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Outline

- Review Generative Adversarial Network
- Introduce Variational Autoencoder (VAE)
- VAE applications

- VAE + GANs
- Introduce Conditional VAE (CVAE)
- Conditional VAE applications.

- Attribute2Image
- Diverse Colorization
- Forecasting motion

- Take aways



Recap: Generative Model + GAN

Last lecture we discussed generative models

- Task: Given a dataset of images {X1,X2...} can we learn the distribution 
of X? 

- Typically generative models implies modelling P(X). 
- Very limited, given an image the model outputs a probability

- More Interested in models which we can sample from.
- Can generate random examples that follow the distribution of P(X).



Recap: Generative Model + GAN

Recap: Generative Adversarial Network 

- Pro: Do not have to explicitly specify a form on P(X|z), z is the latent 
space.

- Con: Given a desired image, difficult to map back to the latent variable.

Image Credit: Last lecture

http://slazebni.cs.illinois.edu/spring17/lec11_gan.pdf
http://slazebni.cs.illinois.edu/spring17/lec11_gan.pdf


Manifold Hypothesis

Natural data (high dimensional) actually lies in a low dimensional space.

Image Credit: Deep learning book

http://www.deeplearningbook.org/
http://www.deeplearningbook.org/


Variational Autoencoder (VAE)

Variational Autoencoder (2013) work prior to GANs (2014)

- Explicit Modelling of P(X|z; θ), we will drop the θ in the notation.
- z ~ P(z), which we can sample from, such as a Gaussian distribution.

- Maximum Likelihood --- Find θ to maximize P(X), where X is the data.
- Approximate with samples of z
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Variational Autoencoder (VAE)

- Approximate with samples of z

- Need a lot of samples of z and most of the P(X|z) ≈ 0. 
- Not practical computationally. 
- Question: Is it possible to know which z will generate P(X|z) >> 0?

- Learn a distribution Q(z), where z ~ Q(z) generates P(X|z) >> 0.
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Variational Autoencoder (VAE)

- We want P(X) = Ez~P(z)P(X|z), but not practical.

- We can compute Ez~Q(z)P(X|z), more practical.

- Question: How does Ez~Q(z)P(X|z)  and P(X) relate?

- In the following slides, we derive the following relationship

-

 Assume we can learn a distribution Q(z), where z ~ Q(z) generates P(X|z) >> 0
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- We can compute Ez~Q(z)P(X|z), more practical.
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 Assume we can learn a distribution Q(z), where z ~ Q(z) generates P(X|z) >> 0



- Definition of KL divergence:

- Apply Bayes Rule on P(z|X) and substitute into the equation above.
- P(z|X) = P(X|z) P(z) / P(X)
- log (P(z|X)) = log P(X|z) + log P(z) - log P(X)
- P(X) does not depend on z, can take it outside of Ez~Q

Relating Ez~Q(z)P(X|z)  and P(X)
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Rearrange the terms:

Ez~Q [log Q(z) - log P(z)] = D [Q (z) || P(z)] 

Relating Ez~Q(z)P(X|z)  and P(X)
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Why is this important?

- Recall we want to maximize P(X) with respect to θ, which we cannot do.
- KL divergence is always > 0. 
- log P(X) > log P(X) - D[Q(z) || P(z|X)].
- Maximize the lower bound instead.
- Question: How do we get Q(z) ? 

Intuition
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How to Get Q(z)?

Question: How do we get Q(z) ?

- Q(z) or Q(z|X)? 

- Model Q(z|X) with a neural network. 

- Assume Q(z|X) to be Gaussian, N(μ, c⋅I)

- Neural network outputs the mean μ, and 
diagonal covariance matrix c ⋅ I.

- Input: Image, Output: Distribution

Let’s call Q(z|X) the Encoder.

Encoder 
Q(z|X)
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Convert the lower bound to a loss function:

- Model P(X|z) with a neural network, let f(z) be the network output.
- Assume P(X|z) to be i.i.d. Gaussian

- X = f(z) + η  , where η ~ N(0,I)     *Think Linear Regression*
- Simplifies to an l2 loss:  ||X-f(z)||2

Let’s call P(X|z) the Decoder.

VAE’s Loss function
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VAE’s Loss function

Convert the lower bound to a loss function:

Assume P(z) ~ N(0,I) then D[Q(z|X) || P(z)] has a closed form solution. 

Putting it all together:   Ez~Q(z|X)log P(X|z)         ||X-f(z)||2

L = ||X - f(z)||2 - λ⋅D[Q(z) || P(z)]

, given a (X, z) pair. 

Pixel 
difference Regularization

∝
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Variational Autoencoder

Training the Decoder is easy, just 
standard backpropagation.

How to train the Encoder?

- Not obvious how to apply gradient 
descent through samples.

Image Credit: Tutorial on VAEs & unknown

https://arxiv.org/abs/1606.05908
https://arxiv.org/abs/1606.05908


Reparameterization Trick

How to effectively backpropagate 
through the z samples to the 
Encoder?

Reparametrization Trick

- z ~ N(μ, σ) is equivalent to 
- μ + σ ⋅ ε, where ε ~ N(0, 1)
- Now we can easily backpropagate 

the loss to the Encoder.

Image Credit: Tutorial on VAEs

https://arxiv.org/abs/1606.05908
https://arxiv.org/abs/1606.05908


VAE Training

Given a dataset of examples X = {X1, X2...}

Initialize parameters for Encoder and Decoder

Repeat till convergence:

XM <-- Random minibatch of M examples from X

        ε <-- Sample M noise vectors from N(0, I)

Compute L(XM, ε, θ) (i.e. run a forward pass in the neural network)

Gradient descent on L to updated Encoder and Decoder.
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- At test-time, we want to evaluate the performance of VAE to generate a 
new sample.

- Remove the Encoder, as no test-image for generation task.
- Sample z ~ N(0,I) and pass it through the Decoder.
- No good quantitative metric, relies on visual inspection.

VAE Testing
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- At test-time, we want to evaluate the performance of VAE to generate a 
new sample.

- Remove the Encoder, as no test-image for generation task.
- Sample z ~ N(0,I) and pass it through the Decoder.
- No good quantitative metric, relies on visual inspection.

VAE Testing

Image Credit: Tutorial on VAE

https://arxiv.org/abs/1606.05908
https://arxiv.org/abs/1606.05908


Common VAE architecture

Fully Connected (Initially Proposed)

Common Architecture (convolutional) similar to DCGAN.

Encoder Decoder

Encoder Decoder



Disentangle latent factor

Autoencoder can disentangle latent factors [MNIST DEMO]:

Image Credit: Auto-encoding Variational Bayes

http://www.dpkingma.com/sgvb_mnist_demo/demo.html
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114


Disentangle latent factor

Image Credit: Deep Convolutional Inverse Graphics Network

https://arxiv.org/abs/1503.03167
https://arxiv.org/abs/1503.03167


Disentangle latent factor

We have seen very similar results during last lecture: InfoGan. 

InfoGan VAE

Image Credit: Deep Convolutional Inverse Graphics Network & InfoGan

https://arxiv.org/abs/1503.03167
https://arxiv.org/abs/1503.03167


VAE vs. GAN

Encoder Decoderz

z Generator Discriminator

VAE

GAN

Image Credit: Autoencoding beyond pixels using a learned similarity metric

https://arxiv.org/abs/1512.09300
https://arxiv.org/abs/1512.09300


VAE vs. GAN

Encoder Decoderz

z Generator Discriminator

VAE

GAN

✓: Given an X easy to find z.
✓: Interpretable probability P(X)

Х: Usually outputs blurry Images

✓: Very sharp images

Х: Given an X difficult 
to find z. (Need to 
backprop.)

✓/Х: No explicit P(X).

Image Credit: Autoencoding beyond pixels using a learned similarity metric

Encoder Decoderz

z Generator Discriminator

VAE

GAN

https://arxiv.org/abs/1512.09300
https://arxiv.org/abs/1512.09300
https://arxiv.org/abs/1512.09300


GAN + VAE (Best of both models)

Encoder Decoder / 
Generatorz Discriminator

Image Credit: Autoencoding beyond pixels using a learned similarity metric

KL Divergence L2 Difference 

https://arxiv.org/abs/1512.09300
https://arxiv.org/abs/1512.09300


Results

Image Credit: Autoencoding beyond pixels using a learned similarity metric

VAEDisl : Train a GAN first, then use the discriminator of GAN to train a VAE.

VAE/GAN: GAN and VAE trained together.

https://arxiv.org/abs/1512.09300
https://arxiv.org/abs/1512.09300


Conditional VAE (CVAE)

What if we have labels? (e.g. digit 
labels or attributes) Or other inputs 
we wish to condition on (Y).

- None of the derivation changes.
- Replace all P(X|z) with P(X|z,Y).
- Replace all Q(z|X) with Q(z|X,Y).
- Go through the same KL divergence 

procedure, to get the same lower 
bound.

Y

Image Credit: Tutorial on VAEs

https://arxiv.org/abs/1606.05908
https://arxiv.org/abs/1606.05908
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Conditional VAE (CVAE)

What if we have labels? (e.g. digit 
labels or attributes) Or other inputs 
we wish to condition on (Y).

- NONE of the derivation changes.
- Replace all P(X|z) with P(X|z,Y).
- Replace all Q(z|X) with Q(z|X,Y).
- Go through the same KL divergence 

procedure, to get the same lower 
bound.

Y

Image Credit: Tutorial on VAEs

https://arxiv.org/abs/1606.05908
https://arxiv.org/abs/1606.05908


Common CVAE architecture

Common Architecture (convolutional) for CVAE

Attributes

Image



- Again, remove the Encoder as test time
- Sample z ~ N(0,I) and input a desired Y to the Decoder.

CVAE Testing

Image Credit: Tutorial on VAE

Y

https://arxiv.org/abs/1606.05908
https://arxiv.org/abs/1606.05908


Example

Image Credit: Attribute2Image

https://arxiv.org/abs/1512.00570
https://arxiv.org/abs/1512.00570


Attribute-conditioned image progression

Image Credit: Attribute2Image

https://arxiv.org/abs/1512.00570
https://arxiv.org/abs/1512.00570


Learning Diverse Image Colorization

Image Colorization

- An ambiguous problem

Picture Credit: https://pixabay.com/en/vw-camper-vintage-car-vw-vehicle-1939343/ 

https://pixabay.com/en/vw-camper-vintage-car-vw-vehicle-1939343/


Learning Diverse Image Colorization

Image Colorization

- An ambiguous problem

Picture Credit: https://pixabay.com/en/vw-camper-vintage-car-vw-vehicle-1939343/ 

Blue? 
Red? 
Yellow?

https://pixabay.com/en/vw-camper-vintage-car-vw-vehicle-1939343/


Strategy

Goal: 
Learn a conditional model P(C|G)

Color field C, given grey level image G

Next, draw samples from {Ck}
N 

k=1~ P(C|G) to obtain diverse colorization



Strategy

Goal: 
Learn a conditional model P(C|G)

Color field C, given grey level image G

Next, draw samples from {Ck}
N 

k=1~ P(C|G) to obtain diverse colorization

Difficult to learn!

Exceedingly high dimensions! 
(Curse of dimensionality)



Strategy

Goal: 
Learn a conditional model P(C|G)

Color field C, given grey level image G.

Instead of learning C directly, learn a low-dimensional embedding variable z 
(VAE). 

Using another network, learn P(z|G).
- Use a Mixture Density Network(MDN)

- Good for learning multi-modal conditional model.

At test time, use VAE decoder to obtain Ck for each zk



Architecture

Image Credit: Learning Diverse Image Colorization

https://arxiv.org/abs/1612.01958
https://arxiv.org/abs/1612.01958


Devil is in the details

Step 1: Learn a low dimensional z for color.
- Standard VAE: Overly smooth and “washed out”, as training using L2 loss 

directly on the color space.

Authors introduced several new loss functions to solve this problem.

1. Weighted L2 on the color space to encourage ``color’’ diversity. Weighting the 
very common color smaller.

2. Top-k principal components, Pk, of the color space. Minimize the L2 of the 
projection. 

3. Encourage color fields with the same gradient as ground truth.
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Devil is in the details

Step 2: Conditional Model: Grey-level to Embedding

- Learn a multimodal distribution
- At test time sample at each mode to generate diversity.
- Similar to CVAE, but this has more “explicit” modeling of the P(z|G).
- Comparison with CVAE, condition on the gray scale image.



Results
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Effects of Loss Terms
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- Given an image, humans can often infer how the objects in the image 

might move

- Modeled as dense trajectories of how each pixel will move over time

Forecasting from Static Images
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Forecasting from Static Images

- Given an image, humans can often infer how the objects in the image 

might move.

- Modeled as dense trajectories of how each pixel will move over time.

- Why is this difficult?

- Multiple possible solutions

- Recall that latent space can encode information not in the image

- By using CVAEs, multiple possibilities can be generated



Forecasting from Static Images
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Architecture
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Encoder Tower - Training Only

Parameters 
From ImageComputed 

Optical 
Flow

Learnt distributions of 
trajectories
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Image Tower - Training

μ(X,z)

μ’, σ’

Fully 
Convolutional

Image Credit: An Uncertain Future: Forecasting from static Images Using VAEs
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Decoder Tower - Training

Fully 
Convolutional

Output 
trajectories

P(Y|z, X)

Image Credit: An Uncertain Future: Forecasting from static Images Using VAEs
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Testing

Sample from learnt 
distribution

Conditioned on 
Input Image
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Video Demo

Video: http://www.cs.cmu.edu/~jcwalker/DTP/DTP.html
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Results

● Significantly outperforms all existing methods

Method Negative Log 
Likelihood

Regressor 11563

Optical Flow (Walker et 
al 2015)

11734

Proposed 11082
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Applications: Facial Expression Editing

Image Credit: Semantic Facial Expression Editing Using Autoencoded Flow

Disclaimer: I am one of the authors of this paper.

- Instead of encoding pixels to a lower dimensional space, encode the flow.
- Uses bilinear sampling layer introduced in Spatial transformer networks 

(Covered in one of the previous lecture).

https://arxiv.org/abs/1611.09961
https://arxiv.org/abs/1611.09961


Single Image Expression Magnification and Suppression

Latent Space (z)
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Results: Expression Editing

Original MagnifySuppress

Original Squint
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Results: Expression Interpolation

Latent Space (z)

Image Credit: Semantic Facial Expression Editing Using Autoencoded Flow

These images in between are generated!
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Closing Remarks

GAN and VAEs are both popular 
- Generative models use VAE for easy generation of z given X.
- Generative models use GAN to generate sharp images given z.
- For images, model architecture follows DCGAN’s practices, using strided 

convolution, batch-normalization, and Relu.

Topics Not Covered:
Features learned from VAEs and GANs both can be used in the 
semi-supervised setting. 

- “Semi-Supervised Learning with Deep Generative Models” [King ma et. al] 
(Follow up work by the original VAE author)

- “Auxiliary Deep Generative Models”  [Maaløe, et. al]



Questions?



- D. Kingma, M. Welling, Auto-Encoding Variational Bayes, ICLR, 2014 
- Carl Doersch, Tutorial on Variational Autoencoders arXiv, 2016 
- Xinchen Yan, Jimei Yang, Kihyuk Sohn, Honglak Lee, Attribute2Image: Conditional Image Generation from 

Visual Attributes, ECCV, 2016 
- Jacob Walker, Carl Doersch, Abhinav Gupta, Martial Hebert, An Uncertain Future: Forecasting from Static 

Images using Variational Autoencoders, ECCV, 2016 
- Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, Ole Winther, Autoencoding beyond 

pixels using a learned similarity metric, ICML, 2016 
- Aditya Deshpande, Jiajun Lu, Mao-Chuang Yeh, David Forsyth, Learning Diverse Image Colorization, arXiv, 

2016 
- Raymond Yeh, Ziwei Liu, Dan B Goldman, Aseem Agarwala, Semantic Facial Expression Editing using 

Autoencoded Flow, arXiv, 2016
Not covered in this presentation: 

- Diederik P. Kingma, Danilo J. Rezende, Shakir Mohamed, Max Welling, Semi-Supervised Learning with Deep 
Generative Models, NIPS, 2014 

- Lars Maaløe, Casper Kaae Sønderby, Søren Kaae Sønderby, Ole Winther, Auxiliary Deep Generative Models 
arXiv, 2016 
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