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Outline

• Pose estimation (3D recovery from 2D images)

• Novel Image / View synthesis 

• Reconstruction and generation of 3D



Part 1
POSE ESTIMATION (3D RECOVERY FROM 2D IMAGES)



Viewpoint Estimation

INPUT: RGB image

OUTPUT: Camera pose = Rotation (yaw, pitch, roll) and Translation Matrix

Beyond PASCAL: A Benchmark for 3D Object Detection in the Wild WACV14



Render for CNN [ICCV15]

Su, Hao, et al. "Render for cnn: Viewpoint estimation in images using cnns trained with rendered 3d model views." ICCV2015
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Render for CNN [ICCV15]
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CNN



Render for CNN [ICCV15]

Su, Hao, et al. "Render for cnn: Viewpoint estimation in images using cnns trained with rendered 3d model views." ICCV2015



Generating synthesized
images
Structure-preserving deformation

◦ Symmetry-preserving free-form deformation 

◦ Embed object in uniform grid

◦ Represent every point in space as a weighted combination of the control points

◦ Draw i.i.d vectors for control point

◦ Translate vector of each control point

◦ Set the translations of symmetric control points to be equal

Scott Schaefer Free-Form Deformation of Solid Geometric Models TAMU



Cont’d
Overfit-Resistant Image Synthesis 
◦ Variation in rendering

◦ vary light condition and camera pose

◦ Background synthesis 
◦ alpha composition blend

◦ Cropping
◦ Adding real annotated image

Image Compositing and Blending CMU15-463 2007 Fall



Final Training Dataset

Image Compositing and Blending CMU15-463 2007 Fall



Problem formulation
Input: single RGB image
Viewpoint as a tuple (θ, φ, ψ) of camera rotation parameters 

◦ Discretized and divided into 360, 180, 360 bins

Rotation reference: predefined initial pose face camera

Output: probabilities of each viewpoint

Loss function:

where Pv(s; cs ) is the probability of view v for sample s from the 
soft-max viewpoint classifier of class cs

Su, Hao, et al. "Render for cnn: Viewpoint estimation in images using cnns trained with rendered 3d model views." ICCV2015



Class-Dependent Network 
Architecture 

• Based on Alex Net [NIPS12]

• Shared weights but different class FC Layer

• Large number of outputs! (380+180+360) x N

• Claim is that different output layers handle the large variance among 

different object categories

Su, Hao, et al. "Render for cnn: Viewpoint estimation in images using cnns trained with rendered 3d model views." ICCV2015



Does synthetic training data help?

Su, Hao, et al. "Render for cnn: Viewpoint estimation in images using cnns trained with rendered 3d model views." ICCV2015



Several results

Su, Hao, et al. "Render for cnn: Viewpoint estimation in images using cnns trained with rendered 3d model views." ICCV2015



Keypoint Estimation: 2D to 3D

Wei, Shih-En, et al. “Convolutional pose machines.”CVPR 2016, IKEA dataset [Lim et al., 2013]



Single Image 3D Interpreter Network [ECCV16]

Simultaneously infer 2D keypoints heatmap and

3D structures from single image!

Wu, Jiajun, et al. “Single image 3d interpreter network.” ECCV 2016



Challenges
Annotations?
◦ 2D keypoints labels – easy to get, e.g. crowdsourcing

◦ 3D object annotations in real 2D images – hard to acquire

Synthetic training data?
◦ Statistics of real and synthesized images is different

Wu, Jiajun, et al. “Single image 3d interpreter network.” ECCV 2016



Using both real and synthetic image

Wu, Jiajun, et al. “Single image 3d interpreter network.” ECCV 2016



Using both real and synthetic image

Wu, Jiajun, et al. “Single image 3d interpreter network.” ECCV 2016



3D Object Representation

Wu, Jiajun, et al. “Single image 3d interpreter network.” ECCV 2016



3D-Skeleton Representation
Assumption:

◦ objects can only have constrained deformations

◦ The first base shape is the mean shape of all objects within the category

◦ 3D keypoint locations are a weighted sum of base shapes

Wu, Jiajun, et al. “Single image 3d interpreter network.” ECCV 2016



Step 1: Estimates 2D keypoint heatmaps (a and b)

Step 2: Train 3D interpreter on 3D synthetic data (c)

Step 3: Jointly train projection layer from 2D annotations (d)

Wu, Jiajun, et al. “Single image 3d interpreter network.” ECCV 2016

Network Overview



Zoom in: Keypoint Estimator

Wu, Jiajun, et al. “Single image 3d interpreter network.” ECCV 2016



Zoom in: 3D Interpreter

Wu, Jiajun, et al. “Single image 3d interpreter network.” ECCV 2016



Zoom In: End to End

Wu, Jiajun, et al. “Single image 3d interpreter network.” ECCV 2016



Results

Wu, Jiajun, et al. “Single image 3d interpreter network.” ECCV 2016



Part 2
NOVEL IMAGE /  V IEW  SYNTHESIS



New scene synthesis?

Flynn, John, et al. “DeepStereo: Learning to predict new views from the world‘s imagery.” CVPR 2016



Flynn, John, et al. “DeepStereo: Learning to predict new views from the world‘s imagery.” CVPR 2016

Given Images

Newly Generated Image

Note the change in viewpoint

https://www.youtube.com/watch?v=cizgVZ8rjKA


DeepStereo: Learning to Predict New 
Views from the World’s Imagery 

Issues:

• Interpret rotation and 

image reprojection

• Long-distance pixel 

correlation

Flynn, John, et al. “DeepStereo: Learning to predict new views from the world‘s imagery.” CVPR 2016

Given V1, V2, generate C



DeepStereo: plane–sweep volumes

Solve two other 

problems before 

generating a new 

view!
But why?

Flynn, John, et al. “DeepStereo: Learning to predict new views from the world‘s imagery.” CVPR 2016



Plane–sweep volumes (Cont’d)

• Sweep family of planes at different depths w.r.t. a reference camera

• For each depth, project each input image onto that plane 

• This is equivalent to a homography warping each input image into the 

reference view

R. Collins. A space-sweep approach to true multi-image matching. CVPR 1996. 



DeepStereo: overview

{S} Depth Selection tower 

output

{C} Color tower output

Flynn, John, et al. “DeepStereo: Learning to predict new views from the world‘s imagery.” CVPR 2016

Output is a masked sum over 

images selected at different 

depths



DeepStereo: Selection Tower

INPUT: Plane-sweep 
volumes

OUTPUT: A probability map 
(or selection map) for each 
depth indicating the 
likelihood of each pixel 
having that depth. 

Weight-sum image
synthesis: Can be
interpreted as expectation
among depth

Flynn, John, et al. “DeepStereo: Learning to predict new views from the world‘s imagery.” CVPR 2016



DeepStereo: Color Tower

Bonus: D input planes 

reduce the effect of 

occlusion

OUTPUT: 3D volume 

of nodes -> R,G,B 

channels each pixel

Flynn, John, et al. “DeepStereo: Learning to predict new views from the world‘s imagery.” CVPR 2016



DeepStereo: Training
Apply multi-resolution patches in Color Tower

Feed 26 x 26 patches Produce 8 x 8 patches

Use 96 depth planes

Trained via Adagrad

Flynn, John, et al. “DeepStereo: Learning to predict new views from the world‘s imagery.” CVPR 2016



DeepStereo: Results

Flynn, John, et al. “DeepStereo: Learning to predict new views from the world‘s imagery.” CVPR 2016



Flynn, John, et al. “DeepStereo: Learning to predict new views from the world‘s imagery.” CVPR 2016



Part 3
RECONSTRUCTION AND GENERATION OF 3D



Part 3

3D structure reconstruction and generation

• DC-IGN model (Kulkarni et al. NIPS 2015)

• Perspective transformer networks (Yan et al. NIPS 2016)

• 3D-GAN (Wu et al. NIPS 2016)



Deep Convolutional Inverse 
Graphics Network (DC-IGN)

• Motivation: Can a deep network learn to disentangle factors of 
image generation such as lighting, rotation, etc.?

• Can we learn a renderer?

• Recall: Conditional VAEs and constraints on latent space

Kulkarni et al., Deep Convolutional Inverse Graphics Network, NIPS 2015



DC-IGN
• Generate transformed images w.r.t rotations, light variations, etc.

• Input: 2D image (150 x 150 pixels)

• Output: 2D image that has one different 3D property

Kulkarni et al., Deep Convolutional Inverse Graphics Network, NIPS 2015

rotation light variation

• Learn latent variables that represent complex transformations

• Use an encoder-decoder structure based on VAE

Link: http://willwhitney.github.io/dc-ign/www/

http://willwhitney.github.io/dc-ign/www/


DC-IGN
• Graphics codes z

Kulkarni et al., Deep Convolutional Inverse Graphics Network, NIPS 2015

rotation of the object

elevation of the object with respect to the camera

variations of the light source

Extrinsic properties



DC-IGN
• Model architecture

- Deep convolution and de-convolution within a VAE formulation

Kulkarni et al., Deep Convolutional Inverse Graphics Network, NIPS 2015



DC-IGN
• Encoder output:

• Model parameter:

• Distribution parameters:

• Variational objective function:

Kulkarni et al., Deep Convolutional Inverse Graphics Network, NIPS 2015



DC-IGN
• Training on a minibatch in which only one extrinsic property

changes i.e. Only a specific latent variable changes

• Key Idea: Force all other latent variables to be same across 
examples – Force all of them to be close to the minibatch mean

Kulkarni et al., Deep Convolutional Inverse Graphics Network, NIPS 2015



DC-IGN
• Generation w.r.t. manipulation of pose variables       

Kulkarni et al., Deep Convolutional Inverse Graphics Network, NIPS 2015



DC-IGN
• Generation w.r.t. light directions

Kulkarni et al., Deep Convolutional Inverse Graphics Network, NIPS 2015



DC-IGN
• Manipulate rotation for a different dataset (chair dataset)

Kulkarni et al., Deep Convolutional Inverse Graphics Network, NIPS 2015



Pixel to Voxel

• DC-IGN: 2D image (pixel) → transformed 2D image (pixel)

• Next models: 2D image (pixel) → 3D image (voxel)



• Predict the underlying true 3D shape of an object given a 2D 
single image

• Learn 3D object reconstruction without 3D ground-truth data

• Use different 2D images from multiple viewpoints

• Define two loss functions to generate 3D structures 

Perspective Transformer Nets

Yan et al., Perspective Transformer Nets, NIPS 2016



Perspective Transformer Nets
• 𝐼 𝑘 : 2D image from k-th viewpoint α 𝑘 by projection 

→ 𝐼 𝑘 = 𝑃(𝑋 ; α 𝑘 )

Yan et al., Perspective Transformer Nets, NIPS 2016



Perspective Transformer Nets
Case 1 we know the ground truth 3D volume 𝑉

• Generate 3D volume ෠𝑉 = 𝑓 𝐼 𝑘 = 𝑔(ℎ(𝐼 𝑘 ))

where ℎ · learns a viewpoint-invariant latent representation 

𝑔 · is a volume generator

• Loss function

• However, ground truth volume may not be available in practice

Yan et al., Perspective Transformer Nets, NIPS 2016



Perspective Transformer Nets
Case 2 we do NOT know the ground truth 3D volume 𝑉

• Use 2D silhouette images

• 𝑆(𝑗): ground truth 2D silhouette image for the j-th viewpoint α 𝑗

• መ𝑆(𝑗): generated silhouettes 

• Loss function:



Perspective Transformer Nets



• Consider a combination of ℒ𝑣𝑜𝑙 and ℒ𝑝𝑟𝑜𝑗

Perspective Transformer Nets

Yan et al., Perspective Transformer Nets, NIPS 2016

𝑓 𝐼 𝑘 = 𝑔(ℎ(𝐼 𝑘 ))

Reference for encoder: Yang et al., NIPS 2015



Perspective Transformer Nets
• How to obtain 2D silhouette መ𝑆(𝑗) - perspective projection

• Transformation matrix 

where K: camera calibration matrix & (R, t): extrinsic parameters

• Perspective transformation: 

where 3D coordinates:

screen coordinates: 

Yan et al., Perspective Transformer Nets, NIPS 2016



Perspective Transformer Nets
• Use spatial transformer network (Jaderberg et al. NIPS 2015)

(1) Perform dense sampling from input volume in 3D coordinates 

to output volume in screen coordinates

(2) Flatten the 3D spatial output across disparity dimension.

Yan et al., Perspective Transformer Nets, NIPS 2016



Perspective Transformer Nets
• Training on single category

Yan et al., Perspective Transformer Nets, NIPS 2016



Perspective Transformer Nets



Perspective Transformer Nets
• Training on multiple category



3D-GAN
• Generate an object in 3D voxel space from a randomly sampled vector

• Use the Generative Adversarial Network (GAN)

• Map randomly sampled vector in a latent space to an object in 3D 
voxel space

Wu et al., Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling, NIPS 2016

Random vector

Link: http://3dgan.csail.mit.edu/

http://3dgan.csail.mit.edu/


3D-GAN
• GAN – Generator + Discriminator

• Generator 𝐺: 𝑧 → 𝐺(𝑧)

where 𝑧: latent vector (200 dimension), 

𝐺(𝑧): 3D object in 3D voxel space (64 x 64 x 64 cube)

• Discriminator D: output a confidence value of whether an input is 

real or synthetic

• Overall adversarial loss function:

where 𝑥: a real object in a 64 x 64 x 64 space, 

𝑧: randomly sampled noise from 𝑝(𝑧)

Wu et al., Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling, NIPS 2016



3D-GAN
• Network structure of generator in 3D-GAN

Wu et al., Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling, NIPS 2016



3D-VAE-GAN
• Extension to 3D-GAN 

• Inspired by VAE-GAN of Larsen et al. (ICML 2016)

• Take a 2D image as input to generate a 3D object

Wu et al., Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling, NIPS 2016



3D-VAE-GAN
• New loss function

where 𝑥: a 3D shape from the training set, 

𝑦: 𝑥′𝑠 corresponding 2D image,

𝑞(𝑧|𝑦): variational distribution of 𝑧,

𝑝(𝑧): multivariate Gaussian prior

Wu et al., Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling, NIPS 2016



3D-GAN
• 3D object generation

Wu et al., Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling, NIPS 2016



3D-GAN
• 3D object classification

Wu et al., Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling, NIPS 2016



3D-VAE-GAN
• Single image 3D reconstruction

Wu et al., Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling, NIPS 2016



3D-VAE-GAN
• Single image 3D reconstruction

Wu et al., Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling, NIPS 2016



3D-GAN
• Shape arithmetic for chairs

Wu et al., Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling, NIPS 2016



Summary

• 3D vision and graphics based on deep learning

- Pose estimation (3D recovery from 2D images)

- Novel Image / View synthesis 

- Reconstruction and generation of 3D
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Backup slides
REZENDE ET AL . ,  N IPS 2016 .



Rezende et al. (NIPS 2016)
• Construct the underlying 3D structures from 2D observations

• Learn a generative model of 3D structures

• Recover the structure from 2D images via inference

Rezende et al., Unsupervised Learning of 3D structure from Images, NIPS 2016



Rezende et al. (NIPS 2016)
• Consider a conditional latent variable model

𝑥: observed image or volume

𝑐: observed contextual information (nothing, object 

class label, or one or more views of the scene from 

different cameras)

𝑧: low-dimensional codes of latent manifold of object 

shapes

ℎ: 3D representations (volume or mesh)

Rezende et al., Unsupervised Learning of 3D structure from Images, NIPS 2016



Rezende et al. (NIPS 2016)
• Proposed framework

Rezende et al., Unsupervised Learning of 3D structure from Images, NIPS 2016



Rezende et al. (NIPS 2016)
• Sequential generative process: refinement of hidden representations

• Each step generates an independent set of 𝑧𝑡

• 𝑓𝑟𝑒𝑎𝑑: task dependent context encoder

• 𝑓𝑠𝑡𝑎𝑡𝑒: transition function (fully connected LSTM)

• 𝑓𝑤𝑟𝑖𝑡𝑒: volumetric spatial transformer (Jaderberg et al. NIPS 2015)

• Proj: projection operator from latent 3D representation h𝑇 to the 
training data’s domain

Rezende et al., Unsupervised Learning of 3D structure from Images, NIPS 2016



Rezende et al. (NIPS 2016)
• Volumetric spatial transformer (VST)

where : simple affine transformation of a 3D 

grid of points that uniformly covers the input image 

Rezende et al., Unsupervised Learning of 3D structure from Images, NIPS 2016



Rezende et al. (NIPS 2016)
• Projection operator (3 types)

- 3D → 3D (identity)

- 3D → 2D neural network projection (learned)

- 3D → 2D OpenGL projection (fixed)

Rezende et al., Unsupervised Learning of 3D structure from Images, NIPS 2016



Rezende et al. (NIPS 2016)
• Probabilistic volume completion (Necker cube, Primitives and 
MNIST3D)

Rezende et al., Unsupervised Learning of 3D structure from Images, NIPS 2016



Rezende et al. (NIPS 2016)
• Class-conditional samples (one-hot encoding of class as 
context)

Rezende et al., Unsupervised Learning of 3D structure from Images, NIPS 2016



Rezende et al. (NIPS 2016)
• Recover 3D structure from 2D images

Rezende et al., Unsupervised Learning of 3D structure from Images, NIPS 2016



Rezende et al. (NIPS 2016)
• Unsupervised learning of 3D structure (mesh representations)

Rezende et al., Unsupervised Learning of 3D structure from Images, NIPS 2016

Link: https://www.youtube.com/watch?v=stvDAGQwL5c

https://www.youtube.com/watch?v=stvDAGQwL5c

