


TASKS

Classification & Detection Segmentation

Objects

10 action classes + "other"

| LSRR

And Many More...




Strong Supervision

Deep Convolutional Network (DCN)
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EXAMPLES OF SELF-SUPERVISION
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Motion

sl plane approaching zrh
| avro regional jet rj

Amb|ent Noise & Noisy Labels






IMAGE - CONTEXT

Large Nearest Neighbors
Too Much Variance

Small Nearest Neighbors
Not Enough Context

1. Get Small Nearest Neighbors
2. Prune Neighbors using Context

Carl Doersch, Abhinav Gupta, Alexei A. Efros, Context as Supervisory Signal: Discovering Objects with Predictable Context, ECCV 2014.



STUFFVS THING MODEL

Low Level Statistics

Input Image Stuff Model

Prediction , —_— |I|
Low Likelihood

Stuff-based
Prediction

Condition 1
Region . True Region: @

—7 m High Likelihood

Thing-based
Prediction

Cluster Correspondance

Carl Doersch, Abhinav Gupta, Alexei A. Efros, Context as Supervisory Signal: Discovering Objects with Predictable Context, ECCV 2014.



IMAGE IN-PAINTING

Correctly predicting large
image patches in a photo
realistic manner suggests that
model has ability to generalize
real world objects.
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Decoder Features

(c) Context Encoder (d) Context Encoder
(L2 loss) (L2 + Adversarial loss)

Context Encoders: Feature Learning by Inpainting Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, Alexei A. Efros



MASKS

* PASCALVOC 2012 Shape Masks
* Y Image

(a) Central region (b) Random block (c) Random region

Context Encoders: Feature Learning by Inpainting Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, Alexei A. Efros



MODEL ARCHITECTURE

Encoder Channel-wise
Fully

D — Connected

1

256 128 2% 81 / / Reconstruction
AlexNet 1 Loss (L2)
(until pool5) % 9
2 41 16

(reshape) (uconv) (uconv) (uconv) (uconv) (uconv) (resize)

» AlexNet Ending in Pool5 * Stride 1 Convolution to
e [227x227]-> [6 X6 X 256] « mnt* < m?n* propagate information
= 9216 * No Inter Feature Map across channels
connections * 5 up-convolutional
* Needed to propagate layers

global context

Context Encoders: Feature Learning by Inpainting Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, Alexei A. Efros



LOSS FUNCTION

Ours(L2) Ours(Adv) Ours(L2+Adv) [EEGCIe RIS + Contextual
: ' - Blurry
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Adversarial Loss + In Focus
- Non-contextual
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Context Encoders: Feature Learning by Inpainting Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, Alexei A. Efros



MODEL ARCHITECTURE
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Training did not converge for
Adversarial Loss with AlexNet

Context Encoders: Feature Learning by Inpainting Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, Alexei A. Efros
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Pretraining Initialization Freeze and Fine Tune

1. Train Network on 1. Train Network on
Task A Task A

2. Replace last layer(s) 2. Replace last layer(s)
for Task B for Task B

3. Begin training again 3. Train new layer
on Task B. Allowing weights on Task B
for all weights in but do NOT update
network to update weights learned

from Task A

Joint Learning / Semi-Supervision / Multi-Task

Feature Augmentation

1.

P

Train Network on
Task A

Train Network on
Task B but use the
activations from
Network A and use
them as Features

1. Train One Network on Task A and Task B at the same time, controlling the

tradeoff.



» Self-Supervision Pretraining -> PASCAL VOC

* Doersch et al. wins in detection likely due to local pixel patch
wise methodology being better suited.

Pretraining . Pretraining P : :
Method Supervision time Classification Detection Segmentation
1000 class
ImageNet labels 3 days 72.8% 56.8% 48.0%
Wang et.al. motion 1 week 58.7% 47.4% -
Doersch et.al. Relative
0 0 -
(First Method) context e 53.3% 46.6%
Pathak et al
0 0) 0
e context 14 hours 56.5% 44 5% 30%




Pathak et al. Doersch et al.

+ Predict Missing Patch * Predict Patch from local Context
. Intended for Feature * Intended for Unsupervised
- Deep Model * Non Deep Model based on HOG

e PASCAL VOC Benchmark






COLORIZE IMAGES

Correctly predicting color suggests understanding of latent object
semantics and texture
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Figure from Colorful Image Colorization Richard Zhang, Phillip Isola, Alexei A. Efros




RGB

X: Red
Y: Blue
Z: Green

CIELAB

L: White - Black
A: Red - Green
B: Blue - Yellow

HSL/HSV Bi-cone

L: White - Black
H: Hue
C: Chroma




ZHANG ET AL.
NETWORKARCHITECTURE

Lightness L Color ab Lab Image

convl conv2 conv3 conv4 conv5 conv6b conv?7 conv8
atrous / dilated a trous / dilated

256

Figure from Colorful Image Colorization Richard Zhang, Phillip Isola, Alexei A. Efros

Each Block = 2 to 3 conv + ReLu layers followed by BatchNorm
No Pooling

Dilated Convolutions

Colorful Image Colorization Richard Zhang, Phillip Isola, Alexei A. Efros



Regression Loss in LAB space

Sum over all pixels

Ly(Y,Y) = ZHYh — Y03

Actual Pixel Color Predicted Pixel Color

u' q _- _-'

RGB(a,b|L =50) Input Regression Ground truth

""""" o e~
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- Yields lots of Grey unsaturated images

- Color might not exist if color space is non-convex

Colorful Image Colorization Richard Zhang, Phillip Isola, Alexei A. Efros



Discretization and Rebalancing

Color Discretization & Empirical Color
Soft Encoding Distribution

RGB(a,b|L =50)

Colorful Image Colorization Richard Zhang, Phillip Isola, Alexei A. Efros



ZHANG ET AL.
NETWORKARCHITECTURE

Lightness L Color ab Lab Image

convl conv2 conv3 conv4 conv5 conv6b conv?7 conv8
atrous / dilated a trous / dilated

| 256 512 512 512 512 —
| — ———
64 32 32 32 32 32 64

(a,b) probability S
i distribution
7 c [07 1]H><W><Q

313 64 o

Figure from Colorful Image Colorization Richard Zhang, Phillip Isola, Alexei A. Efros

Each Block = 2 to 3 conv + ReLu layers followed by BatchNorm
No Pooling

Dilated Convolutions

Colorful Image Colorization Richard Zhang, Phillip Isola, Alexei A. Efros



Classification and Rebalancing

Soft Encoding: for each true sRGB color find 5 Nearest Quantized Neighbors.
Assign probability mass to each of these bins proportional to their distance in
AB space using Gaussian kernel. Helps learn relations between 313 bins

Multinomial Cross Entropy Loss

Sum over all pixels

— E U(Zip ) E A _I_{;_;},r_}}'::Zh_”,_”,)

Actual Pixel Color  Predicted Pixel
Distribution Color Distribution

Smooth Empirical Distribution
with Gaussian and Mix it with
Uniform distribution

A=z2ando =5

Colorful Image Colorization Richard Zhang, Phillip Isola, Alexei A. Efros



Color Distribution -> Color

exp(log(z) /1)
>, exp(log(zq)/T)

y 7

Elfr(Znw)|, fr(z)=

Annealed-Mean Mode
T=.38

Lowering softmax temperatureT

Colorful Image Colorization Richard Zhang, Phillip Isola, Alexei A. Efros



Classification
Regression Classification w/ rebal Ground truth




Modes of Failure

* Red-Blue Confusion

» Complex Indoor Scene -> Sepia Tones
» Color Consistency

Classification
Input Regression Classification w/ rebal
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LARSSON ET AL.
NETWORK ARCHITECTURE

VGG-16-Gray Hypercolumn Grund—truth

(fc7) conv7 |FC8 T

(fc6) conve [ |Removed

convb_3

convl.l | First Filter

3 one

channel . 1024
Fully
connected

Lightness

Input: Grayscale Image Output: Color Image

Learning Representations for Automatic Colorization Gustav Larsson, Michael Maire, Gregory Shakhnarovich



Loss

Balance Chroma and Hue so each

is equally valuable to the loss
Per Pixel Loss

Lhue chroma (X }’) =D KL (y C H f 'C‘ (XJ ) + ’\H yc D KL (Y H H}( .H ( XJ )

| Hue
e

Color Distribution -> Color

Chroma . ~ . . .
Compute cumulative sum of ¥,, and use linear interpolation

to find the value at the middle bin. That is the Z value.

Learning Representations for Automatic Colorization Gustav Larsson, Michael Maire, Gregory Shakhnarovich



Output: Color Image

Chroma

— (][ T—

Chroma

Learning Representations for Automatic Colorization Gustav Larsson, Michael Maire, Gregory Shakhnarovich



Too Desaturated Edge Pollution

Inconsistent Chroma
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Model 1009% Real




Real 18% Model 82%




% of AMT
workers that
believed the
Model generated
image was the
real Image

40 Participants
40 Pairs Each

45

40

35

30

25

ple]

15

10

5

(0]

A ground truth colorization would achieve 50%
ey |

—_l

Random

Larsson

Zhang Regression

Zhang Balanced
Classification




Train
VGG Net on Original
Color Images

Test
VGG Net using Color

Original

Larsson et al.




Feed Colorized Images to VGG Net that was train on
Ground truth Color Images

70

[ S —

60 ————

5 ———— ————

5o ———————— I

(top 1 Accuracy)

35

Ground Truth Random Larsson Zhang Full




- Frozen
Weights with
fine tuning at
end

- Segmentation
with FCN
model

* Detection
with R-CNN
mode

83

73

63
53
43
33
2

3

PASCAL VOC Tasks

Lk

ImageNet Autoencoder Pathak et al

Classification (YomAP) = Detection (Y%mAP) ® Segmentation (%mlU)

Zhang (on grey)

Better Than
In-Painting and
Autoencoder




SPLIT BRAINAUTOENCODER
ARCHITECTURE

(Grey, Patch Context) (Color, Patch)

./. HH” i \-

Raw Data Predicted Data

Channels Channels
Raw Data Predicted

Data

Un-Used by Network !

Richard Zhang, Phillip Isola, Alexei A. Efros, Split-Brain Autoencoders: Unsupervised Learning by Cross-Channel Prediction, CVPR 2017



COLOR

L Grayscale Channel X, Predicted Color Channels X,

Input Image X . - FQ . Predicted Image X

ab Color Channels X, Predicted Grayscale Channel X;

(a) Lab Images

Richard Zhang, Phillip Isola, Alexei A. Efros, Split-Brain Autoencoders: Unsupervised Learning by Cross-Channel Prediction, CVPR 2017



RGB-HHA

RGB Channels X; Predicted HHA channels X,

Input / \ Predicted

RGB-HHA RGB-HHA
image image

N Pt

X X

HHA Channels X, Predicted RGB Channels X;

(b) RGB-D Images

Richard Zhang, Phillip Isola, Alexei A. Efros, Split-Brain Autoencoders: Unsupervised Learning by Cross-Channel Prediction, CVPR 2017



* Freeze
network

* Train logistic
layer after gt
Convolutional
Layer

55

5O

45

40

35

30

25

Classificaion Transfer

Motion Model .

ImageNet / Places Wang et al Zhang (on grey) Split-Brain

ImageNet Classification (Top 1 Accuracy) & Places Classification (Top 1 Accuracy)



* Freeze
network

* Train logistic
layer after gt
Convolutional
Layer

90

©

o

70

60

50

40

30

PASCAL VOC Tasks
Motion Model
ImageNet Wang et al Zhang (on grey) | Split-Brain

Classification (¥%mAP) = Detection (¥%mAP) ® Segmentation (%mIU)




COLORIZATION PAPERS

Lightness L Colorab  LabImage VGG-16-Gray

convieon? com3 cowd  comd  con  com7  comd (fc7) conv?

lous | died aous | dlted
64\

&& 52 ‘ 52 512‘ 512 ‘ &
e e |

#on ki 2 2 %

i ]
(&b) probabifty
dstn ﬁ o

M6y

Input: Grayscale Image

- Rebalanced - Un-Rebalanced
Classification LAB Classification HSV/L
Loss Loss

- VGG Net + Extra - VGG Net +
Depth + Dilated Hypercolumns

Convolutions
- Better for

- Better for Humans classification

x/’
N\

/
/
—_— /;,(\
/
/ 2\
T 7
X1 4 /
— |
y Predicted
4 Data

/
/
—
/
/
—
ly
Raw Data /X,
§

Raw Data Predicted Data
Channels Channels

Split-Brain Autoencoder

- More General Idea
than just Colorization

* Nearly identical to
Zhangetal. |

* Use color and grey






MOTION

* Two patches connected
by a track should have a
similar representation in
feature space

* Network learns
invariance to scaling,
lighting, transformation,
etc.

* Analogous to how infants

Query Tracked Negative D: pistance in deep feature space
learn by trackin go bJ ects (First Frame) (Last Frame) (Random)
(b) Siamese-triplet Network (c) Ranking Objective

Xiaolong Wang, Abhinav Gupta, Unsupervised Learning of Visual Representations using Videos, ICCV 2015.



TRAINING DATA

Obtain feature points — | |
and classify point as e T R /7 s
moving if its s s 4

trajectory > threshold \
Reject Frames with ' T
<25% (noise) or >75% gt , ‘
(camera movement) s St mmd L g
moving points

Find bounding box

that contains greatest e
number of moving ai SN A
points as query patch - ¥ —
Track box to obtain ‘ #

paired patch

Xiaolong Wang, Abhinav Gupta, Unsupervised Learning of Visual Representations using Videos, ICCV 2015.




Architecture and Loss

* Siamese Triplet
Network based on
AlexNet with two
stacked fully
connected layers on
the pools outputs

Shared Weights

Ranking
Loss
Layer

* Triplet loss with
margin on the 1024
dimensional feature
space

Shared Weights

* Hard negative mining
to select negative
patches

Xiaolong Wang, Abhinav Gupta, Unsupervised Learning of Visual Representations using Videos, ICCV 2015.



mAP onVOC 2012 Improvement of Ensemble Relative to Base

56 10%
54 [ 9%
> B 8%
50 -
48 | 7% —
065 | [ —
4t — 5% ————
42 —— — 4% ——
40 % —
o RN R R ® yp—
e & ¢ & ¢ & & &
OO R R O >
ISP\ S S\ S I AR C £
2 % 5 9 N
O(\Q’ e ")OQ é@ 0%
<¢ N o8 : :
< none  unsupervised supervised

Pretraining Method Pretraining Method

Supervised pretraining outperforms unsupervised pre-training, but adding more data
(ensembling) greatly improves unsupervised pre-training




MORE MOTION

* Previous paper explored ‘slow’ feature embedding
* We can explore ‘steady’ feature embedding in which changes in input should
reflect similar changes in feature space

F-------------------------------‘

I Steady feature embedding

t=T

i

i

1

i

D-dimensional \

o o 1

Dinesh Jayaraman, Kristen Grauman, Slow and steady feature analysis: higher order temporal coherence in video, CVPR 2016.



Slow Training Examples Steady Training Examples

Three frames within temporal window T and

Two frames within temporal window T T =
equidistant in time from one another




R

2 (O, U) = T Ds(zgl x;),zg(Tk),Pjk)

e

ARCHITECTURE AND LOSS

aremin L.(8. W. &) 4 .."-L[I'u'_-lr'.l_Hi ; .’*.rh';:H_c"l’l]

2.

Network Representation ~ Contrastive Loss NESEIS DSz Gl

T 1 | EZIE) e Ds ()
xR EEY e |

frame pairs

video frame triplets

(7,k)EU,

d(zg;, Zor) Rs(0,U)= Y  Ds(zer — 2om, Zom — Z6n, Pimn
Neighbors Stranger
Representations Representations
should be close should be far (up

toamargin)

Dinesh Jayaraman, Kristen Grauman, Slow and steady feature analysis: higher order temporal coherence in video, CVPR 2016.



SUPERVISED PORTION

Included very small amounts of labeled data as part of the loss term

class
labelled

L@ W.8)= T T loglo,, (Wzglz;))

=1

Dinesh Jayaraman, Kristen Grauman, Slow and steady feature analysis: higher order temporal coherence in video, CVPR 2016.



PERFORMANCE

* Unsupervised
pretraining method PASCAL-10 Actions
outperforms
supervised
pretraining method
for PASCAL-10
dataset and is
competitive with

supervised 5 3 - I
pretraining for SUN Extra supervision for SUP-FT,, 1o Extra supervision for SUP-FT, 4

scenes

Dinesh Jayaraman, Kristen Grauman, Slow and steady feature analysis: higher order temporal coherence in video, CVPR 2016.



MOTION PAPERS

Steady feature embedding

t=T |
I

|
|
|
| I
:t=1 Fi D-dimensionalI
I :.': * o0

[

* Motion Tracking * No Tracking Needed

* Slow Feature Analysis - Slow + Steady Feature
* Triplet Ranking Loss Analysis

- Completely - Contrastive Loss

Unsupervised * Semi-Supervised

All rely on the concept of small localized semantically predictable motion inVideo






AUDIO AS SUPERVISION

Audio is largely
invariant to
camera angle, B
lighting, scene = .‘ | | ﬁ‘
composition ; ofild - - Eam—
and Carries a e

lot of
information
about the

e

Frequency channel
Frequency channel

Freq. channel

Frequency channel
Frequency channel

n‘ Freq. channel

S e m a n t i C S Of Time (sec) Mod. channel Freq. channel

Freq. channel

(a) Video frame (b) Cochleagram (c) Summary statistics

an image.

Andrew Owens, Jiajun Wu, Josh H. McDermott, William T. Freeman, Antonio Torralba, Ambient Sound Provides Supervision for Visual Learning, ECCV 2016.



- CaffeNet + BatchNorm

- 360k videos from flicker

10 random frames from each video
*1.8 million image frames in total

 Many were post processed



PREDICTION MODEL

Audio cluster
prediction

Freq. channel —

(a) Images grouped by audio cluster (b) Clustered audio stats. (¢) CNN model

Andrew Owens, Jiajun Wu, Josh H. McDermott, William T. Freeman, Antonio Torralba, Ambient Sound Provides Supervision for Visual Learning, ECCV 2016.



SOUND REPRESENTATION

McDermott, J.H., Simoncelli, E.P.: Sound texture perception via
statistics of the auditory periphery: evidence from sound synthesis.
Neuron 71(5), 926—940 (2011)

* Timingis very hard to predict given static image
* Audio Averaged over multiple seconds

* Audio Decomposed and amplified to mimic
human hearing conditions

* 512 Dimensional vector

Andrew Owens, Jiajun Wu, Josh H. McDermott, William T. Freeman, Antonio Torralba, Ambient Sound Provides Supervision for Visual Learning, ECCV 2016.



SOUND REPRESENTATION

ﬁ

* Audio Texture * Audio Texture * Frequency
Representation

 K-means, single  PCA + Binary
cluster allocation thresholding on - PCA + Binary
(unlike colorization) each Dimension thresholding on
each Dimension
* Toss out examples - Cross-Entropy Loss
more than median - Cross-Entropy Loss

distance from cluster

Andrew Owens, Jiajun Wu, Josh H. McDermott, William T. Freeman, Antonio Torralba, Ambient Sound Provides Supervision for Visual Learning, ECCV 2016.



* Sample 200k Images
from Test Set

* Find top 5 that spike
a Neuron in gth
Convolutional Layer

* Use “synthetic
visualization” to find
receptive field.

* 91/256 units

Zhou, B., Khosla, A., Lapedriza, A.,
Oliva, A., Torralba, A.: Object detectors
emerge in deep scene cnns. In: ICLR
2015 (2014)

Neuron A = Baby

"’

¢

Neuron B = Skx

Neuron =Wa

terfall

4




Places and Sound
Learn different

Detectors e
S
Sound can Boost 02 ———
overall performance . ———
with an ensemble .
approach Train on Sound Train on Places

Percent of Detectors with characteristic
sound

" Percent of Detectors Found




Classification
Train SVM
weights at end of
network. Tune
with grid search

Detection
Fine Tuning with
Fast-RCNN

50

45

40

35

30

25

20

15

10

Motion Better

Motion Vs Sound

Sound Better

VOC Detection
(YomAP)

| B

VOC Classification
(YomAP)

SUN397 (%acc)

Sound (Best) = Motion




IMAGE ANNOTATION

On average, Bag of words
should relate to semantic

content of image. it “ ' A
e veranda hotel plane approaching zrh  not as impressive as
P re d | Ctl N g t h e b 3 g Of WO rd S portixol palma avro regional jet rj embankment that s for sure

— Unusual is commonplace
= B oEEsT

S

suggests the model
understands human focus
and labels.

student housing by article in the 10Cal ame! e e way § 1ooks oy atene dinos

lungaard tranberg paperabout all the:  HoWh swend wsr meckion then tew

2 : : cameras another pro_btem rs that it s a bit of
architects in copenhagen unusual things found  2bickiocam and o apan uiless youre.
click here to see where at otto s home NSRS LB 1S o i k) g
this phOtO was taken exposure bracketing script underexposure on
that camera looks meity yummy
gold kodak film like

Armand Joulin, Laurens van der Maaten, Allan Jabri, Nicolas Vasilache, Learning Visual Features from Large Weakly Supervised Data, ECCV 2016.



RESULTS

Flickr Word Prediction Pascal VOC

- @ - N
o O O

T

o
~
®
c
2
L,
O
Q
po
Q

- Imagenet (jittering)
- Imagenet (no jittering)

i

[-—‘Flickr |

L= &)

50 100 0 50
size of Flickr training set (in millions) —

* AlexNet on ImageNet features * Multi-class logistic
* Logistic classifier

Armand Joulin, Laurens van der Maaten, Allan Jabri, Nicolas Vasilache, Learning Visual Features from Large Weakly Supervised Data, ECCV 2016.



WEAK SUPERVISION PAPERS

¥ 7 .
o -2 °
T
\ = e
2 g s H -
2% E ¢ M

— Unusual is commonpace
— e o]
: E

student housing by article in the local
lungaard tranberg paper about all the
architects in copenhagen unusual things found
click here to see where at otto s home
this photo was taken

* Flicker image captions instead of
imagenet labels or pascal
segments

- Multilabel Loss function.

* Massive data will find signal in
noisy captions

* Flicker video provides audio data to
supervise image learning

* Audio statistic prediction

* Massive data will find signal in noisy
captions






Labels/Values

Strong Supervision

Weak Supervision

Self Supervision

: H
Source Experts / Experiments LR Data Itself
Somewhere
Quality Low Noise High Noise Variable Noise
EEERE Good-Great Poor-Good ?77?
Cost Low-Free Free
Amount High Massive

Examples

ImageNet , Pascal VOC

Flicker, Snapchat

Color, Motion, Audio




Is compatible
with

Convolutional
Networks

Recurrent
Networks

Can improve Is framed as Is an umbrella
convergence and and category
performance useful For including
Trainin el
9 Classification / VAEs | GANS

Techniques :

Regression

Pixel Wise

Generation/
Classification

Ranking &
Similarity
Learning



Image Content

- Carl Doersch, Abhinav Gupta, Alexei A. Efros, Context as Supervisory Signal: Discovering Objects with
Predictable Context, ECCV 2014.

- Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, Alexei A. Efros, Context Encoders: Feature
Learning by Inpainting, CVPR 2016.

Colorization

* Richard Zhang, Phillip Isola, Alexei A. Efros, Colorful Image Colorization, ECCV 2016.

* Gustav Larsson, Michael Maire, Gregory Shakhnarovich, Learning Representations for Automatic Colorization,
ECCV 2016.

- Richard Zhang, Phillip Isola, Alexei A. Efros, Split-Brain Autoencoders: Unsupervised Learning by Cross-Channel
Prediction, CVPR 2017

Video

- Xiaolong Wang, Abhinav Gupta, Unsupervised Learning of Visual Representations using Videos, ICCV 2015.

* Chelsea Finn, lan Goodfellow, Sergey Levine, Unsupervised Learning for Physical Interaction through Video
Prediction, NIPS 2016.

- Dinesh Jayaraman, Kristen Grauman, Slow and steady feature analysis: higher order temporal coherence in
video, CVPR 2016.

Weak Supervision

- Armand Joulin, Laurens van der Maaten, Allan Jabri, Nicolas Vasilache, Learning Visual Features from Large
Weakly Supervised Data, ECCV 2016.

 Andrew Owens, Jiajun Wu, Josh H. McDermott, William T. Freeman, Antonio Torralba, Ambient Sound Provides
Supervision for Visual Learning, ECCV 2016.



http://graphics.cs.cmu.edu/projects/contextPrediction/contextPrediction.pdf
https://arxiv.org/pdf/1604.07379.pdf
https://arxiv.org/pdf/1603.08511v5.pdf
https://arxiv.org/pdf/1603.06668.pdf
https://arxiv.org/pdf/1611.09842v1.pdf
http://www.cs.cmu.edu/~xiaolonw/papers/unsupervised_video.pdf
https://arxiv.org/pdf/1605.07157.pdf
http://vision.cs.utexas.edu/projects/slowsteady/cvpr16.pdf
https://arxiv.org/pdf/1511.02251v1.pdf
https://arxiv.org/pdf/1608.07017.pdf







General Purpose Feature Representation Learning

Add Noise @: X - X

Project into latent representation ¢: X, X > F
X ER*¥ FeER x«f

Project back into original representation {r: F — X

Minimize Squared Loss ~ argmin X — (g °¢)X||2
U,



100 Million Flicker images and caption

Images cropped to central 224 x 224

Drop 500 most frequent tokens (The, a, it, etc.)

Predict Multi-label bag of words size 1k, 10k, and 100k




TWO LOSSES

One vs All Loss
- Sensitive to Class Imbalance

ZZ Ik 1og o (f (Xn: H;;+ h;n(l — o(f(xn,0)))

n=1 k=1 A k

Multi-Class Logistic Loss
+ Performs better empirically in all experiments

—l EY " f(x,,:0)
(0, W: D) ZZ"”‘ log M

< -~y i A\
n=1 k=1 Z/f’—l(“\I)(WA.’.]L(XH-H))

Ranking Loss
- Too Slow

Armand Joulin, Laurens van der Maaten, Allan Jabri, Nicolas Vasilache, Learning Visual Features from Large Weakly Supervised Data, ECCV 2016.



LARGE SOFTMAXWOES

100K Softmax is huge and slow. Can © — o (W F(x,: 0) )
reduce training from months to weeks by Sk — CXL k J\2n )
only updating weights for the potential

128 words per image.

K Approximate Loss does
h‘jg Z s.| < l('.'lf—_d_.,‘ Z sp | = l('_}f_;‘,‘ ( Z) FOOS: overestimate True

Found Lower
Bound on
expected loss

Armand Joulin, Laurens van der Maaten, Allan Jabri, Nicolas Vasilache, Learning Visual Features from Large Weakly Supervised Data, ECCV 2016.



SAMPLING AND BALANCE

* Many Infrequent Words
* Few, Highly Frequent Words

* Pick a Word uniformly at random :
+ Pickimage with that word. All other [
words for that image are considered [
nOISy § a=1.13
* Noisier Gradients but Fast and 4 oo e

R, =0.97

Empirically strong

4 6 8 10 12
Log, frequency rank

Armand Joulin, Laurens van der Maaten, Allan Jabri, Nicolas Vasilache, Learning Visual Features from Large Weakly Supervised Data, ECCV 2016.



TRANSFER LEARNING

Indoor MIT SUN
Week Supervision can be great in combination with

regular supervision but underperforms on its own.

= Imagenet (no jittering)
-— Imagenet (jittering)
—ao—Flickr

0 50 100 50
Stanford 40 Actions Oxford Flowers

Dataset | Model || Indoor | SUN | Action | Flower| Sports [ ImNet
AlexNet ; 41. : ! : :

GooglLeNet

AlexNet

GoogleNet

AlexNet

Eomuing GoogLeNet : ! 1 : : 50 100 0 50

size of Flickr training set (in millions]

Imagenet

classification accuracy —

Flickr

AlexNet : g 632 86.2 388 | 579
GoogLeNet

3 902 430 475

. 6332 7863 6772 9026 4545 53.15
49.35|81.47 | 88.1 2 .51 |68.37 |71.65 | 85.81 | 88.87 | 85.22 | 88.69 | 60.45 | 77.26 6661 9071

Armand Joulin, Laurens van der Maaten, Allan Jabri, Nicolas Vasilache, Learning Visual Features from Large Weakly Supervised Data, ECCV 2016.



VISUALIZATION

T-SNE based on last layers of Alex Net with 1k Words

Visually and Semantically similar!

Armand Joulin, Laurens van der Maaten, Allan Jabri, Nicolas Vasilache, Learning Visual Features from Large Weakly Supervised Data, ECCV 2016.



WORD EMBEDDINGS

Last layer of ALexNet Analogical Reasoning Tests

SRR AOSal (Vodel [ K—1.000[ K—10.000] K~ 100,000

word embedding's
AlexNet

GooglLeNet
word2vec

AlexNet + word2vec
GoogleNet + word2vec

Surprising that vector
space operations are
preserved in deep
model

AlexNet

GoogleNet

word2vec

AlexNet + word2vec

GoogLeNet + word2vec

Armand Joulin, Laurens van der Maaten, Allan Jabri, Nicolas Vasilache, Learning Visual Features from Large Weakly Supervised Data, ECCV 2016.



WORD EMBEDDING VISUALIZATION

Gendered Names

stefan lange. o
chrigiiar
US andre

bren

string

soira

musituestrahop  Promo
o ;
bootﬁac'(s'agr%uziekh"e SEpe

tanz ki
feest few‘ss}fg‘w
tango in acts heroes

|
peﬁormmﬂOffTFaenr{:oermed

musical circus ballroom gym hon
e agh ors"\?ampire nditY e
dirlfif8Ruditorium sty gio

alternative

Roughly Music/ Arts

Strange Results

r@%ﬂ ntaxk
e b
handheld

__fem  giardin

°olossom§
i

_arboretum _f
vi f
SgiE

Garden

tion . garten
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Bag of Words loses valuable relations between words.

Joint embedding of text and images we will see later
improves upon this

Stochastic Gradient Descent over Targets is generally
useful for large SoftMax Multi-label prediction




1. Sample Random patches from PASCAL VOC

2. Using HOG Space, Find top few Nearest Neighbors for each
patch. These are clusters proposals.

3. Discard Patches that are inconsistent with other patches
4. Rankthe clusters by sum of patch scores

5. Discard clusters that do not contain visually consistent objects

Score Nth Patch by predicting its context using the the N-1 other
patches. But, Must account for difficulty of prediction.




AlexNet

- 1M — 415M
Parameters

- 7 Layers

- 2 weeks to train

GoogleLeNet

" 4tM — 4o4M
Parameters

- 12 layers

* Auxiliary classifier

- 3 weeks to train




SURFACE NORMAL PREDICTION

(Lower Better)  (Higher Better)
Mean Median 11.25° 22.5° 30°

scratch 38.6 26.5 33.1 46.8 525
unsup + ft 342 219 357 506 57.0
ImageNet +ft  33.3 208  36.7 51.7 58.1
UNFOLD [13]  35.1 192 376 533 589
Discr. [25] 32.5 224 274 50.2 60.2
3DP (MW) [12] 36.0 205 359 520 578

Xiaolong Wang, Abhinav Gupta, Unsupervised Learning of Visual Representations using Videos, ICCV 2015.



