CS598LAZ - Variational Autoencoders

Raymond Yeh, Junting Lou, Teck-Yian Lim

Outline

- Review Generative Adversarial Network
- Introduce Variational Autoencoder (VAE)
- VAE applications
 - VAE + GANs
- Introduce Conditional VAE (CVAE)
- Conditional VAE applications.
 - Attribute2Image
 - Diverse Colorization
 - Forecasting motion
- Take aways

Recap: Generative Model + GAN

Last lecture we discussed **generative models**

- Task: Given a dataset of images {X1,X2...} can we learn the distribution of X?
- Typically generative models implies modelling P(X).
 - Very limited, given an image the model outputs a probability
- More Interested in models which we can sample from.
 - Can generate random examples that follow the distribution of P(X).

Recap: Generative Model + GAN

Recap: Generative Adversarial Network

- Pro: Do not have to explicitly specify a form on P(X|z), z is the latent space.
- Con: Given a desired image, difficult to map back to the latent variable.

Manifold Hypothesis

Natural data (high dimensional) actually lies in a low dimensional space.

Variational Autoencoder (2013) work prior to GANs (2014)

- Explicit Modelling of $P(X|z;\theta)$, we will drop the θ in the notation.
- $z \sim P(z)$, which we can sample from, such as a Gaussian distribution.

$$P(X) = \int P(X|z;\theta)P(z)dz$$

- Maximum Likelihood --- Find θ to maximize P(X), where X is the data.
- Approximate with samples of z

$$P(X) \approx \frac{1}{n} \sum_{i=0}^{n} P(X|z_i)$$

Variational Autoencoder (2013) work prior to GANs (2014)

- Explicit Modelling of $P(X|z;\theta)$, we will drop the θ in the notation.
- $z \sim P(z)$, which we can sample from, such as a Gaussian distribution.

$$P(X) = \int P(X|z;\theta)P(z)dz$$

- Maximum Likelihood --- Find θ to maximize P(X), where X is the data.
- Approximate with samples of z

$$P(X) \approx \frac{1}{n} \sum_{i=0}^{n} P(X|z_i)$$

Approximate with samples of z

$$P(X) \approx \frac{1}{n} \sum_{i=0}^{n} P(X|z_i)$$

- Need a lot of samples of z and most of the $P(X|z) \approx 0$.
- Not practical computationally.
- **Question:** Is it possible to know which z will generate P(X|z) >> 0?
 - Learn a distribution Q(z), where $z \sim Q(z)$ generates P(X|z) >> 0.

Approximate with samples of z

$$P(X) \approx \frac{1}{n} \sum_{i=0}^{n} P(X|z_i)$$

- Need a lot of samples of z and most of the $P(X|z) \approx 0$.
- Not practical computationally.
- Question: Is it possible to know which z will generate P(X|z) >> 0?
 - Learn a distribution Q(z), where $z \sim Q(z)$ generates P(X|z) >> 0.

Approximate with samples of z

$$P(X) \approx \frac{1}{n} \sum_{i=0}^{n} P(X|z_i)$$

- Need a lot of samples of z and most of the $P(X|z) \approx 0$.
- Not practical computationally.
- Question: Is it possible to know which z will generate P(X|z) >> 0?
 - Learn a distribution Q(z), where $z \sim Q(z)$ generates P(X|z) >> 0.

- We want $P(X) = E_{z \sim P(z)} P(X|z)$, but not practical. $P(X) \approx \frac{1}{n} \sum_{i=0}^{n} P(X|z_i)$
- We can compute $E_{z\sim Q(z)}P(X|z)$, more practical.
- **Question:** How does $E_{z\sim O(z)}P(X|z)$ and P(X) relate?
 - In the following slides, we derive the following relationship

$$\log P(X) - \mathcal{D}[Q(z)||P(z|X)] = E_{z \sim Q}[\log P(X|z)] - \mathcal{D}[Q(z)||P(z)]$$

- We want $P(X) = E_{z \sim P(z)} P(X|z)$, but not practical. $P(X) \approx \frac{1}{n} \sum_{i=0}^{n} P(X|z_i)$
- We can compute $E_{z\sim Q(z)}P(X|z)$, more practical.
- **Question:** How does $E_{z\sim O(z)}P(X|z)$ and P(X) relate?
 - In the following slides, we derive the following relationship

$$\log P(X) - \mathcal{D}[Q(z)||P(z|X)] = E_{z \sim Q}[\log P(X|z)] - \mathcal{D}[Q(z)||P(z)]$$

- We want $P(X) = E_{z \sim P(z)} P(X|z)$, but not practical. $P(X) \approx \frac{1}{n} \sum_{i=0}^{n} P(X|z_i)$
- We **can** compute $E_{z\sim Q(z)}P(X|z)$, more practical.
- **Question:** How does $E_{z\sim O(z)}P(X|z)$ and P(X) relate?
 - In the following slides, we derive the following relationship

$$\log P(X) - \mathcal{D}\left[Q(z)\|P(z|X)\right] = E_{z \sim Q}\left[\log P(X|z)\right] - \mathcal{D}\left[Q(z)\|P(z)\right]$$

- We want $P(X) = E_{z \sim P(z)} P(X|z)$, but not practical. $P(X) \approx \frac{1}{n} \sum_{i=0}^{n} P(X|z_i)$
- We can compute $E_{z\sim Q(z)}P(X|z)$, more practical.
- Question: How does $E_{z\sim O(z)}P(X|z)$ and P(X) relate?
 - In the following slides, we derive the following relationship

$$\log P(X) - \mathcal{D}\left[Q(z)\|P(z|X)\right] = E_{z \sim Q}\left[\log P(X|z)\right] - \mathcal{D}\left[Q(z)\|P(z)\right]$$

- We want $P(X) = E_{z \sim P(z)} P(X|z)$, but not practical.
- $P(X) \approx \frac{1}{n} \sum_{i=0}^{n} P(X|z_i)$
- We can compute $E_{z\sim Q(z)}P(X|z)$, more practical.
- Question: How does $E_{z\sim O(z)}P(X|z)$ and P(X) relate?
 - In the following slides, we derive the following relationship

$$\log P(X) - \mathcal{D}[Q(z) || P(z|X)] = E_{z \sim Q} [\log P(X|z)] - \mathcal{D}[Q(z) || P(z)]$$

$$\mathcal{D}\left[Q(z)\|P(z|X)\right] = E_{z\sim Q}\left[\log Q(z) - \log P(z|X)\right]$$

- Apply Bayes Rule on P(z|X) and substitute into the equation above.
 - P(z|X) = P(X|z) P(z) / P(X)
 - $\log (P(z|X)) = \log P(X|z) + \log P(z) \log P(X)$
 - P(X) does not depend on z, can take it outside of $E_{z\sim 0}$

$$\mathcal{D}[Q(z)||P(z|X)] = E_{z \sim Q} [\log Q(z) - \log P(X|z) - \log P(z)] + \log P(X)$$

$$\mathcal{D}\left[Q(z)\|P(z|X)\right] = E_{z\sim Q}\left[\log Q(z) - \log P(z|X)\right]$$

- Apply Bayes Rule on P(z|X) and substitute into the equation above.
 - P(z|X) = P(X|z) P(z) / P(X)
 - $\log (P(z|X)) = \log P(X|z) + \log P(z) \log P(X)$
 - P(X) does not depend on z, can take it outside of $E_{z\sim 0}$

$$\mathcal{D}[Q(z)||P(z|X)] = E_{z \sim Q} [\log Q(z) - \log P(X|z) - \log P(z)] + \log P(X)$$

$$\mathcal{D}\left[Q(z)\|P(z|X)\right] = E_{z\sim Q}\left[\log Q(z) - \log P(z|X)\right]$$

- Apply Bayes Rule on P(z|X) and substitute into the equation above.
 - P(z|X) = P(X|z) P(z) / P(X)
 - $\log (P(z|X)) = \log P(X|z) + \log P(z) \log P(X)$
 - P(X) does not depend on z, can take it outside of $E_{z\sim 0}$

$$\mathcal{D}[Q(z)||P(z|X)] = E_{z \sim Q} [\log Q(z) - \log P(X|z) - \log P(z)] + \log P(X)$$

$$\mathcal{D}\left[Q(z)\|P(z|X)\right] = E_{z\sim Q}\left[\log Q(z) - \log P(z|X)\right]$$

- Apply Bayes Rule on P(z|X) and substitute into the equation above.
 - P(z|X) = P(X|z) P(z) / P(X)
 - $\log (P(z|X)) = \log P(X|z) + \log P(z) \log P(X)$
 - P(X) does not depend on z, can take it outside of $E_{z\sim 0}$

$$\mathcal{D}\left[Q(z)\|P(z|X)\right] = E_{z\sim Q}\left[\log Q(z) - \log P(X|z) - \log P(z)\right] + \log P(X)$$

$$\mathcal{D}\left[Q(z)\|P(z|X)\right] = E_{z\sim Q}\left[\log Q(z) - \log P(z|X)\right]$$

- Apply Bayes Rule on P(z|X) and substitute into the equation above.
 - P(z|X) = P(X|z) P(z) / P(X)
 - $\log (P(z|X)) = \log P(X|z) + \log P(z) \log P(X)$
 - P(X) does not depend on z, can take it outside of $E_{z\sim 0}$

$$\mathcal{D}\left[Q(z)\|P(z|X)\right] = E_{z\sim Q}\left[\log Q(z) - \log P(X|z) - \log P(z)\right] + \log P(X)$$

$$\mathcal{D}[Q(z)||P(z|X)] = E_{z \sim Q} [\log Q(z) - \log P(X|z) - \log P(z)] + \log P(X)$$

Rearrange the terms:

$$E_{z\sim Q} [\log Q(z) - \log P(z)] = D [Q(z) || P(z)]$$

 $\log P(X) - \mathcal{D}[Q(z)||P(z|X)] = E_{z \sim Q}[\log P(X|z)] - \mathcal{D}[Q(z)||P(z)]$

$$\mathcal{D}[Q(z)||P(z|X)] = E_{z \sim Q}[\log Q(z) - \log P(X|z) - \log P(z)] + \log P(X)$$

$$E_{z \sim 0} [\log Q(z) - \log P(z)] = D[Q(z) || P(z)]$$

$$\log P(X) - \mathcal{D}[Q(z) || P(z|X)] = E_{z \sim Q} [\log P(X|z)] - \mathcal{D}[Q(z) || P(z)]$$

$$\mathcal{D}[Q(z)||P(z|X)] = E_{z \sim Q} [\log Q(z) - \log P(X|z) - \log P(z)] + \log P(X)$$

$$E_{z\sim 0} [\log Q(z) - \log P(z)] = D [Q(z) || P(z)]$$

$$\log P(X) - \mathcal{D}[Q(z) || P(z|X)] = E_{z \sim Q} [\log P(X|z)] - \mathcal{D}[Q(z) || P(z)]$$

$$\mathcal{D}[Q(z)||P(z|X)] = E_{z \sim Q}[\log Q(z) - \log P(X|z) - \log P(z)] + \log P(X)$$

$$E_{z \sim 0} [\log Q(z) - \log P(z)] = D [Q(z) || P(z)]$$

$$\log P(X) - \mathcal{D}[Q(z) || P(z|X)] = E_{z \sim Q} [\log P(X|z)] - \mathcal{D}[Q(z) || P(z)]$$

$$\mathcal{D}[Q(z)||P(z|X)] = E_{z \sim Q}[\log Q(z) - \log P(X|z) - \log P(z)] + \log P(X)$$

$$E_{z \sim 0} [\log Q(z) - \log P(z)] = D [Q(z) || P(z)]$$

$$\log P(X) - \mathcal{D}[Q(z)||P(z|X)] = E_{z \sim Q}[\log P(X|z)] - \mathcal{D}[Q(z)||P(z)]$$

$$\log P(X) - \mathcal{D}[Q(z) || P(z|X)] = E_{z \sim Q} [\log P(X|z)] - \mathcal{D}[Q(z) || P(z)]$$

- Recall we want to maximize P(X) with respect to θ , which we cannot do.
- KL divergence is always > 0.
- $\log P(X) > \log P(X) D[Q(z) || P(z|X)].$
- Maximize the lower bound instead.
- Question: How do we get Q(z)?

$$\log P(X) - \mathcal{D}\left[Q(z)\|P(z|X)\right] = E_{z \sim Q}\left[\log P(X|z)\right] - \mathcal{D}\left[Q(z)\|P(z)\right]$$

- Recall we want to **maximize** P(X) with respect to θ , which we cannot do.
- KL divergence is always > 0.
- $\log P(X) > \log P(X) D[Q(z) || P(z|X)].$
- Maximize the lower bound instead.
- Question: How do we get Q(z)?

$$\log P(X) - \mathcal{D}[Q(z)||P(z|X)] = E_{z \sim Q} [\log P(X|z)] - \mathcal{D}[Q(z)||P(z)]$$

- Recall we want to **maximize** P(X) with respect to θ , which we cannot do.
- KL divergence is always > 0.
- $\log P(X) > \log P(X) D[Q(z) || P(z|X)].$
- Maximize the lower bound instead.
- Question: How do we get Q(z)?

$$\log P(X) - \mathcal{D}[Q(z) || P(z|X)] = E_{z \sim Q} [\log P(X|z)] - \mathcal{D}[Q(z) || P(z)]$$

- Recall we want to **maximize** P(X) with respect to θ , which we cannot do.
- KL divergence is always > 0.
- $\log P(X) > \log P(X) D[Q(z) || P(z|X)].$
- Maximize the lower bound instead.
- Question: How do we get Q(z)?

$$\log P(X) - \mathcal{D}\left[Q(z)||P(z|X)\right] = E_{z \sim Q}\left[\log P(X|z)\right] - \mathcal{D}\left[Q(z)||P(z)\right]$$

- Recall we want to **maximize P(X)** with respect to θ , which we cannot do.
- KL divergence is always > 0.
- $\log P(X) > \log P(X) D[Q(z) || P(z|X)].$
- Maximize the lower bound instead.
- Question: How do we get Q(z)?

$$\log P(X) - \mathcal{D}[Q(z)||P(z|X)] = E_{z \sim Q}[\log P(X|z)] - \mathcal{D}[Q(z)||P(z)]$$

- Q(z) or Q(z|X)?
- Model Q(z|X) with a neural network.
- Assume Q(z|X) to be Gaussian, $N(\mu, c \cdot I)$
 - Neural network outputs the mean μ, and diagonal covariance matrix c · I.
 - **Input:** Image, **Output:** Distribution

$$\log P(X) - \mathcal{D}[Q(z)||P(z|X)] = E_{z \sim Q}[\log P(X|z)] - \mathcal{D}[Q(z)||P(z)]$$

- Q(z) or Q(z|X)?
- Model Q(z|X) with a neural network.
- Assume Q(z|X) to be Gaussian, $N(\mu, c \cdot I)$
 - Neural network outputs the mean μ, and diagonal covariance matrix c · I.
 - **Input:** Image, **Output:** Distribution

$$\log P(X) - \mathcal{D}[Q(z)||P(z|X)] = E_{z \sim Q}[\log P(X|z)] - \mathcal{D}[Q(z)||P(z)]$$

- Q(z) or Q(z|X)?
- Model Q(z|X) with a neural network.
- Assume Q(z|X) to be Gaussian, $N(\mu, c \cdot I)$
 - Neural network outputs the mean μ, and diagonal covariance matrix c · I.
 - **Input:** Image, **Output:** Distribution

$$\log P(X) - \mathcal{D}[Q(z)||P(z|X)] = E_{z \sim Q}[\log P(X|z)] - \mathcal{D}[Q(z)||P(z)]$$

- Q(z) or Q(z|X)?
- Model Q(z|X) with a neural network.
- Assume Q(z|X) to be Gaussian, $N(\mu, c \cdot I)$
 - Neural network outputs the mean μ, and diagonal covariance matrix c · I.
 - **Input:** Image, **Output:** Distribution

$$\log P(X) - \mathcal{D}[Q(z) || P(z|X)] = E_{z \sim Q} [\log P(X|z)] - \mathcal{D}[Q(z) || P(z)]$$

- Q(z) or Q(z|X)?
- Model Q(z|X) with a neural network.
- Assume Q(z|X) to be Gaussian, $N(\mu, c \cdot I)$
 - Neural network outputs the mean μ, and diagonal covariance matrix c · I.
 - Input: Image, Output: Distribution

$$\log P(X) - \mathcal{D}[Q(z)||P(z|X)] = E_{z \sim Q}[\log P(X|z)] - \mathcal{D}[Q(z)||P(z)]$$

- Q(z) or Q(z|X)?
- Model Q(z|X) with a neural network.
- Assume Q(z|X) to be Gaussian, $N(\mu, c \cdot I)$
 - Neural network outputs the mean μ, and diagonal covariance matrix c · I.
 - Input: Image, Output: Distribution

Convert the lower bound to a loss function:

$$\log P(X) - \mathcal{D}\left[Q(z)\|P(z|X)\right] = E_{z \sim Q}\left[\log P(X|z)\right] - \mathcal{D}\left[Q(z)\|P(z)\right]$$

- Model P(X|z) with a neural network, let f(z) be the network output.
- Assume P(X|z) to be i.i.d. Gaussian
 - $X = f(z) + \eta$, where $\eta \sim N(0,I)$ *Think Linear Regression*
 - Simplifies to an I_2 loss: $||X-f(z)||^2$

Convert the lower bound to a loss function:

$$\log P(X) - \mathcal{D}[Q(z)||P(z|X)] = E_{z \sim Q}[\log P(X|z)] - \mathcal{D}[Q(z)||P(z)]$$

- Model P(X|z) with a neural network, let f(z) be the network output.
- Assume P(X|z) to be i.i.d. Gaussian
 - $X = f(z) + \eta$, where $\eta \sim N(0,I)$ *Think Linear Regression*
 - Simplifies to an I_2 loss: $||X-f(z)||^2$

Convert the lower bound to a loss function:

$$\log P(X) - \mathcal{D}[Q(z) || P(z|X)] = E_{z \sim Q} [\log P(X|z)] - \mathcal{D}[Q(z) || P(z)]$$

- Model P(X|z) with a neural network, let f(z) be the network output.
- Assume P(X|z) to be i.i.d. Gaussian
 - $X = f(z) + \eta$, where $\eta \sim N(0,I)$ *Think Linear Regression*
 - Simplifies to an I_2 loss: $||X-f(z)||^2$

Convert the lower bound to a loss function:

$$\log P(X) - \mathcal{D}[Q(z)||P(z|X)] = E_{z \sim Q}[\log P(X|z)] - \mathcal{D}[Q(z)||P(z)]$$

- Model P(X|z) with a neural network, let f(z) be the network output.
- Assume P(X|z) to be i.i.d. Gaussian
 - $X = f(z) + \eta$, where $\eta \sim N(0,I)$ *Think Linear Regression*
 - Simplifies to an I_2 loss: $||X-f(z)||^2$

Convert the lower bound to a loss function:

$$\log P(X) - \mathcal{D}[Q(z)||P(z|X)] = E_{z \sim Q}[\log P(X|z)] - \mathcal{D}[Q(z)||P(z)]$$

- Model P(X|z) with a neural network, let f(z) be the network output.
- Assume P(X|z) to be i.i.d. **Gaussian**
 - $X = f(z) + \eta$, where $\eta \sim N(0,I)$ *Think Linear Regression*
 - Simplifies to an I_2 loss: $||X-f(z)||^2$

Convert the lower bound to a loss function:

$$\log P(X) - \mathcal{D}[Q(z) || P(z|X)] = E_{z \sim Q} [\log P(X|z)] - \mathcal{D}[Q(z) || P(z)]$$

- Model P(X|z) with a neural network, let f(z) be the network output.
- Assume P(X|z) to be i.i.d. Gaussian
 - $X = f(z) + \eta$, where $\eta \sim N(0,I)$ *Think Linear Regression*
 - Simplifies to an I_2 loss: $||X-f(z)||^2$

Convert the lower bound to a loss function:

$$\log P(X) - \mathcal{D}[Q(z)||P(z|X)] = E_{z \sim Q}[\log P(X|z)] - \mathcal{D}[Q(z)||P(z)]$$

Assume $P(z) \sim N(0,I)$ then D[Q(z|X) || P(z)] has a closed form solution.

Putting it all together:
$$E_{z \sim Q(z|X)} \log P(X|z)$$
 $||X-f(z)||^2$

$$L = ||X - f(z)||^2 - \lambda \cdot D[Q(z) || P(z)]$$

Convert the lower bound to a loss function:

$$\log P(X) - \mathcal{D}[Q(z)||P(z|X)] = E_{z \sim Q}[\log P(X|z)] - \mathcal{D}[Q(z)||P(z)]$$

Assume $P(z) \sim N(0,I)$ then D[Q(z|X) || P(z)] has a closed form solution.

Putting it all together: $E_{z\sim O(z|X)}\log P(X|z)$ C $||X-f(z)||^2$

$$L = ||X - f(z)||^2 - \lambda \cdot D[Q(z) || P(z)]$$

Convert the lower bound to a loss function:

$$\log P(X) - \mathcal{D}\left[Q(z)||P(z|X)\right] = E_{z \sim Q}\left[\log P(X|z)\right] - \mathcal{D}\left[Q(z)||P(z)\right]$$

Assume $P(z) \sim N(0,I)$ then D[Q(z|X) || P(z)] has a closed form solution.

Putting it all together: $E_{z\sim O(z|X)}\log P(X|z) \bigcirc ||X-f(z)||^2$

$$L = ||X - f(z)||^2 - \lambda \cdot D[Q(z) || P(z)]$$

Convert the lower bound to a loss function:

$$\log P(X) - \mathcal{D}\left[Q(z)||P(z|X)\right] = E_{z \sim Q}\left[\log P(X|z)\right] - \mathcal{D}\left[Q(z)||P(z)\right]$$

Assume $P(z) \sim N(0,I)$ then D[Q(z|X) || P(z)] has a closed form solution.

Putting it all together: $E_{z\sim O(z|X)}\log P(X|z) \bigcirc ||X-f(z)||^2$

$$L = ||X - f(z)||^2 - \lambda \cdot D[Q(z) || P(z)]$$

Variational Autoencoder

Training the Decoder is easy, just standard backpropagation.

How to train the Encoder?

 Not obvious how to apply gradient descent through samples.

Reparameterization Trick

How to effectively backpropagate through the z samples to the Encoder?

Reparametrization Trick

- $z \sim N(\mu, \sigma)$ is equivalent to
- $\mu + \sigma \cdot \epsilon$, where $\epsilon \sim N(0, 1)$
- Now we can easily backpropagate the loss to the Encoder.

Given a dataset of examples **X** = {X1, X2...}

Initialize parameters for Encoder and Decoder

Repeat till convergence:

X^M <-- Random minibatch of M examples from **X**

ε <-- Sample M noise vectors from N(0, I)

Compute $L(X^M, \varepsilon, \theta)$ (i.e. run a forward pass in the neural network)

Given a dataset of examples **X** = {X1, X2...}

Initialize parameters for Encoder and Decoder

Repeat till convergence:

X^M <-- Random minibatch of M examples from X

ε <-- Sample M noise vectors from N(0, I)

Compute $L(X^M, \varepsilon, \theta)$ (i.e. run a forward pass in the neural network)

Given a dataset of examples **X** = {X1, X2...}

Initialize parameters for Encoder and Decoder

Repeat till convergence:

X^M <-- Random minibatch of M examples from **X**

ε <-- Sample M noise vectors from N(0, I)

Compute $L(X^M, \varepsilon, \theta)$ (i.e. run a forward pass in the neural network)

Given a dataset of examples **X** = {X1, X2...}

Initialize parameters for Encoder and Decoder

Repeat till convergence:

X^M <-- Random minibatch of M examples from **X**

 ε <-- Sample M noise vectors from N(0, I)

Compute $L(X^{M}, \varepsilon, \theta)$ (i.e. run a forward pass in the neural network)

Given a dataset of examples **X** = {X1, X2...}

Initialize parameters for Encoder and Decoder

Repeat till convergence:

X^M <-- Random minibatch of M examples from **X**

 ϵ <-- Sample M noise vectors from N(0, I)

Compute $L(X^M, \varepsilon, \theta)$ (i.e. run a forward pass in the neural network)

- At test-time, we want to evaluate the performance of VAE to generate a new sample.
- Remove the Encoder, as no test-image for generation task.
- Sample $z \sim N(0,l)$ and pass it through the Decoder.
- No good quantitative metric, relies on visual inspection.

- At test-time, we want to evaluate the performance of VAE to generate a new sample.
- Remove the Encoder, as no test-image for generation task.
- Sample $z \sim N(0,l)$ and pass it through the Decoder.
- No good quantitative metric, relies on visual inspection.

- At test-time, we want to evaluate the performance of VAE to generate a new sample.
- Remove the Encoder, as **no test-image** for generation task.
- Sample $z \sim N(0,l)$ and pass it through the Decoder.
- No good quantitative metric, relies on visual inspection.

- At test-time, we want to evaluate the performance of VAE to generate a new sample.
- Remove the Encoder, as **no test-image** for generation task.
- Sample $z \sim N(0,l)$ and pass it through the Decoder.
- No good quantitative metric, relies on visual inspection.

- At test-time, we want to evaluate the performance of VAE to generate a new sample.
- Remove the Encoder, as no test-image for generation task.
- Sample $z \sim N(0,l)$ and pass it through the Decoder.
- No good quantitative metric, relies on visual inspection.

Image Credit: Tutorial on VAE

Common VAE architecture

Fully Connected (Initially Proposed)

Common Architecture (convolutional) similar to DCGAN.

Disentangle latent factor

Autoencoder can disentangle latent factors [MNIST DEMO]:

Disentangle latent factor

Disentangle latent factor

We have seen very similar results during last lecture: InfoGan.

InfoGan

VAE

VAE vs. GAN

VAE vs. GAN

Image Credit: Autoencoding beyond pixels using a learned similarity metric

GAN + VAE (Best of both models)

Image Credit: Autoencoding beyond pixels using a learned similarity metric

Results

VAE_{Dis/}: Train a GAN first, then use the discriminator of GAN to train a VAE.

VAE/GAN: GAN and VAE trained together.

Conditional VAE (CVAE)

What if we have labels? (e.g. digit labels or attributes) Or other inputs we wish to condition on (Y).

- None of the derivation changes.
- Replace all P(X|z) with P(X|z,Y).
- Replace all Q(z|X) with Q(z|X,Y).
- Go through the same KL divergence procedure, to get the same lower bound.

Conditional VAE (CVAE)

What if we have **labels**? (e.g. digit labels or attributes) Or other inputs we wish to condition on **(Y)**.

- None of the derivation changes.
- Replace all P(X|z) with P(X|z,Y).
- Replace all Q(z|X) with Q(z|X,Y).
- Go through the same KL divergence procedure, to get the same lower bound.

Conditional VAE (CVAE)

What if we have **labels**? (e.g. digit labels or attributes) Or other inputs we wish to condition on **(Y)**.

- NONE of the derivation changes.
- Replace all P(X|z) with P(X|z,Y).
- Replace all Q(z|X) with Q(z|X,Y).
- Go through the same KL divergence procedure, to get the same lower bound.

Common CVAE architecture

Common Architecture (convolutional) for CVAE

- Again, remove the Encoder as test time
- Sample $z \sim N(0,l)$ and input a desired Y to the Decoder.

Example

Image Credit: Attribute2Image

Attribute-conditioned image progression

Image Credit: Attribute2Image

Learning Diverse Image Colorization

Image Colorization

- An ambiguous problem

Picture Credit: https://pixabay.com/en/vw-camper-vintage-car-vw-vehicle-1939343/

Learning Diverse Image Colorization

Image Colorization

- An ambiguous problem

Blue? Red? Yellow?

Picture Credit: https://pixabay.com/en/vw-camper-vintage-car-vw-vehicle-1939343/

Strategy

Goal:

Learn a conditional model P(C|G)

Color field C, given grey level image G

Next, draw samples from $\{C_k\}_{k=1}^N \sim P(C|G)$ to obtain diverse colorization

Strategy

Goal:

Learn a conditional model P(C|G)

Color field C, given grey level image G

Next, draw samples from $\{C_k\}_{k=1}^N \sim P(C|G)$ to obtain diverse colorization

Difficult to learn!

Exceedingly high dimensions! (Curse of dimensionality)

Strategy

Goal:

Learn a conditional model P(C|G)

Color field C, given grey level image G.

Instead of learning C directly, learn a low-dimensional embedding variable z (VAE).

Using another network, learn P(z|G).

- Use a Mixture Density Network(MDN)
 - Good for learning multi-modal conditional model.

At test time, use VAE decoder to obtain C_k for each z_k

Architecture

Step 1: Learn a low dimensional z for color.

- Standard VAE: Overly smooth and "washed out", as training using L₂ loss directly on the color space.

- 1. Weighted L₂ on the color space to encourage ``color' diversity. Weighting the very common color smaller.
- 2. Top-k principal components, P_k , of the color space. Minimize the L_2 of the projection.
- 3. Encourage color fields with the same gradient as ground truth.

$$\mathcal{L}_{dec} = \mathcal{L}_{hist} + \lambda_{mah} \mathcal{L}_{mah} + \lambda_{grad} \mathcal{L}_{grad}$$

Step 1: Learn a low dimensional z for color.

- Standard VAE: Overly smooth and "washed out", as training using L₂ loss directly on the color space.

- 1. Weighted L₂ on the color space to encourage ``color' diversity. Weighting the very common color smaller.
- 2. Top-k principal components, P_k , of the color space. Minimize the L_2 of the projection.
- Encourage color fields with the same gradient as ground truth.

$$\mathcal{L}_{dec} = \mathcal{L}_{hist} + \lambda_{mah} \mathcal{L}_{mah} + \lambda_{grad} \mathcal{L}_{grad}$$

Step 1: Learn a low dimensional z for color.

- Standard VAE: Overly smooth and "washed out", as training using L₂ loss directly on the color space.

- 1. Weighted L₂ on the color space to encourage ``color' diversity. Weighting the very common color smaller.
- 2. Top-k principal components, P_k , of the color space. Minimize the L_2 of the projection.
- 3. Encourage color fields with the same gradient as ground truth.

$$\mathcal{L}_{dec} = \boxed{\mathcal{L}_{hist}} + \lambda_{mah} \boxed{\mathcal{L}_{mah}} + \lambda_{grad} \mathcal{L}_{grad}$$

Step 1: Learn a low dimensional z for color.

- Standard VAE: Overly smooth and "washed out", as training using L₂ loss directly on the color space.

- 1. Weighted L₂ on the color space to encourage ``color' diversity. Weighting the very common color smaller.
- 2. Top-k principal components, P_k , of the color space. Minimize the L_2 of the projection.
- 3. Encourage color fields with the same gradient as ground truth.

$$\mathcal{L}_{dec} = \mathcal{L}_{hist} + \lambda_{mah} \mathcal{L}_{mah} + \lambda_{grad} \mathcal{L}_{grad}$$

Step 2: Conditional Model: Grey-level to Embedding

$$\mathcal{L}_{mdn} = -\log P(\mathbf{z}|\mathbf{G}) = -\log \sum_{i=1}^{M} \pi_i(\mathbf{G}, \phi) \mathcal{N}(\mathbf{z}|\mu_i(\mathbf{G}, \phi), \sigma)$$

- Learn a multimodal distribution
- At test time sample at each mode to generate diversity.
- Similar to CVAE, but this has more "explicit" modeling of the P(z|G).
- Comparison with CVAE, condition on the gray scale image.

Results

Image Credit: Learning Diverse Image Colorization

Effects of Loss Terms

Image Credit: Learning Diverse Image Colorization

Forecasting from Static Images

- Given an image, humans can often infer how the objects in the image might move
- Modeled as dense trajectories of how each pixel will move over time

Forecasting from Static Images

- Given an image, humans can often infer how the objects in the image might move
- Modeled as dense trajectories of how each pixel will move over time

Applications: Forecasting from Static Images

Applications: Forecasting from Static Images

Forecasting from Static Images

- Given an image, humans can often infer how the objects in the image might move.
- Modeled as dense trajectories of how each pixel will move over time.
- Why is this difficult?
 - Multiple possible solutions
- Recall that latent space can encode information not in the image
 - By using CVAEs, multiple possibilities can be generated

Forecasting from Static Images

Architecture

Encoder Tower - Training Only

Image Tower - Training

Decoder Tower - Training

Output trajectories

Testing

Results

Results

Video Demo

Video: http://www.cs.cmu.edu/~jcwalker/DTP/DTP.html

Image Credit: An Uncertain Future: Forecasting from static Images Using VAEs

Results

Method	Negative Log Likelihood
Regressor	11563
Optical Flow (Walker et al 2015)	11734
Proposed	11082

Significantly outperforms all existing methods

Applications: Facial Expression Editing

Disclaimer: I am one of the authors of this paper.

- Instead of encoding pixels to a lower dimensional space, encode the flow.
- Uses bilinear sampling layer introduced in Spatial transformer networks (Covered in one of the previous lecture).

Single Image Expression Magnification and Suppression

Results: Expression Editing

Suppress

Original

Magnify

Original

Squint

Results: Expression Interpolation

Closing Remarks

GAN and VAEs are both popular

- Generative models use VAE for easy generation of z given X.
- Generative models use GAN to generate sharp images given z.
- For images, model architecture follows DCGAN's practices, using strided convolution, batch-normalization, and Relu.

Topics Not Covered:

Features learned from VAEs and GANs both can be used in the semi-supervised setting.

- "Semi-Supervised Learning with Deep Generative Models" [King ma et. al] (Follow up work by the original VAE author)
- "Auxiliary Deep Generative Models" [Maaløe, et. al]

Questions?

Reading List

- D. Kingma, M. Welling, <u>Auto-Encoding Variational Bayes</u>, ICLR, 2014
- Carl Doersch, <u>Tutorial on Variational Autoencoders</u> arXiv, 2016
- Xinchen Yan, Jimei Yang, Kihyuk Sohn, Honglak Lee, <u>Attribute2Image: Conditional Image Generation from Visual Attributes</u>, ECCV, 2016
- Jacob Walker, Carl Doersch, Abhinav Gupta, Martial Hebert, <u>An Uncertain Future: Forecasting from Static Images using Variational Autoencoders</u>, ECCV, 2016
- Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, Ole Winther, <u>Autoencoding beyond</u> <u>pixels using a learned similarity metric</u>, ICML, 2016
- Aditya Deshpande, Jiajun Lu, Mao-Chuang Yeh, David Forsyth, <u>Learning Diverse Image Colorization</u>, arXiv,
 2016
- Raymond Yeh, Ziwei Liu, Dan B Goldman, Aseem Agarwala, Semantic Facial Expression Editing using Autoencoded Flow, arXiv, 2016

Not covered in this presentation:

- Diederik P. Kingma, Danilo J. Rezende, Shakir Mohamed, Max Welling, <u>Semi-Supervised Learning with Deep Generative Models</u>, NIPS, 2014
- Lars Maaløe, Casper Kaae Sønderby, Søren Kaae Sønderby, Ole Winther, <u>Auxiliary Deep Generative Models</u> arXiv, 2016