re-Id, Viewpoint Invariance and Multimodal Data.
  - Use of Siamese Networks for Sentence Matching



#### **APPLICATIONS**

#### **Discriminative Descriptors for Local Patches**



#### Learn a discriminative representation of patches from different views of 3D points

Simo-Serra, E., Trulls, E., Ferraz, L., Kokkinos, I., Fua, P. and Moreno-Noguer, F., 2015. Discriminative learning of deep convolutional feature point descriptors. In *Proceedings of the IEEE International Conference on Computer Vision* (pp. 118-126).

#### **Deep Descriptor**



$$l(x_1, x_2) = \begin{cases} ||D(x_1) - D(x_2)||_2, & p_1 = p_2 \\ \max\left(0, C - ||D(x_1) - D(x_2)||_2\right), & p_1 \neq p_2 \end{cases}$$

#### Use the CNN outputs of our Siamese networks as descriptor

Simo-Serra, E., Trulls, E., Ferraz, L., Kokkinos, I., Fua, P. and Moreno-Noguer, F., 2015. Discriminative learning of deep convolutional feature point descriptors. In *Proceedings of the IEEE International Conference on Computer Vision* (pp. 118-126).



#### Evaluation

#### Comparison of area under precision-recall curve

| Dataset | SIFT (Non-deep) | [23](Non-deep) | Ours  |
|---------|-----------------|----------------|-------|
| ND      | 0.346           | 0.663          | 0.667 |
| ТО      | 0.425           | 0.709          | 0.545 |
| LY      | 0.226           | 0.558          | 0.608 |
| All     | 0.370           | 0.693          | 0.756 |

SIFT: hand-crafted features

[23]: descriptor via convex optimization



Simo-Serra, E., Trulls, E., Ferraz, L., Kokkinos, I., Fua, P. and Moreno-Noguer, F., 2015. Discriminative learning of deep convolutional feature point descriptors. In *Proceedings of the IEEE International Conference on Computer Vision* (pp. 118-126).



#### **Person Re-Identification**



CUHK03 Dataset




#### Are they the same person?









### **Person Re-Identification**



True

positive

True negative



### **Tied Convolution**

- Use convolutional layers to compute higher-order features
- Shared weights



### **Cross-Input Neighborhood Differences**

 Compute *neighborhood difference* of two feature maps, instead of elementwise difference.

Example: f, g are feature maps of two input images





### **Cross-Input Neighborhood Differences**

 Compute *neighborhood difference* of two feature maps, instead of elementwise difference.

Example: f, g are feature maps of two input images





### **Cross-Input Neighborhood Differences**

- Compute *neighborhood difference* of two feature maps, instead of elementwise difference.
- A neighborhood-patch size of 5 was used in the paper:

 $K_{i}(x,y)=f_{i}(x,y)I(5,5)-N[g_{i}(x,y)]$ where I(5,5) is a 5x5 matrix of 1s,  $N[g_{i}(x,y)] \text{ is the 5x5 neighborhood of}$   $g_{i} \text{ centered at } (x,y)$ 

 Another neighborhood difference map K' was also computed where f and g were revised.





### Patch Summary Features

- Convolutional layers with 5x5 filters and stride 5 (the size of neighborhood patch).
- Provides a high-level summary of the crossinput differences in a neighborhood patch.





### **Across-Patch Features**

- Convolutional layers with 3x3 filters and stride 1.
- Learn spatial relationships across neighborhood differences





### **Across-Patch Features**

- Fully connected layer.
- Combine information from patches that are far from each other.
- Output: 2 softmax units



### Visualization of Learned Features





### Evaluation

| Method              | Elementwise Difference | Neighborhood Difference |
|---------------------|------------------------|-------------------------|
| Identification rate | 27.66%                 | 54.74%                  |

| Method              | Regular Siamese Network | This work |  |
|---------------------|-------------------------|-----------|--|
| Identification rate | 42.19%                  | 54.74%    |  |















#### Which one is the correct match?





#### **Classification CNN:**



#### L(A, B, l) = LogLossSoftMax(f(I), l)

I = concatenation(A, B) f = AlexNet $l = \{0, 1\}, label$ 



#### **Classification CNN:**



#### L(A, B, l) = LogLossSoftMax(f(I), l)

I = concatenation(A, B)f = AlexNet $l = \{0, 1\}, label$ 

#### Siamese-like CNN:



L(A, B, l) = l \* D + (1 - l) \* max(0, m - D)

 $D = //f(A) - f(B)//_{2}$ m = margin parameter



#### Classification CNN:



#### L(A, B, l) = LogLossSoftMax(f(I), l)



#### Siamese-like CNN:



L(A, B, l) = l \* D + (1 - l) \* max(0, m - D)

 $D = //f(A) - f(B)//_{2}$ m = margin parameter

#### Siamese-classification hybrid network:



#### $L(A, B, l) = LogLossSoftMax(f_{fc}(I_{conv}), l)$

 $I_{conv} = concatenation(f_{conv}(A), f_{conv}(B))$ 



#### Classification CNN:



#### L(A, B, l) = LogLossSoftMax(f(I), l)

I = concatenation(A, B)f = AlexNet $l = \{0, 1\}, label$ 

#### Siamese-like CNN:



L(A, B, l) = l \* D + (1 - l) \* max(0, m - D)

 $D = //f(A) - f(B)//_{2}$ m = margin parameter

#### Siamese-classification hybrid network:



#### $L(A, B, l) = LogLossSoftMax(f_{fc}(I_{conv}), l)$

 $I_{conv} = concatenation(f_{conv}(A), f_{conv}(B))$ 



L(A, B, C) = max(0, m + D(A, B) - D(A, C))

(A, B) is a match pair(A, C) is a non-match pair



### **Distance-based Logistic Loss**

$$p(A,B) = \frac{1 + exp(-m)}{1 + exp(D-m)}$$
$$L(A, B, l) = LogLoss (p(A, B), l)$$

where  $D = //f(A) - f(B)//_2$ m = margin parameter



#### Matched/Nonmatched instances are pushed away from the "boundary" in the inward/outward direction.

### Performance of Different Networks

#### Matching accuracy

| Test set | Denver | Detroit | Seattle |
|----------|--------|---------|---------|
| Siamese  | 85.6   | 83.2    | 82.9    |
| Triplet  | 88.8   | 86.8    | 86.4    |

Siamese-like CNN:

#### **Triplet network CNN:**





#### Observation 1:

• Triplet network outperforms the Siamese by a large margin

## Performance of Different Networks

#### Matching accuracy

| Test set    | Denver | Detroit | Seattle |  |
|-------------|--------|---------|---------|--|
| Siamese     | 85.6   | 83.2    | 82.9    |  |
| Siamese-DBL | 90.0   | 88.0    | 88      |  |
| Triplet     | 88.8   | 86.8    | 86.4    |  |
| Triplet-DBL | 90.2   | 88.4    | 87.6    |  |

Siamese-like CNN:



Triplet network CNN:



Distance-based logistic (DBL) loss:

$$p(A,B) = \frac{1 + exp(-m)}{1 + exp(D-m)}$$
$$L(A, B, l) = LogLoss(p(A, B), l)$$

#### **Observation 2:**

• Distance-based logistic (DBL) Nets significantly outperform the original network.

## Performance of Different Networks

#### Matching accuracy

| Test set           | Denver | Detroit | Seattle |
|--------------------|--------|---------|---------|
| Siamese Net        | 85.6   | 83.2    | 82.9    |
| Triplet Net        | 88.8   | 86.8    | 86.4    |
| Classification Net | 90.0   | 87.8    | 87.7    |
| Hybrid Net         | 91.5   | 88.7    | 89.4    |

#### Siamese-like CNN:









Classification-siamese hybrid:



#### Observation 3:

- Classification networks achieved better accuracy than Siamese and triplet networks.
- Jointly extract and exchange information from both input images.



### **MORE VARIANTS OF SIAMESE CNNs**



#### SIAMESE CNN – INTERMEDIATE MERGING



- Combining at an **intermediate stage** allows us to capture patch-level variability.
- Performing inexact (soft) matching yields superior performance. Match(X, Y) =  $(X-\mu_X)(Y-\mu_Y)/\sigma_X\sigma_Y$

Subramaniam, A., Chatterjee, M. and Mittal, A., 2016. Deep Neural Networks with Inexact Matching for Person Re-Identification. In *Advances in Neural Information Processing Systems* (pp. 2667-2675).



#### **SIAMESE CNN – INTERMEDIATE MERGING** Results:

• Handling Partial Occlusion:



Subramaniam, A., Chatterjee, M. and Mittal, A., 2016. Deep Neural Networks with Inexact Matching for Person Re-Identification. In *Advances in Neural Information Processing Systems* (pp. 2667-2675).

#### **SIAMESE CNN – FOR VIEWPOINT INVARIANCE**



# **Viewpoint** invariance is incorporated by considering the similarity of response across the individual streams.

Kan, M., Shan, S. and Chen, X., 2016. Multi-view deep network for cross-view classification. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (pp. 4847-4855).



#### SIAMESE CNN – FOR VIEWPOINT INVARIANCE

# Results on the CMU MultiPIE Dataset, for recognition across 7 poses.

| Methods    | -45 deg | -30 deg | -15 deg | 15deg | 30 deg | 45 deg |
|------------|---------|---------|---------|-------|--------|--------|
| CCA        | 0.73    | 0.96    | 1.00    | 0.99  | 0.96   | 0.69   |
| KCCA (RBF) | 0.80    | 0.98    | 0.99    | 1.00  | 0.98   | 0.72   |
| FIP+LDA    | 0.93    | 0.96    | 1.00    | 0.99  | 0.96   | 0.90   |
| MVP+LDA    | 0.93    | 1.00    | 1.00    | 1.00  | 0.99   | 0.96   |
| Proposed   | 0.99    | 0.99    | 1.00    | 1.00  | 0.99   | 0.98   |

Kan, M., Shan, S. and Chen, X., 2016. Multi-view deep network for cross-view classification. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (pp. 4847-4855).

#### **TWO STREAM CNN – FOR CROSS-MODAL EMBEDDING**



Two stream networks have also been used for cross-modal embedding tasks. Here inputs from different modalities are mapped to a common space.

Wang, L., Li, Y. and Lazebnik, S., 2016. Learning deep structure-preserving image-text embeddings. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (pp. 5005-5013).



Application: Sentence completion, response to tweet, paraphrase identification





### **DEMO OF SIAMESE NETWORK**



### **Demo: Architecture**

### **MNIST Digit Similarity Assessment**





### **Demo: Results**



Code: @ywpkwon


- Quantifying "similarity" is an essential component of data analytics.
- Deep Learning approaches, such as "Siamese" Convolution Neural Nets, have shown promise recently.
- Several variants of Siamese CNN are available for making our life easier for a variety of tasks.



## **Reading List**

- Bell, Sean, and Kavita Bala, <u>Learning visual similarity for product design with convolutional</u> <u>neural networks</u>, ACM Transactions on Graphics (TOG), 2015
- Chopra, Sumit, Raia Hadsell, and Yann LeCun, <u>Learning a similarity metric discriminatively</u>, <u>with application to face verification</u>, CVPR 2005
- Zagoruyko, Sergey, and Nikos Komodakis, <u>Learning to compare image patches via</u> <u>convolutional neural networks</u>, CVPR 2015
- Hoffer, Elad, and Nir Ailon, <u>Deep metric learning using triplet network</u>, arXiv:1412.6622
- Simo-Serra, Edgar, et al., <u>Discriminative Learning of Deep Convolutional Feature Point</u> <u>Descriptors</u>, ICCV 2015
- Vo, Nam N., and James Hays, <u>Localizing and Orienting Street Views Using Overhead Imagery</u>, ECCV 2016
- Ahmed, Ejaz, Michael Jones, and Tim K. Marks, <u>An Improved Deep Learning Architecture for</u> <u>Person Re-Identification</u>, CVPR 2015
- Hu, Baotian, et al., <u>Convolutional neural network architectures for matching natural language</u> <u>sentences</u>, NIPS 2014
- Kulis, Brian, Metric learning: A survey, Foundations and Trends in Machine Learning, 2013
- Su, Hang, et al., <u>Multi-view convolutional neural networks for 3d shape recognition</u>, ICCV 2015
- Zheng, Yi, et al., <u>Time Series Classification Using Multi-Channels Deep Convolutional Neural</u> <u>Networks</u>, WAIM 2014
- Yi, Kwang Moo, et al., <u>LIFT: Learned Invariant Feature Transform</u>, arXiv:1603.09114
- Stricker, M.A. and Orengo, M. <u>Similarity of color images</u>. In *IS&T/SPIE's Symposium on Electronic Imaging: Science & Technology* (pp. 381-392), 1995.



## Appreciate your kind attention!