Advanced Generation Methods

Hsiao-Ching Chang, Ameya Patil, Anand Bhattad

M. C. Escher, 1948

Advanced Generation Methods

Image Generation: How Machines do it

The techniques that we learned: GANs and VAEs

They attempt to generate image in one-shot projection!!

Image Generation: How We Do It

We pay attention on each subpart, we iterate in a feedback loop

Can we teach machines to do the same?

Advanced Generation Methods:

• Pixel-by-pixel generation:

A simple way to iterate, employ feedback and capture pixel dependencies

• Iterative attentive generation:

More advanced techniques involving iterative formation of an abstract schema

Pixel-by-pixel generation:

Outline

- Intuition
- Basic models
 - PixelRNN
 - PixelCNN
- Variants of PixelRNN and PixelCNN
 - Multi-scale version
 - Conditional image generation
 - Other recent improvements

Outline

- Intuition
- Basic models
 - PixelRNN
 - PixelCNN
- Variants of PixelRNN and PixelCNN
 - Multi-scale version
 - Conditional image generation
 - Other recent improvements

Intuition ...(A customary CAT slide!)

How to include statistical dependencies over hundreds of pixels?

$$p(\mathbf{x}) = p(x_1, x_2, ..., x_{n^2})$$

Bayes Theorem:

$$p(\mathbf{x}) = \prod_{i=1}^{n^2} p(x_i|x_1, ..., x_{i-1})$$

$$p(\mathbf{x}) = p(x_1, x_2, ..., x_{n^2})$$

Bayes Theorem:

$$p(\mathbf{x}) = \prod_{i=1}^{n^2} p(x_i|x_1, ..., x_{i-1})$$

A sequential model!

LSTM

• Question: Can we use plain-LSTM to generate images pixels by pixels?

• Question: Can we use plain-LSTM to generate images pixels by pixels?

Ensure information is well propagated in two dimensions

Question: Can we use plain-LSTM to generate images pixels by pixels?

- Ensure information is well propagated in two dimensions
- spatial LSTM (sLSTM)

Spatial LSTM

Adapted from: Generative image modeling using spatial LSTM. Theis & Bethge, 2015

Spatial LSTM

Adapted from: Generative image modeling using spatial LSTM. Theis & Bethge, 2015

Details about Soft Max

- Treat pixels as discrete variables:
 - To estimate a pixel value, do classification in every channel (256 classes indicating pixel values 0-255)
 - Implemented with a final softmax layer

Figure: Example softmax outputs in the final layer, representing probability distribution over 256 classes.

PixelRNN: A specific Multidimensional LSTM

First LSTM Layer

Image layer

Row LSTM

PixelRNN: A specific Multidimensional LSTM

Diagonal LSTM

Pixel recurrent neural networks, ICML 2016

Receptive Field

Pixel recurrent neural networks, ICML 2016

Diagonal LSTM

• To optimize, we skew the feature maps so it can be parallelized

PixelCNN

PixelCNN

- 2D convolution on previous layer
- Apply masks so a pixel does not see future pixels (in sequential order)

Comparison

PixelCNN	PixelRNN – Row LSTM	PixelRNN – Diagonal BiLSTM
Full dependency field	Triangular receptive field	Full dependency field
Fastest	Slow	Slowest
Worst log-likelihood	-	Best log-likelihood

Architecture

Residual connections

- Channel masks
 - Sequential order: $R \rightarrow G \rightarrow B$
 - Used in input-to-state convolutions
 - Two types of masks:

- В
- Channels are connected to themselves
 - Used in all other subsequent layers
- Channels are **not** connected to themselves
 - Only used in first layer

Architecture

PixelCNN	Row LSTM	Diagonal BiLSTM	
7 × 7 conv mask A			
Multiple residual blocks: (see fig 5)			
$\begin{array}{l} \text{Conv} \\ 3\times 3 \text{ mask B} \end{array}$	Row LSTM i-s: 3×1 mask B s-s: 3×1 no mask	Diagonal BiLSTM i-s: 1×1 mask B s-s: 1×2 no mask	
ReLU followed by 1×1 conv, mask B (2 layers)			
256-way Softmax for each RGB color (Natural images) or Sigmoid (MNIST)			

Results

Figure: 32x32 ImageNet results from Diagonal BiLSTM model.

Outline

- Intuition
- Basic models
 - PixelCNN
 - PixelRNN
- Variants of PixelRNN and PixelCNN
 - Multi-scale version
 - Conditional image generation
 - Other recent improvements

Multi-scale PixelRNN

- Take subsampled pixels as additional input pixels
- Can capture better global information (visually more coherent)
- Performance is similar to normal one

Multi-scale PixelRNN

Figure: 64x64 ImageNet results from normal Diagonal BiLSTM model (left) and multi-scale model (right).

Conditional Image Generation

Given a high-level image description vector h

$$p(\mathbf{x}) = p(x_1, x_2, ..., x_{n^2})$$

$$\downarrow$$

$$p(\mathbf{x}|\mathbf{h}) = p(x_1, x_2, ..., x_{n^2}|\mathbf{h})$$

Conditional Image Generation

- h is location-independent
 - For example,
 - One-hot encoding representing a specific class
 - Latent representation embedding
 - Model joint probability conditioned on h

$$p(\mathbf{x}|\mathbf{h}) = \prod_{i=1}^{n^2} p(x_i|x_1,...,x_{i-1},\mathbf{h})$$

$$\mathbf{y} = \tanh(W_{k,f} * \mathbf{x} + V_{k,f}^T\mathbf{h}) \odot \sigma(W_{k,g} * \mathbf{x} + V_{k,g}^T\mathbf{h})$$
 dot product dot product

Conditional Image Generation

- h is location-dependent
 - **h** contains both object and location information
 - Use an additional deconvolutional neural network to estimate s = m(h), where s has same size as images

$$p(\mathbf{x}|\mathbf{h}) = \prod_{i=1}^{n^2} p(x_i|x_1, ..., x_{i-1}, \mathbf{h})$$

$$\mathbf{y} = \tanh(W_{k,f} * \mathbf{x} + \underbrace{V_{k,f} * \mathbf{s}}) \odot \sigma(W_{k,g} * \mathbf{x} + \underbrace{V_{k,g} * \mathbf{s}})$$
1x1 convolution
1x1 convolution

Results

African elephant

Sandbar

Figure from: Oord et al.

Other Recent Improvements

- Gated PixelCNN (<u>Oord et al.</u>)
 - Improve PixelCNN by removing blind spots and replacing ReLU units
- PixelCNN++ (<u>Salimans et al.</u>)
 - Improve PixelCNN by optimization techniques
- Video Pixel Networks (<u>Kalchbrenner et al.</u>)
 - Extend the work to 4 dimension

Comparison with GANs and VAEs

Autoregressive models (PixelRNNs, PixelCNNs)	GAN	VAE
 Simple and stable training process (e.g. softmax loss) Best log likelihoods so far 	Sharpest images	Easy to relate image with low- dimensional latent variables
 Inefficient during sampling Don't easily provide simple low-dimensional codes for images 	 Difficult to optimize due to unstable training dynamics 	Tends to have blurry outputs

Credit: https://openai.com/blog/generative-models/, Oord et al. and Larsen et al.

Iterative Attentive Generation:

What We Saw Previously

Pixel-by-pixel generation:

Inference decisions at the pixel-level

Generation using VAEs and GANs:

Employ one-shot generation

- Limited for highly complex scenes
- Alignments of objects should be considered only after objects are generated

The Human Way

Attention

Focus on a subpart at a time

Iteration

Use multiple strokes Eraser

Feedback

Draw, take a look and then see what to draw next

Enabling machines to employ above attributes

Iterative Attentive Generation using deep learning models

DRAW: A Recurrent Neural Network For Image Generation

Karol Gregor
Ivo Danihelka
Alex Graves
Danilo Jimenez Rezende
Daan Wierstra
Google DeepMind

May 2015

KAROLG@GOOGLE.COM DANIHELKA@GOOGLE.COM GRAVESA@GOOGLE.COM DANILOR@GOOGLE.COM WIERSTRA@GOOGLE.COM

How can a machine employ "Attention"?

What is attention?

Ability to focus on a part of an image, either to understand it or to modify it

For machine, it is a process of "Glimpse" extraction

Employing Attention:

Attentive read: Reading a particular glimpse from an image

Attentive write: Writing the modified glimpse to the image

Modified glimpse: $N \times N$

Updated image: $A \times B$

Read Attention

Filter F_X : $N \times A$

Image:

 $A \times B$

Filter F_Y^T :

 $B \times N$

Glimpse:

 $N \times N$

$$F_X[i, a] = \frac{1}{Z_X} \exp\left(-\frac{(a - \mu_X^i)^2}{2\sigma^2}\right)$$

$$F_Y[j, b] = \frac{1}{Z_Y} \exp\left(-\frac{(b - \mu_Y^j)^2}{2\sigma^2}\right)$$

Choosing filter parameters

 g_X , g_Y , γ , δ are learned. Details about it later....

Write Attention:

Again, we use Gaussian filters in the exact same setting. Write filters are distinct from read filters

Machines trying to generate images in a manner similar to us

Attention Done!

Iteration ?

Feedback ?

How can machines employ "Iterations"?

Machines actually iterate all the time...!

But for image generation, you need something to iterate upon....

A canvas !!!

It is a matrix c, typically of the same size that of the original image

Write attention operation updates parts in *c*

Final generated image = f(c)

How can machines employ "Feedback"?

Remember RNNs ..!!

(Figure courtesy: Arun Mallya)

So, why don't combine these two..!

And we want to generate images..!

Variational Autoencoders

Putting it all together: Ta Da...!!

RNN-based feedback and loop:

Training Procedure

Goal in training:

Learn to reconstruct the input image x in T iteration...

 c_{t-1}

Latest

canvas

So, for every iteration *t*:

Training Procedure

Loss function:

Recall: VAE lecture

Typically, $P(Z_t) \sim N(0, I)$ and $Q(Z_t | h_t^{enc}) \sim N(\mu_t(h_t^{enc}), \sigma_t^2(h_t^{enc}))$

Training Procedure

Given input image, compute the feedforward path for *T* iterations

Compute the final loss function

Compute the gradients and propagate them back

(recall: reparametrization trick in VAEs)

Image Generation During Test:

No encoder is used while generating images, just like VAEs

Let's See How it Performs:

Final Results: Generated images

Task	#glimpses	LSTM #h	#z	Read Size	Write Size
MNIST Model	64	256	100	2×2	5×5
SVHN Model	32	800	100	12×12	12×12
CIFAR Model	64	400	200	5×5	5×5

MNIST

SVHN

CFAR-10 Generation

The images still seem somewhat blur

Final Results:

The red square indicates "glimpse" used for attentive write in canvas

Without attention

With attention

Time →

So, now we have a machine that can employ "attention", "iteration" and "feedback"

(Lossy) Image Compression

Improve it and use it for

One Shot Generalization

Image Generation to Compression:

How humans generate images ..!

Conceptual hierarchy

A way to "conceptually" compress images

"Conceptual" Lossy Compression

Ultimate (lossy) compression: Store only *absolutely essential information (concept)*. Let the deep generative model generate *the details*...

Towards Conceptual Compression

Karol Gregor Frederic Besse Danilo Jimenez Rezende Ivo Danihelka Daan Wierstra

April 2015

KAROLG@GOOGLE.COM FBESSE@GOOGLE.COM DANILOR@GOOGLE.COM DANIHELKA@GOOGLE.COM WIERSTRA@GOOGLE.COM

Google DeepMind, London, United Kingdom

Deep Generative Model: Recall

Inference Model

Generative Model

Compression: Basic Idea

- Train a deep generative model for T iterations
- Given a new image x, run the model for first $t_{str} < T$ iterations

Store the means of inferred posterior latent distributions: $z_1,\dots,z_{t_{str}}$ These $z_1,\dots,z_{t_{str}}$ represent the compressed image

Reconstruction from Compressed Image:

- Start with $z_1, \dots, z_{t_{str}}$
- Run first $t_{str} < T$ iterations of the generative model "deterministically"
- Run $t_{str}+1$ to T iterations while sampling those latent variables from learned prior $p(z_t | h_{t-1}^d)$

Note: The prior here depends upon $oldsymbol{h}_{t-1}^d$

Some More Details:

 Training procedure and training loss are same as we saw in the case of DRAW work

$$L = \beta L^x + \sum_{t=1}^{I} L_t^z$$

Parameter β controls emphasis on "pixel-level reconstruction"

• The latent variables z_1 to $z_{t_{str}}$ can be further compressed by discretization and arithmetic coding etc.

Reconstruction from "conceptually compressed"

Reconstructed with prior variance (WPV)

$$Z_t \sim p(z|h_{t-1}^d)$$

Results: Lossy Compression

JPEG

JPEG2000

conv-DRAW, WPV

conv-DRAW, WoPV

JPEG

JPEG2000

conv-DRAW, WPV

conv-DRAW, WoPV

bits per image: 153

bits per image: 307

Results: Lossy Compression

JPEG
JPEG2000
conv-DRAW, WPV
conv-DRAW, WoPV

bits per image: 460

When latent variables are sampled from prior distribution, the reconstructed images are sharper but have artifacts

Results: Lossy Compression

JPEG

JPEG2000

conv-DRAW, WPV

conv-DRAW, WoPV

JPEG

JPEG2000

conv-DRAW, WPV

conv-DRAW, WoPV

bits per image: 612

bits per image: 1228

Results: Image Generation

 β : weighing parameter for reconstruction loss

Lower the β , lesser the emphasis on pixel-level details, and more on learning the latent representative structure $\frac{Towards\ conceptual\ compression\ NIPS\ 2016}{Towards\ conceptual\ compression\ NIPS\ 2016}$

One-shot Generalization

Train your machine to obtain the final parameters...!!

Now, show a new example, that is **not a part of training set**

Then, can the machines generate following examples...?

Humans have this ability of one-shot generalization

One-Shot Generalization in Deep Generative Models

Danilo J. Rezende*
Shakir Mohamed*
Ivo Danihelka
Karol Gregor
Daan Wierstra

Google DeepMind, London

May 2016

DANILOR @ GOOGLE.COM SHAKIR @ GOOGLE.COM DANIHELKA @ GOOGLE.COM KAROLG @ GOOGLE.COM WIERSTRA @ GOOGLE.COM

Deep Generative Model: Recall

Inference Model

Generative Model

Generative Model for One-shot Generalization

New image: x_1

One-Shot Generalization: Results

More details at: https://arxiv.org/abs/1506.02025

Summary:

- Deep learning tools can be put together in many different innovative ways to obtain interesting results for different applications
 - PixelRNN, Deep generative model for conceptual compression

- We essentially studied extensions of "one-shot" image generation techniques to include some feedback in them using RNNs
 - Such extension is possible for GAN-based generation as well

Topics We Didn't Cover

- Image Style Transfer: Take style of one image and draw the contents of other image in that style (Heard of Prisma App?)
- L. A. Gatys, A. S. Ecker, and M. Bethge. <u>Image style transfer using convolutional neural networks</u>. CVPR 2016
- J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for real-time style transfer and super-resolution. ECCV 2016
- C. Castillo, S. De, X. Han, B. Singh, A. K. Yadav, and T. Goldstein. <u>Son of Zorn's Lemma: Targeted Style Transfer Using</u> Instance-aware Semantic Segmentation. ICASSP 2017

 Combining GANs and RNNs to form Generative: DRAW paper combined VAEs and RNNs. Similar combination of GANs and RNNs can be achieved (See backup slides)

Reading List

- •A. van den Oord, N. Kalchbrenner, and K. Kavukcuoglu. <u>Pixel recurrent neural networks</u>. ICML 2016
- •A. van den Oord, N. Kalchbrenner, O. Vinyals, L. Espeholt, A. Graves, and K. Kavukcuoglu. <u>Conditional image generation</u> <u>with pixelcnn decoders</u>. NIPS 2016
- •N. Kalchbrenner, A. van den Oord, K. Simonyan, I. Danihelka, O. Vinyals, A. Graves, and K. Kavukcuoglu. <u>Video pixel</u> <u>networks</u>. arXiv 2016
- •K. Gregor, I. Danihelka, A. Graves, D. Rezende, and D. Wierstra. <u>DRAW: a recurrent neural network for image</u> generation. ICML 2015
- •K. Gregor, F. Besse, D. Rezende, I. Danihelka, and D. Wierstra. <u>Towards conceptual compression</u>. NIPS 2016
- •B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. <u>Human-level concept learning through probabilistic program induction</u>. Science 2015
- •D. J. Rezende, S. Mohamed, I. Danihelka, K. Gregor, and D. Wierstra. <u>One-shot generalization in deep generative</u> models. ICML 2016
- •L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer using convolutional neural networks. CVPR 2016
- •J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for real-time style transfer and super-resolution. ECCV 2016
- •C. Castillo, S. De, X. Han, B. Singh, A. K. Yadav, and T. Goldstein. <u>Son of Zorn's Lemma: Targeted Style Transfer Using Instance-aware Semantic Segmentation</u>. ICASSP 2017

Backup Slides

What We Achieved

Deep Generative model that we studied

RNNs (Figure courtesy: Arun Mallya) Variational Autoencoders

But, GANs generate sharper images

Are You Wondering??

RNNs

(Figure courtesy: Arun Mallya)

GANs

(Figure courtesy: TUM wiki system)

Generating images with recurrent adversarial networks

Daniel Jiwoong Im¹
Montreal Institute for Learning Algorithms
University of Montreal

Chris Dongjoo Kim
Department of Engineering and Computer Science
York University

imdaniel@iro.umontreal.ca

kimdon20@gmail.com

Hui Jiang
Department of Engineering and Computer Science
York University

Roland Memisevic

Montreal Institute for Learning Algorithms
University of Montreal

hj@cse.yorku.ca

memisevr@iro.umontreal.ca

December 2016

DRAW Network

Generative Recurrent Adverserial Network (GRAN)

They Generated Much Sharper Images

LSUN