Generative Adversarial Networks (GANs)

From lan Goodfellow et al.

A short tutorial by :-Binglin, Shashank & Bhargav

Outline

• Part 1: Introduction to GANs

• Part 2: Some challenges with GANs

• Part 3: Applications of GANs

Part 1

- Motivation for Generative Models
- From Adversarial Training to GANs
- GAN's Architecture
- GAN's objective
- DCGANs

GANs

• Generative

- Learn a generative model
- Adversarial
 - Trained in an adversarial setting

Networks

• Use Deep Neural Networks

Why Generative Models?

We've only seen discriminative models so far

- Given an image X, predict a label Y
- Estimates P(Y|X)

Discriminative models have several key limitations

- Can't model **P(X)**, i.e. the probability of seeing a certain image
- Thus, can't sample from **P(X)**, i.e. can't generate new images

• Generative models (in general) cope with all of above

- Can model P(X)
- Can generate new images

Magic of GANs...

Ground Truth

Adversarial

Magic of GANs...

Which one is Computer generated?

Ledig, Christian, et al. "Photo-realistic single image super-resolution using a generative adversarial network." arXiv preprint arXiv:1609.04802 (2016).

Magic of GANs...

http://people.eecs.berkeley.edu/~junyanz/projects/gvm/

Adversarial Training

• In the last lecture, we saw:

- We can generate adversarial samples to fool a discriminative model
- We can use those adversarial samples to make models robust
- We then require more effort to generate adversarial samples
- Repeat this and we get better discriminative model

• GANs extend that idea to generative models:

- Generator: generate fake samples, tries to fool the Discriminator
- Discriminator: tries to distinguish between real and fake samples
- Train them against each other
- Repeat this and we get better Generator and Discriminator

GAN's Architecture

- Z is some random noise (Gaussian/Uniform).
- Z can be thought as the latent representation of the image.

https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016

Training Discriminator

Training Generator

https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016

Generator in action

GAN's formulation

 $\min_{G} \max_{D} V(D,G)$

- It is formulated as a **minimax game**, where:
 - The Discriminator is trying to maximize its reward V(D, G)
 - The Generator is trying to minimize Discriminator's reward (or maximize its loss)

$$V(D,G) = \mathbb{E}_{x \sim p(x)} [\log D(x)] + \mathbb{E}_{z \sim q(z)} [\log(1 - D(G(z)))]$$

- The Nash equilibrium of this particular game is achieved at:
 - $P_{data}(x) = P_{gen}(x) \ \forall x$ • $D(x) = \frac{1}{2} \ \forall x$

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \right].$$

end for

• Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.

• Update the generator by descending its stochastic gradient:

Generator updates

$$abla_{ heta_g} rac{1}{m} \sum_{i=1}^m \log\left(1 - D\left(G\left(oldsymbol{z}^{(i)}
ight)
ight)
ight)$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

Discriminator updates

Vanishing gradient strikes back again...

$$\min_{G} \max_{D} V(D,G)$$

$$V(D,G) = \mathbb{E}_{x \sim p(x)} [\log D(x)] + \mathbb{E}_{z \sim q(z)} [\log(1 - D(G(z)))]$$

$$\nabla_{\theta_{G}}V(D,G) = \nabla_{\theta_{G}}\mathbb{E}_{z \sim q(z)}\left[\log\left(1 - D(G(z))\right)\right]$$

•
$$\nabla_a \log(1 - \sigma(a)) = \frac{-\nabla_a \sigma(a)}{1 - \sigma(a)} = \frac{-\sigma(a) (1 - \sigma(a))}{1 - \sigma(a)} = -\sigma(a) = -D(G(z))$$

• Gradient goes to 0 if D is confident, i.e. $D(G(z)) \rightarrow 0$

• Minimize $-\mathbb{E}_{z \sim q(z)} [\log D(G(z))]$ for **Generator** instead (keep Discriminator as it is)

Faces

Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural information processing systems. 2014.

CIFAR

Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural information processing systems. 2014.

DCGAN: Bedroom images

Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." arXiv:1511.06434 (2015).

Deep Convolutional GANs (DCGANs)

Key ideas:

- Replace FC hidden layers with Convolutions
 - Generator: Fractional-Strided convolutions
- Use Batch Normalization after each layer

Inside Generator

- Use ReLU for hidden layers
- Use Tanh for the output layer

Latent vectors capture interesting patterns...

Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." arXiv:1511.06434 (2015).

Part 2

- Advantages of GANs
- Training Challenges
 - Non-Convergence
 - Mode-Collapse
- Proposed Solutions
 - Supervision with Labels
 - Mini-Batch GANs
- Modification of GAN's losses
 - Discriminator (EB-GAN)
 - Generator (InfoGAN)

Advantages of GANs

• Plenty of existing work on Deep Generative Models

- Boltzmann Machine
- Deep Belief Nets
- Variational AutoEncoders (VAE)

• Why GANs?

- Sampling (or generation) is straightforward.
- Training doesn't involve Maximum Likelihood estimation.
- Robust to Overfitting since Generator never sees the training data.
- Empirically, GANs are good at capturing the modes of the distribution.

Problems with GANs

- Probability Distribution is Implicit
 - Not straightforward to compute P(X).
 - Thus Vanilla GANs are only good for Sampling/Generation.
- Training is Hard
 - Non-Convergence
 - Mode-Collapse

Training Problems

- Non-Convergence
- Mode-Collapse

• Deep Learning models (in general) involve a single player

- The player tries to maximize its reward (minimize its loss).
- Use SGD (with Backpropagation) to find the optimal parameters.
- SGD has convergence guarantees (under certain conditions).
- **Problem:** With non-convexity, we might converge to local optima.

 $\min_G L(G)$

• GANs instead involve two (or more) players

- Discriminator is trying to maximize its reward.
- Generator is trying to minimize Discriminator's reward.

 $\min_{G} \max_{D} V(D,G)$

- SGD was not designed to find the Nash equilibrium of a game.
- **Problem:** We might not converge to the Nash equilibrium at all.

Non-Convergence

 $\min_{x} \max_{y} V(x, y)$ Let V(x, y) = xy

Non-Convergence

 $\min_{x} \max_{y} xy$

•
$$\frac{\partial}{\partial x} = -y$$
 ... $\frac{\partial}{\partial y} = x$

•
$$\frac{\partial^2}{\partial y^2} = \frac{\partial}{\partial x} = -y$$

- Differential equation's solution has sinusoidal terms
- Even with a small learning rate, it will not converge

Problems with GANs

- Non-Convergence
- Mode-Collapse

Mode-Collapse

• Generator fails to output diverse samples

Some real examples

Reed, S., et al. *Generating interpretable images with controllable structure*. Technical report, 2016. 2, 2016.

Some Solutions

- Mini-Batch GANs
- Supervision with labels
- Some recent attempts :-
 - <u>Unrolled GANs</u>
 - <u>W-GANs</u>

Basic (Heuristic) Solutions

- Mini-Batch GANs
- Supervision with labels

How to reward **sample diversity**?

• At Mode Collapse,

- Generator produces good samples, but a very few of them.
- Thus, Discriminator can't tag them as fake.

• To address this problem,

• Let the Discriminator know about this edge-case.

More formally,

- Let the Discriminator look at the entire batch instead of single examples
- If there is lack of diversity, it will mark the examples as fake

• Thus,

• Generator will be forced to produce diverse samples.

Mini-Batch GANs

- Extract features that capture diversity in the mini-batch
 - For e.g. L2 norm of the difference between all pairs from the batch
- Feed those features to the discriminator along with the image
- Feature values will differ b/w diverse and non-diverse batches
 - Thus, Discriminator will rely on those features for classification
- This in turn,
 - Will force the Generator to match those feature values with the real data
 - Will generate diverse batches

Basic (Heuristic) Solutions

- Mini-Batch GANs
- Supervision with labels

Supervision with Labels

• Label information of the real data might help

• Empirically generates much better samples

Alternate view of GANs

$$\min_{G} \max_{D} V(D,G)$$
$$V(D,G) = \mathbb{E}_{x \sim p(x)} [\log D(x)] + \mathbb{E}_{z \sim q(z)} [\log(1 - D(G(z)))]$$
$$D^* = \arg \max_{D} V(D,G)$$
$$G^* = \arg \min_{G} V(D,G)$$

- In this formulation, Discriminator's strategy was $D(x) \rightarrow 1$, $D(G(z)) \rightarrow 0$
- Alternatively, we can flip the binary classification labels i.e. Fake = 1, Real = 0

$$V(D,G) = \mathbb{E}_{x \sim p(x)} \left[\log \left(1 - D(x) \right) \right] + \mathbb{E}_{z \sim q(z)} \left[\log \left(D(G(z)) \right) \right]$$

• In this new formulation, Discriminator's strategy will be $D(x) \rightarrow 0$, $D(G(z)) \rightarrow 1$

Alternate view of GANs (Contd.)

• If all we want to encode is $D(x) \to 0$, $D(G(z)) \to 1$

$$D^* = \operatorname{argmax}_D \mathbb{E}_{x \sim p(x)} \left[\log(1 - D(x)) \right] + \mathbb{E}_{z \sim q(z)} \left[\log(D(G(z))) \right]$$

We can use this

$$D^* = argmin_D \mathbb{E}_{x \sim p(x)} \log(D(x)) + \mathbb{E}_{z \sim q(z)} \left[\log\left(1 - D(G(z))\right) \right]$$

• Now, we can replace cross-entropy with any loss function (Hinge Loss)

$$D^* = \operatorname{argmin}_D \mathbb{E}_{x \sim p(x)} D(x) + \mathbb{E}_{z \sim q(z)} \max\left(0, m - D(G(z))\right)$$

- And thus, instead of outputting probabilities, Discriminator just has to output :-
 - High values for fake samples
 - Low values for real samples

Energy-Based GANs

- Modified game plans
 - Generator will try to generate samples with low values
 - **Discriminator** will try to assign high scores to fake values
- Use AutoEncoder inside the Discriminator
- Use Mean-Squared Reconstruction error as D(x)
 - High Reconstruction Error for Fake samples
 - Low Reconstruction Error for Real samples

$$D(x) = ||Dec(Enc(x)) - x||_{MSE}$$

More Bedrooms...

Zhao, Junbo, Michael Mathieu, and Yann LeCun. "Energy-based generative adversarial network." arXiv preprint arXiv:1609.03126 (2016)

Celebs...

The Cool Stuff...

3D Faces

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., & Abbeel, P. InfoGAN: Interpretable Representation Learning by Information Maximization Generative Adversarial Nets, NIPS (2016).

Cool Stuff (contd.)

3D Chairs

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., & Abbeel, P. InfoGAN: Interpretable Representation Learning by Information Maximization Generative Adversarial Nets, NIPS (2016).

How to reward Disentanglement?

- Disentanglement means individual dimensions independently capturing key attributes of the image
- Let's partition the noise vector into 2 parts :-
 - z vector will capture slight variations in the image
 - c vector will capture the main attributes of the image
 - For e.g. Digit, Angle and Thickness of images in MNIST

Recap: Mutual Information

- Mutual Information captures the mutual dependence between two variables
- Mutual information between two variables X, Y is defined as:

$$I(X;Y) = \sum_{x,y} p(x,y) \log\left(\frac{p(x,y)}{p(x)p(y)}\right)$$

$$I(X;Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)$$

InfoGAN

- We want to maximize the mutual information I between c and $\mathbf{x} = G(z, c)$
- Incorporate in the value function of the minimax game.

$$\min_{G} \max_{D} V_{I}(D,G) = V(D,G) - \lambda I(c;G(z,c))$$

InfoGAN

Mutual Information's Variational Lower bound

$$I(c; G(z, c)) = H(c) - H(c|G(z, c))$$

= $\mathbb{E}_{x \sim G(z,c)} \begin{bmatrix} \mathbb{E}_{c' \sim P(C|X)}[\log P(c'|x)] \end{bmatrix} + H(c)$
= $\mathbb{E}_{x \sim G(z,c)} \begin{bmatrix} D_{KL}(P||Q) + \mathbb{E}_{c' \sim P(C|X)}[\log Q(c'|x)] \end{bmatrix} + H(c)$
 $\geq \mathbb{E}_{x \sim G(z,c)} \begin{bmatrix} \mathbb{E}_{c' \sim P(C|X)}[\log Q(c'|x)] \end{bmatrix} + H(c)$

 $\geq \mathbb{E}_{c \sim P(c), x \sim G(z,c)} [\log Q(c|x)] + H(c)$

Part 3

Conditional GANs

• Applications

- Image-to-Image Translation
- Text-to-Image Synthesis
- Face Aging

Advanced GAN Extensions

- Coupled GAN
- LAPGAN Laplacian Pyramid of Adversarial Networks
- Adversarially Learned Inference
- Summary

Conditional GANs

MNIST digits generated conditioned on their class label.

Ø [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]0 00990000 9 \mathbf{a} \boldsymbol{o} O2 [0, 1, 0, 0, 0, 0, 0, 0, 0, 0][0, 0, 1, 0, 0, 0, 0, 0, 0, 0]7. 4 ĊØ. G_2 e. e . [0, 0, 0, 1, 0, 0, 0, 0, 0, 0]З 6 [0, 0, 0, 0, 1, 0, 0, 0, 0, 0][0, 0, 0, 0, 0, 1, 0, 0, 0][0, 0, 0, 0, 0, 0, 1, 0, 0, 0]Ê9 (\cdot) ÷1 6.3 $\mathcal{O}^{\mathcal{O}}$ 6 5 0 202 (q^{*}) [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0][0, 0, 0, 0, 0, 0, 0, 0, 1, 0][0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]

Figure 2 in the original paper.

Conditional GANs

- Simple modification to the original GAN framework that conditions the model on *additional information* for better multi-modal learning.
- Lends to many practical applications of GANs when we have explicit *supervision* available.

Conditional GAN (Mirza & Osindero, 2014)

Image Credit: Figure 2 in Odena, A., Olah, C. and Shlens, J., 2016. Conditional image synthesis with auxiliary classifier GANs. arXiv preprint arXiv:1610.09585.

Part 3

Conditional GANs

• Applications

- Image-to-Image Translation
- Text-to-Image Synthesis
- Face Aging
- Advanced GAN Extensions
 - Coupled GAN
 - LAPGAN Laplacian Pyramid of Adversarial Networks
 - Adversarially Learned Inference
- Summary

Image-to-Image Translation

Figure 1 in the original paper.

Link to an interactive demo of this paper

Image-to-Image Translation

- Architecture: *DCGAN*-based architecture
- Training is conditioned on the images from the source domain.
- Conditional GANs provide an effective way to handle many complex domains without worrying about designing structured loss functions explicitly.

Figure 2 in the original paper.

Text-to-Image Synthesis

Motivation

Given a text description, generate images closely associated.

Uses a conditional GAN with the generator and discriminator being condition on "dense" text embedding.

this small bird has a pink breast and crown, and black primaries and secondaries.

the flower has petals that are bright pinkish purple with white stigma

this magnificent fellow is almost all black with a red crest, and white cheek patch.

this white and yellow flower have thin white petals and a round yellow stamen

Figure 1 in the original paper.

Text-to-Image Synthesis

Figure 2 in the original paper.

Positive Example: Real Image, Right Text Negative Examples: Real Image, Wrong Text Fake Image, Right Text

Face Aging with Conditional GANs

- Differentiating Feature: Uses an *Identity Preservation Optimization* using an auxiliary network to get a better approximation of the latent code (z*) for an input image.
- Latent code is then conditioned on a discrete (one-hot) embedding of age categories.

Figure 1 in the original paper.

Face Aging with Conditional GANs

Figure 3 in the original paper.

Conditional GANs

Conditional Model Collapse

- Scenario observed when the Conditional GAN starts *ignoring* either the code (c) or the noise variables (z).
- This limits the diversity of images generated.

A man in a orange jacket with sunglasses and a hat ski down a hill.

This guy is in black trunks and swimming underwater.

A tennis player in a blue polo shirt is looking down at the green court.

Part 3

Conditional GANs

• Applications

- Image-to-Image Translation
- Text-to-Image Synthesis
- Face Aging

Advanced GAN Extensions

- Coupled GAN
- LAPGAN Laplacian Pyramid of Adversarial Networks
- Adversarially Learned Inference
- Summary

Coupled GAN

Figure 2 in the original paper.

- Learning a joint distribution of multi-domain images.
- Using GANs to learn the joint distribution with samples drawn from the marginal distributions.
- Direct applications in domain adaptation and image translation.

Coupled GANs

• Architecture

Weight-sharing constraints the network to learn a *joint distribution* without corresponding supervision.

Liu, Ming-Yu, and Oncel Tuzel. "Coupled generative adversarial networks". NIPS (2016).

Coupled GANs

- Some examples of generating facial images across different feature domains.
- Corresponding images in a column are generate from the same latent code z

Hair Color

Facial Expression

Sunglasses

Figure 4 in the original paper.

Laplacian Pyramid of Adversarial Networks

- Based on the Laplacian Pyramid representation of images. (1983)
- Generate high resolution (dimension) images by using a hierarchical system of GANs
- Iteratively increase image resolution and quality.

Laplacian Pyramid of Adversarial Networks

Image Generation using a LAPGAN

- Generator G_3 generates the base image $\widetilde{I_3}$ from random noise input z_3 .
- Generators (G_2, G_1, G_0) iteratively generate the *difference image* (\hat{h}) conditioned on previous small image (l).
- This *difference image* is added to an up-scaled version of previous smaller image.

Denton, E.L., Chintala, S. and Fergus, R., 2015. "Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks". NIPS (2015)

Laplacian Pyramid of Adversarial Networks

Training Procedure: Models at each level are trained independently to learn the required representation.

Denton, E.L., Chintala, S. and Fergus, R., 2015. "Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks". NIPS (2015)

Adversarially Learned Inference

- Basic idea is to learn an encoder/inference network along with the generator network.
- Consider the following joint distributions over x (image) and z (latent variables) :

$$q(x,z) = q(x) q(z|x)$$
 encoder distribution
 $p(x,z) = p(z) p(x|z)$ generator distribution

Adversarially Learned Inference

Encoder/Inference Network

Generator Network

Figure 1 in the original paper.

$$\min_{G} \max_{D} \mathbb{E}_{q(x)} \left[\log \left(D\left(x, G_{Z}(x) \right) \right] + \mathbb{E}_{p(x)} \left[\log \left(1 - D\left(G_{\chi}(z), z \right) \right) \right]$$

Adversarially Learned Inference

- Nash equilibrium yields
 - Joint: $p(x,z) \sim q(x,z)$
 - Marginals: $p(x) \sim q(x)$ and $p(z) \sim q(z)$
 - Conditionals: $p(x|z) \sim q(x|z)$ and $p(z|x) \sim q(z|x)$
- Inferred latent representation successfully reconstructed the original image.
- Representation was useful in the downstream semi-supervised task.

Summary

- GANs are generative models that are implemented using two stochastic neural network modules: **Generator** and **Discriminator**.
- Generator tries to generate samples from random noise as input
- **Discriminator** tries to distinguish the samples from Generator and samples from the real data distribution.
- Both networks are trained adversarially (in tandem) to fool the other component. In this process, both models become better at their respective tasks.

Why use GANs for Generation?

- Can be trained using back-propagation for Neural Network based Generator/Discriminator functions.
- Sharper images can be generated.
- Faster to sample from the model distribution: *single* forward pass generates a *single* sample.

Reading List

- Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. and Bengio, Y. Generative adversarial nets, NIPS (2014).
- Goodfellow, Ian <u>NIPS 2016 Tutorial: Generative Adversarial Networks</u>, NIPS (2016).
- Radford, A., Metz, L. and Chintala, S., <u>Unsupervised representation learning with deep convolutional generative adversarial networks.</u> arXiv preprint arXiv:1511.06434. (2015).
- Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., & Chen, X. Improved techniques for training gans. NIPS (2016).
- Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., & Abbeel, P. <u>InfoGAN: Interpretable Representation Learning by Information Maximization</u> <u>Generative Adversarial Nets</u>, NIPS (2016).
- Zhao, Junbo, Michael Mathieu, and Yann LeCun. Energy-based generative adversarial network. arXiv preprint arXiv:1609.03126(2016).
- Mirza, Mehdi, and Simon Osindero. <u>Conditional generative adversarial nets.</u> arXiv preprint arXiv:1411.1784 (2014).
- Liu, Ming-Yu, and Oncel Tuzel. <u>Coupled generative adversarial networks</u>. NIPS (2016).
- Denton, E.L., Chintala, S. and Fergus, R., 2015. Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks. NIPS (2015)
- Dumoulin, V., Belghazi, I., Poole, B., Lamb, A., Arjovsky, M., Mastropietro, O., & Courville, A. <u>Adversarially learned inference</u>. arXiv preprint arXiv:1606.00704 (2016).

Applications:

- Isola, P., Zhu, J. Y., Zhou, T., & Efros, A. A. Image-to-image translation with conditional adversarial networks. arXiv preprint arXiv:1611.07004. (2016).
- Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., & Lee, H. Generative adversarial text to image synthesis. JMLR (2016).
- Antipov, G., Baccouche, M., & Dugelay, J. L. (2017). Face Aging With Conditional Generative Adversarial Networks. arXiv preprint arXiv:1702.01983.

Questions?