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- Review Generative Adversarial Network
- Introduce Variational Autoencoder (VAE)
- VAE applications

- VAE + GANs
- Introduce Conditional VAE (CVAE)
- Conditional VAE applications.

- Attribute2lmage

- Diverse Colorization

- Forecasting motion
- Take aways



Recap: Generative Model + GAN

Last lecture we discussed generative models

- Task: Given a dataset of images {X1,X2...} can we learn the distribution
of X?
- Typically generative models implies modelling P(X).
- Very limited, given an image the model outputs a probability
- More Interested in models which we can sample from.
- Can generate random examples that follow the distribution of P(X).



Recap: Generative Model + GAN

Recap: Generative Adversarial Network
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- Pro: Do not have to explicitly specify a form on P(X|z), z is the latent

space.

- Con: Given a desired image, difficult to map back to the latent variable.
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http://slazebni.cs.illinois.edu/spring17/lec11_gan.pdf
http://slazebni.cs.illinois.edu/spring17/lec11_gan.pdf

Manifold Hypothesis

Natural data (high dimensional) actually lies in a low dimensional space.
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Image Credit;: Deep learning book



http://www.deeplearningbook.org/
http://www.deeplearningbook.org/

Variational Autoencoder (VAE)

Variational Autoencoder (2013) work prior to GANs (2014)

- Explicit Modelling of P(X|z; 8), we will drop the 6 in the notation.
-z ~ P(z), which we can sample from, such as a Gaussian distribution.

P(X)= /P(X|z;€)P(z)dz

- Maximum Likelihood - Find 6 to maximize P(X), where X is the data.
- Approximate with samples of z

1 T
E;ﬂ (X|2;)
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Variational Autoencoder (VAE)

Approximate with samples of z
1 n
LS
T n
i=0

Need a lot of samples of z and most of the P(X|z) = 0.
Not practical computationally.

Question: Is it possible to know which z will generate P(X|z) >> 0?
- Learn a distribution Q(z), where z ~ Q(z) generates P(X|z) >> 0.
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Variational Autoencoder (VAE)

Assume we can learn a distribution Q(z), where z ~ Q(z) generates P(X|z) >>0

- WewantP(X) =E P(X|z), but not practical.  P(X ~l E P(X|z)
T
§=—1)

z~P(2)

- We can compute E P(X|z), more practical.

z~Q(2)

- Question: How does E P(X|z) and P(X) relate?

z~Q(2)

- In the following slides, we derive the following relationship

log P(X) — D [Q(2)[|P(z|X)] = Ez~q [log P(X|z)] — D [Q(2)]|P(2)]



Variational Autoencoder (VAE)

Assume we can learn a distribution Q(z), where z ~ Q(z) generates P(X|z) >>0

- WewantP(X) =E P(X|z), but not practical.  P(X ~l E P(X|z)
T
§=—1)

z~P(2)

- We can compute E P(X|z), more practical.

z~Q(2)

- Question: How does E P(X|z) and P(X) relate?

z~Q(2)

- In the following slides, we derive the following relationship

log P(X) — D [Q(2)[|P(z|X)] = Ez~q [log P(X|z)] — D [Q(2)]|P(2)]



Variational Autoencoder (VAE)

Assume we can learn a distribution Q(z), where z ~ Q(z) generates P(X|z) >>0

- WewantP(X) =E P(X|z), but not practical.  P(X ~l E P(X|z)
T
§=—1)

z~P(2)

- We can compute E P(X|z), more practical.

z~Q(2)

- Question: How does E P(X|z) and P(X) relate?

z~Q(2)

- In the following slides, we derive the following relationship

log P(X) — D [Q(2)[|P(z|X)] = Ez~q [log P(X|z)] — D [Q(2)]|P(2)]



Variational Autoencoder (VAE)

Assume we can learn a distribution Q(z), where z ~ Q(z) generates P(X|z) >>0

- WewantP(X) =E P(X|z), but not practical.  P(X ~l E P(X|z)
T
§=—1)

z~P(2)

- We can compute E P(X|z), more practical.

z~Q(2)

- Question: How does E P(X|z) and P(X) relate?

z~Q(2)

- In the following slides, we derive the following relationship

log P(X) — D [Q(2)[|P(z|X)] = Ez~q [log P(X|z)] — D [Q(2)]|P(2)]



Variational Autoencoder (VAE)

Assume we can learn a distribution Q(z), where z ~ Q(z) generates P(X|z) >>0
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Relating E P(X|z) and P(X)
z~Q(2)

- Definition of KL divergence:
D [Q(2) || P(z]X)] = E;~q [log Q(z) — log P(z] X))

- Apply Bayes Rule on P(z|X) and substitute into the equation above.
- P(zIX) = P(X|z) P(z) / P(X)
- log (P(zIX)) = log P(X|z) + log P(z) - log P(X)

- P(X) does not depend on z, can take it outside of E, o

D[Q(z)||P(z|X)] = Ez~q [log Q(z) — log P(X|z) — log P(z)] + log P(X)
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Why is this important?
log P(X) — D [Q(z)||P(z|X)] = Eznq [log P(X|2z)] — D [Q(z)||P(2)]

- Recall we want to maximize P(X) with respect to 6, which we cannot do.
- KL divergence is always > 0.

- log P(X) > log P(X) - D[Q(2) || P(zIX)].

- Maximize the lower bound instead.

- Question: How do we get Q(z) ?
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How to Get Q(z)?

log P(X) — D [Q(z)|P(z|X)] = Ez~q [log P(X|z)] — D [Q(2)||P(z)]

- Q(z) or Q(z|X)?
- Model Q(z|X) with a neural network. [
- Assume Q(z|X) to be Gaussian, N(y, c-1) Encoder
Q(z[X)
Neural network outputs the mean y, and
diagonal covariance matrix ¢ - I. ‘

Input: Image, Output: Distribution -

Let’s call Q(z|X) the Encoder.
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VAE's Loss function

Convert the lower bound to a loss function:
log P(X) — D [Q(2)||P(z|X)] = Ez~g [log P(X|z)] — D [Q(2)||P(z)]

- Model P(X|z) with a neural network, let f(z) be the network output.
- Assume P(X|z) to be i.i.d. Gaussian
- X=f(z)+n ,wheren ~N(0,l) *Think Linear Regression*
Simplifies to an /, loss: [IX-f(z)II°

Let’s call P(X|z) the Decoder.
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VAE's Loss function

Convert the lower bound to a loss function:
log P(X) — D [Q(2)||P(z|X)] = Ez~q[log P(X|z)] — D [Q(z) || P(z)]
Assume P(z) ~ N(0,l) then D[Q(z|X) || P(z)] has a closed form solution.

Putting it all together: E__ log P(X|z) OC |- f(z)II?
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Variational Autoencoder

Training the Decoder is easy, just

IX = f(2)II°
standard backpropagation. A
f(z)
How to train the Encoder? i
Decoder
- Not obvious how to apply gradient KLN (u(X). 2(X))| IV (0, T)] L;J

descent through samples.

Imaage Credit: Tutorial on VAEs & unknown



https://arxiv.org/abs/1606.05908
https://arxiv.org/abs/1606.05908

Reparameterization Trick

How to effectively backpropagate
through the z samples to the
Encoder?

Reparametrization Trick

-z~ N(y, o) is equivalent to

- u+0 - g wheree ~N(0, 1)

- Now we can easily backpropagate
the loss to the Encoder.

Imaage Credit: Tutorial on VAEs

IX = F(I°

KLIN (p(X), E(X)|IN(0, )] | Decoder

Sample ¢ from N((), I}



https://arxiv.org/abs/1606.05908
https://arxiv.org/abs/1606.05908

VAE Training

Given a dataset of examples X = {X1, X2...}
Initialize parameters for Encoder and Decoder
Repeat till convergence:
XM <-- Random minibatch of M examples from X
g <-- Sample M noise vectors from N(0, I)
Compute L(XM, g, 8) (i.e. run a forward pass in the neural network)

Gradient descent on L to updated Encoder and Decoder.
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Repeat till convergence:
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VAE Testing

At test-time, we want to evaluate the performance of VAE to generate a
new sample.

Remove the Encoder, as no test-image for generation task.
Sample z ~ N(0,/) and pass it through the Decoder.
No good quantitative metric, relies on visual inspection.

J(z)
:

Decoder

(")
1

sample = from A(1. /)
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VAE Testing

- At test-time, we want to evaluate the performance of VAE to generate a

new sample.

- Remove the Encoder, as no test-image for generation task.
- Sample z ~ N(0,/) and pass it through the Decoder.
- No good quantitative metric, relies on visual inspection.

Image Credit: Tutorial on VAE

f(z)
Decoder

(P
UL

sample = from A7) /)
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Common VAE architecture

Fully Connected (Initially Proposed)

ﬂput \ ( Reconstructed input\

Latent Space
Representation

Encoder I Decoder

_/ \_ |

Common Architecture (convolutional) similar to DCGAN.

3

Encoder Decoder
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Autoencoder can disentangle latent factors [MNIST DEMO]:
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Image Credit: Auto-encoding Variational Bayes
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Disentangle latent factor
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We have seen very similar results during last lecture: InfoGan.
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VAE vs. GAN

VAE

Encoder J oz 1 Decoder
z » Generator Discriminator

o

X
““3\“

7]
iy,
e300
2%

ONNAXERNN

Imaage Credit; Autoencoding bevond pixels using a learned similarity metric
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VAE vs. GAN

VAE
Encoder " Z ~ Decoder
T v : Given an X easy to find z.
v . Interpretable probability P(X)
X: Usually outputs blurry Images
GAN
z > Generator Discriminator
v : Very sharp images |
X: Given an X difficult
to find z. (Need to W
backprop.)

v IX: No explicit P(X).

Imaage Credit; Autoencoding bevond pixels using a learned similarity metric
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GAN + VAE (Best of both models)

Decoder /
Generator

Encoder " Z >

-
ﬁm:(V Voderf generator
T z
» REAL/ GEN

e
L . .
T discriminator

b AE ——
| GAN |

Imaage Credit; Autoencoding bevond pixels using a learned similarity metric

Discriminator

KL Divergence L, Difference

N/

Dis
L = Lprior + Lyjye

+ Lgan
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VAE, : Train a GAN first, then use the discriminator of GAN to train a VAE.

VAE/GAN: GAN and VAE trained together.

Image Credit: Autoencoding bevond pixels using a learned similarity metric
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Conditional VAE (CVAE)

What if we have labels? (e.g. digit
labels or attributes) Or other inputs
we wish to condition on (Y).

None of the derivation changes.
Replace all P(X|z) with P(X|z,Y).
Replace all Q(z|X) with Q(z|X,Y).

Go through the same KL divergence
procedure, to get the same lower
bound.

Imaage Credit: Tutorial on VAEs

IX — F()I?
A
f(2)
I

KLN (u(X). X(X))|IN(0,1)]| | Decoder
N LPJ
+
LX) (20X} *
Encoder Sample € frnmf.-\,-"['(]%
(<)) /
 S—
X %
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Conditional VAE (CVAE)

What if we have labels? (e.g. digit X7
labels or attributes) Or other inputs 1
: - f(z)
we wish to condition on (Y). A
LN (p(X), X(X))|IN(0,7)]| | Decoder

.
-

- None of the derivation changes. | ()
- Replace all P(X|z) with P(X|z,Y). | -
- Replace all Q(z|X) with Q(z|X,Y).

- Go through the same KL divergence X)) 20 .
procedure, to get the same lower Encoder | [sample ¢ from (0, /]
bound. [f T~ /

X v

Imaage Credit: Tutorial on VAEs
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Conditional VAE (CVAE)

What if we have labels? (e.g. digit

IX - f(2)I
labels or attributes) Or other inputs U\
: - f(z)
we wish to condition on (Y). A
KLIN(p(X), X(X))|IN(0,I)]| | Decoder

- NONE of the derivation changes. A ()

- Replace all P(X|z) with P(X|z,Y). ~

- Replace all Q(z|X) with Q(z|X,Y). . .

- Go through the same KL divergence LCINECY) w
procedure, to get the same lower Encoder | |sample ¢ from (0, /]
bound. [f ~_

/
X Y

Imaage Credit: Tutorial on VAEs
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Common CVAE architecture

Common Architecture (convolutional) for CVAE

3
i128
Attributes I I

32

iy

64

Image




CVAE Testing

- Again, remove the Encoder as test time
- Sample z ~ N(0,/) and input a desired Y to the Decoder.

fiz)

T
Decoder
{_F} \
3
Sample = from A1 /) Y

Image Credit: Tutorial on VAE
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viewpoint

?

? |background
? | lighting
?

0.9/ age: young
1.3| gender: female

a young girl with brown
hair 1s smiling.

!

-0.4| hair color: brown

expression: smilej

r-----
o
00

Attribute-conditioned Image Generation

Image Credit: Attribute2lmage
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Attribute-conditioned image progression

Female Smiling Frowning  Black hair Blonde hair

- I:""&
'.!'""!";'1' e

(a) progression on gender (c) progression on expression (e) progression on hair color
Senior No eyewear Eyewear  Blue

(b) progression on age (d) progression on eyewear (f) progression on primary color

z) with z ~ N(0,I) and ¥y = [Ya, Yrest], Where yo = (1 —Q)-Ymin+Q Ymaxzx

Image Credit: Attribute2lmaage
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Learning Diverse Image Colorization

Image Colorization

- An ambiguous problem

Picture Credit:


https://pixabay.com/en/vw-camper-vintage-car-vw-vehicle-1939343/

Learning Diverse Image Colorization

Image Colorization

- An ambiguous problem

Blue?
Red?

Picture Credit:


https://pixabay.com/en/vw-camper-vintage-car-vw-vehicle-1939343/

Goal:
Learn a conditional model P(C|G)

Color field C, given grey level image G

Next, draw samples from {Ck}N 1~ P(C|G) to obtain diverse colorization



Goal:
Learn a conditional model P(C|G)

Color fiel iven grey level image G

Next, draw samples from {Ck}N 1~ P(C|G) to obtain diverse colorization

Difficult to learn!

Exceedingly high dimensions!
(Curse of dimensionality)



Goal:
Learn a conditional model P(C|G)

Color field C, given grey level image G.
Instead of learning C directly, learn a low-dimensional embedding variable z
(VAE).

Using another network, learn P(z|G).
- Use a Mixture Density Network(MDN)
- Good for learning multi-modal conditional model.

At test time, use VAE decoder to obtain Ck for each Z,



Architecture

Training Procedure

Step 1

:

Color

Decoder

Image \

(C)
MDN

Gray
Image

(G)

Imaage Credit: Learning Diverse Image Colorization

Step 2

Color
Image

(C)

Testing Procedure

Multiple
Viable
Colorizations

Gray
Image
(G)
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Devil is in the details

Step 1: Learn a low dimensional z for color.

- Standard VAE: Overly smooth and “washed out”, as training using L, loss
directly on the color space.

Authors introduced several new loss functions to solve this problem.
1. Weighted L, on the color space to encourage "color” diversity. Weighting the
very common color smaller.

2. Top-k principal components, P,, of the color space. Minimize the L, of the
projection.

3. Encourage color fields with the same gradient as ground truth.

£dec — /Chist il )\mahﬁmah UK )\gradﬁgra,d
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Devil is in the details

Step 2: Conditional Model: Grey-level to Embedding

M
Emdﬂ =Tt logP(zlG) Pt IDgZ?Ti (G,¢)N(Z|ﬂ;i (G,(}ﬁ) :J)

i=1

- Learn a multimodal distribution

- At test time sample at each mode to generate diversity.

- Similar to CVAE, but this has more “explicit” modeling of the P(z|G).
- Comparison with CVAE, condition on the gray scale image.



(a) Ours (b) CVAE (c) Zhang (d) GT
etal| ]

Image Credit: Learning Diverse Image Colorization
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Effects of Loss Terms

Truth

LFW Dataset

Image Credit: Learning Diverse Image Colorization
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Forecasting from Static Images

- Given an image, humans can often infer how the objects in the image
might move

- Modeled as dense trajectories of how each pixel will move over time

Image Credit: An Uncertain Future: Forecasting from static Images Using VAEs
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Forecasting from Static Images

- Given an image, humans can often infer how the objects in the image
might move

- Modeled as dense trajectories of how each pixel will move over time

Image Credit: An Uncertain Future: Forecasting from static Images Using VAEs
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Applications: Forecasting from Static Images

Image Credit: An Uncertain Future: Forecasting from static Images Using VAEs
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Applications: Forecasting from Static Images

Image Credit: An Uncertain Future: Forecasting from static Images Using VAEs
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Forecasting from Static Images

- Given an image, humans can often infer how the objects in the image
might move.
- Modeled as dense trajectories of how each pixel will move over time.
- Why is this difficult?
- Multiple possible solutions
- Recall that latent space can encode information not in the image

- By using CVAEs, multiple possibilities can be generated



Forecasting from Static Images

1011

Predi

2

10Mm

Predi

(a) Trajectories on Image (b) Trajectories in Space-Time

Image Credit: An Uncertain Future: Forecasting from static Images Using VAEs
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Architecture

‘g%

Decoder Tower
5 Layers

Random Samples
z~N(D,1)

(a) Testing Architecture

Imaage Credit: An Uncertain Future: Forecasting from static Images Using VAEs

4

)

Euclidean Loss
Iy =¥

KL-Divergence Loss
KL(Q{z|X, ¥}|IN(0,1))

Encoder
Tower QzIX Y}

R e

(b) Training Architecture
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Encoder Tower - Training Only

Computed
Optical
Flow

i

- Euclidean Loss
Parameters iy =¥l

From Image

Tower Q(z|X. ¥} KL{Qiz|X, F}|IN(0.1])

Learnt distributions of

trajectories

Image Credit: An Uncertain Future: Forecasting from static Images Using VAEs
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Image Tower - Training

Fully
Convolutional

i

Euclidean Loss
Iy =¥

Image Credit: An Uncertain Future: Forecasting from static Images Using VAEs
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Decoder Tower - Training

R ZEX)

74
Output
trajectories

Decoder Towe Euclidean Loss
5 Layers Iy = ¥l|
Encodar HKL-Divergence Loss
Tower Q{z|X. ¥} KL(Q{z|X.Y)|IN{0,1))
Rl sumes

Image Credit: An Uncertain Future: Forecasting from static Images Using VAEs
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N

Conditioned on
Input Image

Decoder Tower

Sample from learnt 5 Layers

distribution

Random Samples
2~N(D, 1)

Image Credit: An Uncertain Future: Forecasting from static Images Using VAEs
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1

101

Predi

Prediction 2 _

Image Credit: An Uncertain Future: Forecasting from static Images Using VAEs
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Pred iction 1

2

101

L2 RUTSTra o [N R R

Predi

Image Credit: An Uncertain Future: Forecasting from static Images Using VAEs
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Prediction 1

Prediction 2

Image Credit: An Uncertain Future: Forecasting from static Images Using VAEs
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Video Demo

Cluster 4/5
15% of Samples

._

Video: http://www.cs.cmu.edu/~jcwalker/DTP/DTP.html


http://www.youtube.com/watch?v=3PYgrmoG-OA
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Number of Samples vs. Minimum Euclidean Error

e

£
:
3

[ = 0urs
om —w
| Opiical Flow
. . (o egraaior Mo
uﬂ 100 200 300 400 500 600 0 TOO BOO
of les

Image Credit: An Uncertain Future: Forecasting from static Images Using VAEs

Method

Negative Log

Likelihood
Regressor 11563
Optical Flow (Walker et 11734
al 2015)
Proposed 11082

e Significantly outperforms all existing methods
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Applications: Facial Expression Editing

Synthesized
Image

Confidence
Mask

Disclaimer: | am one of the authors of this paper.

- Instead of encoding pixels to a lower dimensional space, encode the flow.
- Uses bilinear sampling layer introduced in Spatial transformer networks
(Covered in one of the previous lecture).

Imaage Credit: Semantic Facial Expression Editing Using Autoencoded Flow
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Single Image Expression Magnification and Suppression

Latent Space (z)

Imaaqge Credit: Semantic Facial Expression Editing Using Autoencoded Flow
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Results: Expression Editing

Original Squint

Suppress Original  Magnify

Image Credit;: Semantic Facial Expression Editing Using Autoencoded Flow
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Results: Expression Interpolation

Latent Space (z)

These images in between are generated!

Imaaqge Credit: Semantic Facial Expression Editing Using Autoencoded Flow
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Closing Remarks

GAN and VAEs are both popular
- Generative models use VAE for easy generation of z given X.
- Generative models use GAN to generate sharp images given z.
- For images, model architecture follows DCGAN's practices, using strided
convolution, batch-normalization, and Relu.

Topics Not Covered:
Features learned from VAEs and GANs both can be used in the
semi-supervised setting.
- “Semi-Supervised Learning with Deep Generative Models” [King ma et. al]
(Follow up work by the original VAE author)
- “Auxiliary Deep Generative Models” [Maalge, et. al]



Questions?



Reading List

- D. Kingma, M. Welling, Auto-Encoding Variational Bayes, ICLR, 2014

- Carl Doersch, Tutorial on Variational Autoencoders arXiv, 2016

- Xinchen Yan, Jimei Yang, Kihyuk Sohn, Honglak Lee, Atiribute2lmace: Conditional Image Generation from
Visual Attributes, ECCV, 2016

- Jacob Walker, Carl Doersch, Abhinav Gupta, Martial Hebert, An Uncertain Future: Forecasting from Static
Images using Variational Autoencoders, ECCV, 2016

- Anders Boesen Lindbo Larsen, Sgren Kaae Sgnderby, Hugo Larochelle, Ole Winther, Autoencoding beyond
pixels using a learned similarity metric, ICML, 2016

- Aditya Deshpande, Jiajun Lu, Mao-Chuang Yeh, David Forsyth, L carning Diverse Imacge Colorization, arXiv,
2016

- Raymond Yeh, Ziwei Liu, Dan B Goldman, Aseem Agarwala, Scmaniic Facial Expression Editing using
Autoencoded Flow, arXiv, 2016

Not covered in this presentation:

- Diederik P. Kingma, Danilo J. Rezende, Shakir Mohamed, Max Welling, Semi-Supervised Learning with Deep
Generative Models, NIPS, 2014

- Lars Maalge, Casper Kaae Sgnderby, Sgren Kaae Sgnderby, Ole Winther, Auxiliary Deep Generative Models
arXiv, 2016



https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1606.05908
https://arxiv.org/abs/1512.00570
https://arxiv.org/abs/1512.00570
https://arxiv.org/abs/1512.00570
https://arxiv.org/abs/1606.07873
https://arxiv.org/abs/1606.07873
https://arxiv.org/abs/1606.07873
https://arxiv.org/abs/1512.09300
https://arxiv.org/abs/1512.09300
https://arxiv.org/abs/1512.09300
https://arxiv.org/abs/1612.01958
https://arxiv.org/abs/1611.09961
https://arxiv.org/abs/1611.09961
https://arxiv.org/abs/1611.09961
https://arxiv.org/abs/1406.5298
https://arxiv.org/abs/1406.5298
https://arxiv.org/abs/1406.5298
https://arxiv.org/abs/1602.05473

