
Bonus Lecture: Introduction to
Reinforcement Learning

Garima Lalwani, Karan Ganju and Unnat Jain

Credits: These slides and images are borrowed from slides by David Silver and Peter Abbeel

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
https://edge.edx.org/courses/BerkeleyX/CS188x-SP15/SP15/20021a0a32d14a31b087db8d4bb582fd/

Outline

1 RL Problem Formulation

2 Model-based Prediction and Control

3 Model-free Prediction

4 Model-free Control

5 Summary

Part 1: RL Problem Formulation

uj2
Stamp

Characteristics of Reinforcement Learning

What makes reinforcement learning different from other machine
learning paradigms?

There is no supervisor, only a reward signal
Feedback is delayed, not instantaneous

Time really matters (correlated, non i.i.d data)
Agent’s actions affect the subsequent data it receives

Agent and Environment

Observed state

reward

action

At

Rt

St

Agent

Environment

Rewards

A reward Rt is a scalar feedback signal

Indicates how well agent is doing at step t

The agent’s job is to maximise cumulative reward

Rod Balancing Demo

https://www.youtube.com/watch?v=Lt-KLtkDlh8Learn to swing up and balance a real pole based on raw visual input data, ICNIP 2012

https://www.youtube.com/watch?v=Lt-KLtkDlh8
https://www.youtube.com/watch?v=Lt-KLtkDlh8

RL based visual control

https://www.youtube.com/watch?v=CE6fBDHPbP8End-to-end training of deep visuomotor policies, JMLR 2016

https://www.youtube.com/watch?v=CE6fBDHPbP8

RL based visual control

Source: https://68.media.tumblr.com/Link: https://goo.gl/kY4RmS

https://68.media.tumblr.com/6985b34602b6c5ead8f059f361dfbf59/tumblr_omewejVZzC1s02vreo1_400.gif

Examples of Rewards

Fly stunt manoeuvres in a helicopter
+ve reward for following desired trajectory

−ve reward for crashing

Defeat the world champion at Go
+/−ve reward for winning/losing a game

Play many Atari games better than humans
+/−ve reward for increasing/decreasing score

https://deepmind.com/research/alphago/

Stanford autonomous helicopter
Abbeel et. Al.

https://gym.openai.com/

Sample model of RL problem

R = +10

R = +1

R = -1 R = 0

R = -2 R = -2

0.2
0.4

0.4

R = -1

R = 0

Home

Murphy's
Project

Complete

Group
Disc.

Arun's
OH

Submit
project

Submit
projectPubbing

Pubbing

Leave

Study Study

Take
Arun's Quiz

States

R = +10

R = +1

R = -1 R = 0

R = -2 R = -2

0.2
0.4

0.4

R = -1

R = 0

Home

Murphy's
Project

Complete

Group
Disc.

Arun's
OH

Submit
project

Submit
projectPubbing

Pubbing

Leave

Study Study

Take
Arun's Quiz

Actions

R = +10

R = +1

R = -1 R = 0

R = -2 R = -2

0.2
0.4

0.4

R = -1

R = 0

Home

Murphy's
Project

Complete

Group
Disc.

Arun's
OH

Submit
project

Submit
projectPubbing

Pubbing

Leave

Study Study

Take
Arun's Quiz

Rewards

R = +10

R = +1

R = -1 R = 0

R = -2 R = -2

0.2
0.4

0.4

R = -1

R = 0

Home

Murphy's
Project

Complete

Group
Disc.

Arun's
OH

Submit
project

Submit
projectPubbing

Pubbing

Leave

Study Study

Take
Arun's Quiz

uj2
Line

uj2
Line

uj2
Line

uj2
Line

uj2
Line

uj2
Line

uj2
Line

uj2
Line

Transition probabilities

R = +10

R = +1

R = -1 R = 0

R = -2 R = -2

0.2 0.4
0.4

R = -1

R = 0

Home

Murphy's
Project

Complete

Group
Disc.

Arun's
OH

Submit
project

Submit
projectPubbing

Pubbing

Leave

Study Study

Take
Arun's Quiz

Markov Decision Process

A Markov decision process (MDP) is an environment in which all
states are Markov.

MDP
A Markov Decision Process has the following 〈S, A, P, R, γ〉

Pa
ss′ = P [St+1 = s

S is a finite set of states

A is a finite set of actions

P is a state transition
′

probability matrix,
| St = s,At = a]

aR is a reward function, Rs = E [Rt+1 | St = s, At = a]

P [St+1 | St , At = a] = P [St+1 | S1, ..., S t , At = a]

Major Components of an RL Agent

An RL agent may include one or more of these components:
Policy: agent’s behaviour function
Model: agent’s representation of the environment
Value function: how good is each state and/or action

Policy

A policy is the agent’s behaviour

It is a map from state to action, e.g.

Deterministic policy: π(s) = 1 for At= a
Stochastic policy: π(a|s) = P[At = a|St = s]

Actions

R = +10

R = +1

R = -1 R = 0

R = -2 R = -2

0.2
0.4

0.4

R = -1

R = 0

Home

Murphy's
Project

Complete

Group
Disc.

Arun's
OH

Submit
project

Submit
projectPubbing

Pubbing

Leave

Study Study

Take
Arun's Quiz

Model

A model predicts what the environment will do next

P : Transition probabilities
R : Expected rewards

Pa
ss′ = P[St+1 = s ′ | St = s,At = a]

Ra
s = E [Rt+1 | St = s,At = a]

Beyond Rewards

R = +10

R = +1

R = -1 R = 0

R = -2 R = -2

0.2
0.4

0.4

R = -1

R = 0

Home

Murphy's
Project

Complete

Group
Disc.

Arun's
OH

Submit
project

Submit
projectPubbing

Pubbing

Leave

Study Study

Take
Arun's Quiz

Value function - Concept of Return

Return Gt

The return Gt is cumulative discounted reward from time-step t.

Gt = Rt+1 + γRt+2 + ... =
∞∑
k=0

γkRt+k+1

The discount γ ∈ [0, 1] is the present value of future rewards
This values immediate reward above delayed reward.
Avoids infinite returns in cyclic Markov processes

Value Function

State Value Function vπ(s)

vπ(s) of an MDP is the expected return starting from state s, and
then following policy π

vπ(s) = Eπ [Gt | St = s]

Action Value Function qπ(s,a)

qπ(s, a) is the expected return starting from state s, taking action
a, and then following policy π

qπ(s, a) = Eπ [Gt | St = s,At = a]

Subproblems in RL

Model based
Model free

Prediction: evaluate the future
Given a policy

Control: optimise the future
Find the best policy

Part 2: Model-based Prediction and Control

uj2
Stamp

Connecting v(s) and q(s,a): Bellman equations

v⇡(s) 7!s

q⇡(s, a) 7!a

vπ(s) =
∑
a∈A

π(a|s)qπ(s, a)

q in terms of v :

7!v⇡(s0) s0

q⇡(s, a) 7!s, a

r qπ(s, a) = Rs
a + γ

∑
s′∈S
Pa
ss′ vπ(s ′)

v in terms of q :

Pa
ss′ vπ(s ′)

π(a|s)qπ(s, a)

π(a1|s)qπ (s , a) π(an|s)qπ (s , a)

Connecting v(s) and q(s,a): Bellman equations (2)

q⇡(s, a) 7!s, a

q⇡(s0, a0) 7!a0

r

s0
qπ(s, a) = Ra

s + γ
∑
s′∈S
Pa
ss′

∑
a′∈A

π(a′|s ′)qπ(s ′, a′)

7!v⇡(s0) s0

v⇡(s) 7!s

r

a vπ(s) =
∑
a∈A

(
π(a|s) Rs

a
 + γ

∑
s′∈S

Pa
ss′ vπ(s ′)

)

q in terms of other q :

v in terms of other v :

Example: vπ(s)

R = +10

R = +1

R = -1 R = 0

R = -2 R = -2

0.2
0.4

0.4

R = -1

R = 0 Submit
project

Submit
projectPubbing

Pubbing

Leave

Study Study

Take
Arun's Quiz

-1.3 7.4

0-2.3

Group
Disc.

Example: vπ(s)

R = +10

R = +1

R = -1 R = 0

R = -2 R = -2

0.2
0.4

0.4

R = -1

R = 0 Submit
project

Submit
projectPubbing

Pubbing

Leave

Study Study

Take
Arun's Quiz

-1.3 7.4

0-2.3

vπ(s) for π(a|s)=0.5, γ =1

vπ(GD) = 0.5*(0+0) + 0.5*(-2 + 7.4)

vπ(GD) = 0.5* (R+vπ (Submitted)) + 0.5*(R+vπ(Arun's OH))

Group
Disc.

Example: vπ(s)

R = +10

R = +1

R = -1 R = 0

R = -2 R = -2

0.2
0.4

0.4

R = -1

R = 0 Submit
project

Submit
projectPubbing

Pubbing

Leave

Study Study

Take
Arun's Quiz

-1.3 2.7 7.4

0-2.3

vπ(s) for π(a|s)=0.5, γ =1

vπ(GD) = 0.5*(0+0) + 0.5*(-2 + 7.4)

vπ(GD) = 0.5* (R+vπ (Submitted)) + 0.5*(R+vπ(Arun's OH))

Example: qπ(s,a)

R = +10

R = +1

R = -1 R = 0

R = -2 R = -2

0.2
0.4

0.4

R = -1

R = 0

q = - 3.3

q = -1.3

q = -3.3

q = 0.7 q = 5.4

q = 0

q = 10

q = 3.78

qπ(s,a) for π(a|s)=0.5, γ =1

Example: qπ(s,a)

R = +10

R = +1

R = -1 R = 0

R = -2 R = -2

0.2
0.4

0.4

R = -1

R = 0

q = 0.7 q = 5.4

q = 0

q = 10

q = 3.78

qπ(s,a) for π(a|s)=0.5, γ =1

q = - 3.3

q = -1.3

q = -3.3

Example: Policy improvement

0.2
0.4

0.4

R = +10

R = +1

R = -1 R = 0

R = -2 R = -2

R = -1

R = 0

q = 0.7 q = 5.4

q = 0

q = 10

q = 3.78

q = - 3.3

q = -1.3

q = -3.3

Example: Policy improvement - Greedy

0.2
0.4

0.4

R = +10

R = +1

R = -1 R = 0

R = -2 R = -2

R = -1

R = 0

q = 0.7 q = 5.4

q = 0

q = 10

q = 3.78

πnew(a|s) =

{
1 if a = argmax

a∈A
qold(s, a)

0 otherwiseq = - 3.3

q = -1.3

q = -3.3

Policy Iteration

Policy evaluation Estimate vπ
Iterative policy evaluation

Policy improvement Generate π′ ≥ π
Greedy policy improvement

Iterative Policy Evaluation in Small Gridworld

 0.0 0.0 0.0

 0.0 0.0 0.0 0.0

 0.0 0.0 0.0 0.0

 0.0 0.0 0.0

-1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0

-1.7 -2.0 -2.0

-1.7 -2.0 -2.0 -2.0

-2.0 -2.0 -2.0 -1.7

-2.0 -2.0 -1.7

-2.4 -2.9 -3.0

-2.4 -2.9 -3.0 -2.9

-2.9 -3.0 -2.9 -2.4

-3.0 -2.9 -2.4

-6.1 -8.4 -9.0

-6.1 -7.7 -8.4 -8.4

-8.4 -8.4 -7.7 -6.1

-9.0 -8.4 -6.1

-14. -20. -22.

-14. -18. -20. -20.

-20. -20. -18. -14.

-22. -20. -14.

Vk for the
Random Policy

Greedy Policy update
w.r.t. Vk

k = 0

k = 1

k = 2

k = 10

k = °

k = 3

optimal
policy

random
policy

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

vk
vk

States: 14 cells + 2 terminal cells
Actions: 4 directions
Rewards: -1 for time step

Iterative Policy Evaluation in Small Gridworld (2)

 0.0 0.0 0.0
 0.0 0.0 0.0 0.0
 0.0 0.0 0.0 0.0
 0.0 0.0 0.0

-1.0 -1.0 -1.0
-1.0 -1.0 -1.0 -1.0
-1.0 -1.0 -1.0 -1.0
-1.0 -1.0 -1.0

-1.7 -2.0 -2.0
-1.7 -2.0 -2.0 -2.0
-2.0 -2.0 -2.0 -1.7
-2.0 -2.0 -1.7

-2.4 -2.9 -3.0
-2.4 -2.9 -3.0 -2.9
-2.9 -3.0 -2.9 -2.4
-3.0 -2.9 -2.4

-6.1 -8.4 -9.0
-6.1 -7.7 -8.4 -8.4
-8.4 -8.4 -7.7 -6.1
-9.0 -8.4 -6.1

-14. -20. -22.
-14. -18. -20. -20.
-20. -20. -18. -14.
-22. -20. -14.

Vk for the
Random Policy

Greedy Policy
w.r.t. Vk

k = 0

k = 1

k = 2

k = 10

k = °

k = 3

Saturated
policy

random
policy

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

∞

Policy Iteration

Policy evaluation Estimate vπ
Iterative policy evaluation

Policy improvement Generate π′ ≥ π
Greedy policy improvement

Modified Policy Iteration - Value Iteration

Policy converges faster than value function
In t he small gridworld k = 3 was sufficient t o achieve optimal policy

Why not update policy every iteration? i.e. stop after k = 1
This is value iteration

-2.4 -2.9 -3.0
-2.4 -2.9 -3.0 -2.9
-2.9 -3.0 -2.9 -2.4
-3.0 -2.9 -2.4

-6.1 -8.4 -9.0
-6.1 -7.7 -8.4 -8.4
-8.4 -8.4 -7.7 -6.1
-9.0 -8.4 -6.1

-14. -20. -22.
-20.
-14.

-14. -18. -20.
-20. -20. -18.
-22. -20. -14.

k = 10

k = °

k = 3

Saturated
policy

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

∞

Modified Policy Iteration - Value Iteration

Policy converges faster than value function
In the small gridworld k = 3 was sufficient t o achieve optimal policy
Why not update policy every iteration? i.e. stop after k = 1

This is value iteration

Starting V

π = greedy(V)

V = Vπ

V*, π*

Part 3: Model-Free Prediction

uj2
Stamp

Bellman Equation Estimate

T!

T! T! T!

st

rt+1
st+1

T!

T!T!

T!

T!T!

T!

T!

T!

vπ(s) =
∑
a∈A

(
π(a|s) Rs

a
 + γ

∑
s′∈S
Pass′ vπ(s

′
)

)v in terms of other v :

uj2
Rectangle

uj2
Rectangle

Monte-Carlo Sampling

T! T! T! T!T!

T! T! T! T! T!

st

T! T!

T! T!

T!T! T!

T! T!T!

Monte-Carlo Estimate

T! T! T! T!T!

T! T! T! T! T!

st

T! T!

T! T!

T!T! T!

T! T!T!

(s)

s

s, (s)

ss'1's2' s3'

s, (s),s’

Almost! But we can’t
rewind time to get sample
after sample from state s.

vπ(s) = E [Rt+1 + γRt+2 + . ..|St = s] [actual]

V (St) [estimate]

Monte-Carlo Estimate

T! T! T! T!T!

T! T! T! T! T!

st

T! T!

T! T!

T!T! T!

T! T!T!

(s)

s

s, (s)

ss'1's2' s3'

s, (s),s’

Almost! But we can’t
rewind time to get sample
after sample from state s.

vπ(s) = E [Rt+1 + γRt+2 + . ..|St = s]

V (St) := V (St) + α (Rt+1 + γRt+2 + γ2Rt+3 ... − V (St))

Monte-Carlo Estimate

T! T! T! T!T!

T! T! T! T! T!

st

T! T!

T! T!

T!T! T!

T! T!T!

(s)

s

s, (s)

ss'1's2' s3'

s, (s),s’

Almost! But we can’t
rewind time to get sample
after sample from state s.

V (St) := V (St) + α (Rt+1 + γRt+2 + γ2Rt+3 ... − V (St))

Temporal-Difference Estimate

V (St) := V (St) + α (Rt+1 + γV (St+1) − V (St))

T! T! T! T!T!

T! T! T! T! T!

st+1
rt+1

st

T!T!T!T!T!

T! T! T! T! T!

V (St) := V (St) + α (Rt+1 + γRt+2 + γ2Rt+3 ... − V (St))

Temporal-Difference Estimate

V (St) := V (St) + α (Rt+1 + γV (St+1) − V (St))

T! T! T! T!T!

T! T! T! T! T!

st+1
rt+1

st

T!T!T!T!T!

T! T! T! T! T!

Guess towards a guess

MC vs. TD

MC:
 TD: V (St) := V (St) + α (Rt+1 + γV (St+1) − V (St))

TD can learn before knowing the final outcome

TD target Rt+1 + γV (St+1) is biased estimate of Rt+1 + γvπ(St+1)
TD target is much lower variance than MC target

V (St) := V (St) + α (Rt+1 + γ Rt+2 + γ2Rt+3 ... − V (St))

Part 4: Model-Free Control

uj2
Stamp

Today's takeaways

• MDP: States, actions
• Environment: Transitions and

rewards
• Agent: Policy over actions
• Policy iteration

o Policy evaluation
o Policy improvement

• Value Iteration
• Model free policy evaluation
• Model free policy control

Today's takeaways

• MDP: States, actions
• Environment: Transitions and

rewards
• Agent: Policy over actions
• Policy iteration

o Policy evaluation
o Policy improvement

• Value Iteration
• Model free policy evaluation
• Model free policy control

R = +10

R = +1

R = -1 R = 0

R = -2 R = -2

0.2
0.4

0.4

R = -1

R = 0

Home

Murphy's
Project

Complete

Group
Disc.

Arun's
OH

Submit
project

Submit
projectPubbing

Pubbing

Leave

Study Study

Take
Arun's Quiz

Today's takeaways

• MDP: States, actions
• Environment: Transitions and

rewards
• Agent: Policy over actions
• Policy iteration

o Policy evaluation
o Policy improvement

• Value Iteration
• Model free policy evaluation
• Model free policy control

R = +10

R = +1

R = -1 R = 0

R = -2 R = -2

0.2
0.4

0.4

R = -1

R = 0

Home

Murphy's
Project

Complete

Group
Disc.

Arun's
OH

Submit
project

Submit
projectPubbing

Pubbing

Leave

Study Study

Take
Arun's Quiz

Today's takeaways

• MDP: States, actions
• Environment: Transitions and

rewards
• Agent: Policy over actions
• Policy iteration

o Policy evaluation
o Policy improvement

• Value Iteration
• Model free policy evaluation
• Model free policy control

 π(a|s) = P[At = a|St = s]

Today's takeaways

• MDP: States, actions
• Environment: Transitions and

rewards
• Agent: Policy over actions
• Policy iteration

o Policy evaluation
o Policy improvement

• Value Iteration
• Model free policy evaluation
• Model free policy control q in terms of other q

v in terms of other v

Today's takeaways

• MDP: States, actions
• Environment: Transitions and

rewards
• Agent: Policy over actions
• Policy iteration

o Policy evaluation
o Policy improvement

• Value Iteration
• Model free policy evaluation
• Model free policy control πnew(a|s) =

{
1 if a = argmax

a∈A
qold(s, a)

0 otherwise

Today's takeaways

• MDP: States, actions
• Environment: Transitions and

rewards
• Agent: Policy over actions
• Policy iteration

o Policy evaluation
o Policy improvement

• Value Iteration
• Model free policy evaluation
• Model free policy control

Starting V

π = greedy(V)

V = Vπ

V*, π*

-2.4 -2.9 -3.0
-2.4 -2.9 -3.0 -2.9
-2.9 -3.0 -2.9 -2.4
-3.0 -2.9 -2.4

-6.1 -8.4 -9.0
-6.1 -7.7 -8.4 -8.4
-8.4 -8.4 -7.7 -6.1
-9.0 -8.4 -6.1

-14. -20. -22.
-20.
-14.

-14. -18. -20.
-20. -20. -18.
-22. -20. -14.

k = 10

k = °

k = 3

Saturated
policy

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

∞

Today's takeaways

• MDP: States, actions
• Environment: Transitions and

rewards
• Agent: Policy over actions
• Policy iteration

o Policy evaluation
o Policy improvement

• Value Iteration
• Model free policy evaluation
• Model free policy control

V (St) := V (St) + α (Rt+1 + γV (St+1) − V (St))

Today's takeaways

• MDP: States, actions
• Environment: Transitions and

rewards
• Agent: Policy over actions
• Policy iteration

o Policy evaluation
o Policy improvement

• Value Iteration
• Model free policy evaluation
• Model free policy control

Generalised Policy Iteration (Refresher)

Policy evaluation Estimate vπ
Model-based: Iterative policy evaluation

Policy improvement Generate π′ ≥ π
Model-based Greedy policy improvement

Generalised Policy Iteration

Policy evaluation Estimate vπ
Model-free: TD Policy evaluation

Policy improvement Generate π′ ≥ π
Model-free: Greedy policy improvement

Model-Free Policy Improvement

π′(s) = argmax
a∈A

a

Greedy policy improvement from V and Q values

π′(s) = argmax
a∈A

Q(s, a)
∑
s

Rs +
′
 Pass′ V (s ′)
∈S

Model-Free Policy Improvement

π′(s) = argmax
a∈A

a

Greedy policy improvement from V and Q values

π′(s) = argmax
a∈A

Q(s, a)
∑
s

Rs +
′
 Pass′ V (s ′)
∈S

Model-Free Policy Improvement

Greedy policy improvement over V (s) requires model of MDP

π′(s) = argmax
a∈A

aπ′(s) = argmax
a∈A

Q(s, a)
∑
s

Rs +
′
 Pass′ V (s ′)
∈S

uj2
Rectangle

uj2
Rectangle

Generalised Policy Iteration with Q values

Starting
Q, π

π = greedy(Q)

Q = qπ

q*, π*

Policy evaluation TD policy evaluation, Q = qπ

Policy improvement Greedy policy improvement?

Thinking beyond Greedy - Exploration-Exploitation

Unseen
Seen

What we hoped we had:

What we have:

ε-Greedy Exploration

Simplest idea for ensuring continual exploration

With probability 1 − ε choose the greedy action

With probability ε choose an action at random

TD Policy Iteration

Starting
Q, π

π = ε-greedy(Q)

Q = qπ

q*, π*

Policy evaluation TD policy evaluation, Q = qπ

Policy improvement ε-greedy policy improvement

SARSA: TD Value Iteration

Starting Q

π = ε-greedy(Q)

Q = qπ

q*, π*

One step of evaluation:

Policy evaluation TD policy evaluation, Q ≈ qπ
Policy improvement ε-greedy policy improvement

-2.4 -2.9 -3.0
-2.4 -2.9 -3.0 -2.9
-2.9 -3.0 -2.9 -2.4
-3.0 -2.9 -2.4

-6.1 -8.4 -9.0
-6.1 -7.7 -8.4 -8.4
-8.4 -8.4 -7.7 -6.1
-9.0 -8.4 -6.1

-14. -20. -22.
-20.
-14.

-14. -18. -20.
-20. -20. -18.
-22. -20. -14.

k = 10

k = °

k = 3

Saturated
policy

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

∞

SARSA: Step by Step

S1,A1

R2

S2

Q(S1 , A 1) := Q(S1 , A 1) + α
(
R2 + γQ(S2, A2) − Q(S1 , A1)

)
A2 ~ epsilon greedy (·|S2)

S1,A1

S2

S2,A2

uj2
Typewritten Text
Agent

uj2
Typewritten Text
Environment

uj2
Line

uj2
Line

uj2
Line

SARSA: Step by Step

S2,A2

R3

S3

Q(S2 ,A 2) := Q(S2 , A 2) + α
(
R3 + γQ(S3, A 3) − Q (S2 , A 2)

)
A3 ~ epsilon greedy2 (·|S3)

S1,A1

S2

S2,A2

S3,A3

S3
Agent

Environment

uj2
Line

uj2
Line

uj2
Line

Q Learning

Learn about optimal policy while following exploratory policy
Target policy: Greedy [Optimal]
Behaviour policy: Epsilon-greedy [Exploratory]

Q Learning

Learn about optimal policy while following exploratory policy
Target policy: Greedy [Optimal]
Behaviour policy: Epsilon-greedy [Exploratory]

Optimal

Exploratory

Q-Learning Control Algorithm

S1,A1

R2

a 2’~ g r e e d y (· | S 2)

S2

Q(S1 , A 1) := Q(S1 , A 1) + α
(

a2
R2 + γ max

′ Q(S2, a2
′) − Q(S1 , A1)

)

A2 ~ epsilon greedy (·|S2)

Q(S1 , A 1) := Q(S1 ,A 1) + α
(
R2 + γQ(S2, A 2) − Q(S1 , A 1)

)
Sarsa :

S1, A1

S2, A2 S2, a2
'

uj2
Oval

uj2
Oval

Q-Learning Control Algorithm

S2,A2

R3

a 3’~ g r e e d y (· | S 3)

S3

A3 ~ epsilon greedy (·|S3)

S1, A1

S2, A2

S3, A3

S2, a2
'

S3 , a3
'

Q(S2 , A 2) :=Q(S2 , A 2) + α
(
R3 + γ m ax

a3
′
Q(S3, a3

′) − Q(S2 , A 2)
)

uj2
Oval

uj2
Oval

uj2
Oval

uj2
Oval

Q-Learning Control Algorithm

S3,A3

R4

a 4' ~ g r e e d y (· | S 3)

S4
A4 ~ epsilon greedy (·|S3)

S1, A1

S2, A2

S3, A3

S2, a2
'

S3 , a3
'

Q(S3 , A 3) := Q(S3 , A 3) + α
(
R4 + γ m ax

a4
′
Q(S4, a4

′) − Q(S3 , A 3)
)

uj2
Oval

uj2
Oval

uj2
Oval

uj2
Oval

uj2
Oval

uj2
Oval

SARSA and Q-Learning example

https://studywolf.wordpress.com/2013/07/01/reinforcement-learning-sarsa-vs-q-learning/

What's in store for Lec 13?

https://memegenerator.net/instance/73854727

What's in store for Lec 13?

https://www.youtube.com/watch?v=60pwnLB0DqY
https://www.youtube.com/watch?v=V1eYniJ0Rnk

https://www.youtube.com/watch?v=cjpEIotvwFY&feature=youtu.be
https://www.youtube.com/watch?v=60pwnLB0DqY
https://www.youtube.com/watch?v=V1eYniJ0Rnk
https://www.youtube.com/watch?v=60pwnLB0DqY

Questions?

The only stupid question is the one you were afraid to
ask but never did.
-Rich Sutton

References

Introduction to RL by David Silver (UCL & DeepMind)
 www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html [Lec 1-5]
 https://youtu.be/2pWv7GOvuf0

Artificial Intelligence by Peter Abbeel (UCB)
 https://edge.edx.org/courses/BerkeleyX/CS188x-SP15/
SP15/20021a0a32d14a31b087db8d4bb582fd/

Artificial Intelligence by Svetlana Lazebnik (UIUC)
 http://slazebni.cs.illinois.edu/fall16/

Appendix

Incremental Monte-Carlo Updates

Update V (s) incrementally after episode S1,A1,R2, ...,ST

For each state St with return Gt

N(St) := N(St) + 1

V (St) := V (St) + 1

N(St)
(Gt − V (St))

In non-stationary problems, it can be useful
to track a running mean, i.e. forget old episodes.

V (St) := (1-α) V(St) + α Gt
 := V (St) + α (Gt − V (St))

Idea:

GLIE

Definition

Greedy in the Limit with Infinite Exploration (GLIE)

All state-action pairs are explored infinitely many times,

lim
k→∞

Nk(s, a) =∞

The policy converges on a greedy policy,

lim
k→∞

πk(a|s) = 1(a = argmax
a′∈A

Qk(s, a′))

For example, ε-greedy is GLIE if ε reduces to zero at εk = 1
k

Convergence of Sarsa

Theorem

Sarsa converges to the optimal action-value function,
Q(s, a)→ q∗(s, a), under the following conditions:

GLIE sequence of policies πt(a|s)

Robbins-Monro sequence of step-sizes αt

∞∑
t=1

αt =∞

∞∑
t=1

α2
t <∞

Monte-Carlo Control

Sample kth episode using π: {S1,A1,R2, ...,ST} ∼ π
For each state St and action At in the episode,

N(St , At) := N(St , At) + 1
1

N(St ,At)
(Gt − Q(St ,At))

Improve policy based on new action-value function

ε = 1/k

π = ε-greedy(Q)

Theorem

Decaying epsilon Monte-Carlo control converges to the optimal
action-value function, Q(s, a) → q∗(s, a)

Q (St , At) := Q (St , At) +

Sarsa Algorithm for On-Policy Control

Q-Learning Algorithm for Off-Policy Control

	Binder1
	1-intro_RL
	2-MDP
	1-intro_RL
	2-MDP
	3-DP
	4-MC-TD
	5-control
	2-MDP

	sp15-cs188-lecture-8-1PP
	sp15-cs188-lecture-9-1PP
	Blank Page
	Blank Page
	vˇ
	Blank Page
	Blank Page
	Untitled
	Untitled
	Untitled
	Untitled
	Untitled
	Untitled
	Untitled

