

Bonus Lecture: Introduction to Reinforcement Learning

Garima Lalwani, Karan Ganju and Unnat Jain

Credits: These slides and images are borrowed from slides by David Silver and Peter Abbeel

Outline

- 1 RL Problem Formulation
- 2 Model-based Prediction and Control
- 3 Model-free Prediction
- 4 Model-free Control
- 5 Summary

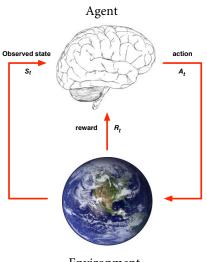
Part 1: RL Problem Formulation

Characteristics of Reinforcement Learning

What makes reinforcement learning different from other machine learning paradigms?

- There is no supervisor, only a reward signal
- Feedback is delayed, not instantaneous
- Time really matters (correlated, non i.i.d data)
- Agent's actions affect the subsequent data it receives

Agent and Environment



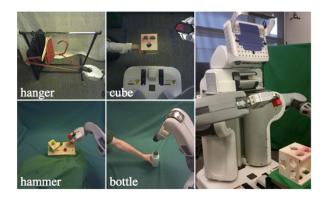
Environment

Rewards

- \blacksquare A reward R_t is a scalar feedback signal
- lacktriangleright Indicates how well agent is doing at step t
- The agent's job is to maximise cumulative reward

Rod Balancing Demo

RL based visual control



RL based visual control

Link: https://goo.gl/kY4RmS Source: https://68.media.tumblr.com/

Examples of Rewards

- Fly stunt manoeuvres in a helicopter
 - +ve reward for following desired trajectory
 - –ve reward for crashing

 \blacksquare +/-ve reward for increasing/decreasing score

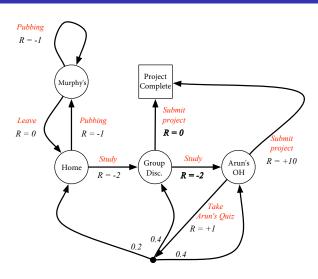
- Defeat the world champion at Go
 - \blacksquare +/-ve reward for winning/losing a game

Stanford autonomous helicopter Abbeel et. Al.

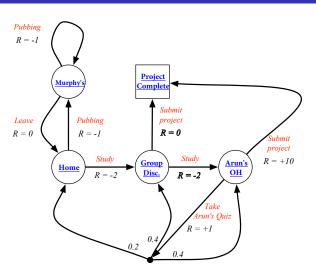
https://gym.openai.com/

https://deepmind.com/research/alphago/

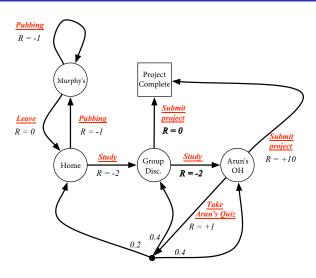
Sample model of RL problem



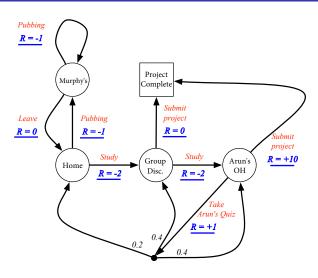
States



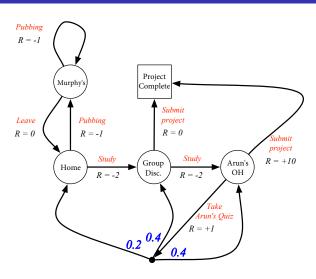
Actions



Rewards



Transition probabilities



Markov Decision Process

A Markov decision process (MDP) is an *environment* in which all states are **Markov**.

$$\mathbb{P}[S_{t+1} \mid S_t, A_t = a] = \mathbb{P}[S_{t+1} \mid S_1, ..., S_t, A_t = a]$$

MDP

A *Markov Decision Process* has the following $\langle S, A, P, R, \gamma \rangle$

- \mathbf{S} is a finite set of states
- A is a finite set of actions
- lacksquare \mathcal{P} is a state transition probability matrix,
- $P_{ss'}^{a} = P[S_{t+1} = s' \mid S_t = s, A_t = a]$
- \mathcal{R} is a reward function, $\mathcal{R}_s^a = \mathbb{E}\left[R_{t+1} \mid S_t = s, A_t = a\right]$

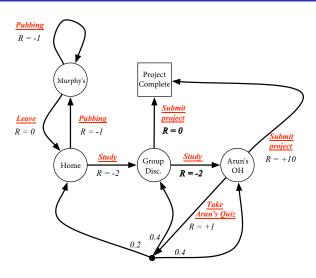
Major Components of an RL Agent

- An RL agent may include one or more of these components:
 - Policy: agent's behaviour function
 - Model: agent's representation of the environment
 - Value function: how good is each state and/or action

Policy

- A policy is the agent's behaviour
- It is a map from state to action, e.g.
- Deterministic policy: $\pi(s) = 1$ for $A_t = a$
- Stochastic policy: $\pi(a|s) = \mathbb{P}[A_t = a|S_t = s]$

Actions



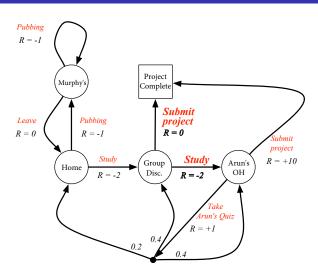
Model

- A model predicts what the environment will do next
- $\blacksquare \mathcal{P}$: Transition probabilities
- \blacksquare \mathcal{R} : Expected rewards

$$\mathcal{P}_{ss'}^{a} = \mathbb{P}[S_{t+1} = s' \mid S_t = s, A_t = a]$$

$$\mathcal{R}_{s}^{a} = \mathbb{E}[R_{t+1} \mid S_t = s, A_t = a]$$

Beyond Rewards



Value function - Concept of Return

Return G_t

The return G_t is cumulative **discounted** reward from time-step t.

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

- The *discount* $\gamma \in [0, 1]$ is the present value of future rewards
- This values immediate reward above delayed reward.
- Avoids infinite returns in cyclic Markov processes

Value Function

State Value Function $v_{\pi}(s)$

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[G_t \mid S_t = s \right]$$

 $v_{\pi}(s)$ of an MDP is the expected return starting from state s, and then following policy π

Action Value Function $q_{\pi}(s,a)$

$$q_{\pi}(s, a) = \mathbb{E}_{\pi} \left[G_t \mid S_t = s, A_t = a \right]$$

 $q_{\pi}(s, a)$ is the expected return starting from state s, taking action a, and then following policy π

Subproblems in RL

- Model based
- Model free

- Prediction: evaluate the future
 - Given a policy
- Control: optimise the future
 - Find the best policy

Part 2: Model-based Prediction and Control



Connecting v(s) and q(s,a): Bellman equations

$$v_{\pi}(s) \longleftrightarrow s$$

$$q_{\pi}(s,a) \longleftrightarrow a$$

$$\underset{\pi(\mathbf{a}|s)}{\bullet}$$

$$\pi(\mathbf{a}|s)$$

v in terms of q:

$$v_{\pi}(s) = \sum_{a \in A} \pi(a|s) q_{\pi}(s, a)$$

$$q_{\pi}(s,a) \longleftrightarrow s,a$$

$$r$$

$$r$$

$$\mathcal{P}_{ss'}^{a}$$

$$v_{\pi}(s') \longleftrightarrow s'$$

q in terms of v:

$$q_{\pi}(s, a) = \mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} \textit{v}_{\pi}(s')$$

Connecting v(s) and q(s,a): Bellman equations (2)

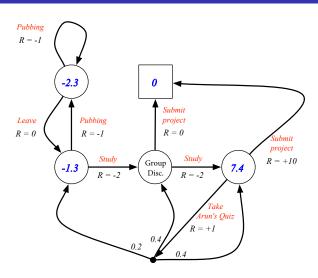
$$v_{\pi}(s) \leftrightarrow s$$
 $v_{\pi}(s') \leftrightarrow s'$
 $v_{\pi}(s') \leftrightarrow s'$

v in terms of other v:

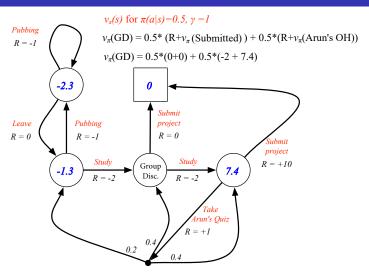
$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} v_{\pi}(s') \right)$$

$$v_{\pi}(s') \leftrightarrow s'$$
 $q_{\pi}(s,a) \leftrightarrow s,a$
 $q \text{ in terms of other } q:$
 $q_{\pi}(s,a) \leftrightarrow s,a$
 $q_{\pi}(s,a) = \mathcal{R}^{a}_{s} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}^{a}_{ss'} \sum_{a' \in \mathcal{A}} \pi(a'|s') q_{\pi}(s',a')$

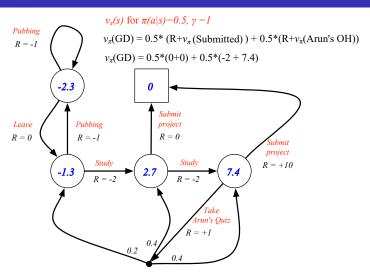
Example: $v_{\pi}(s)$



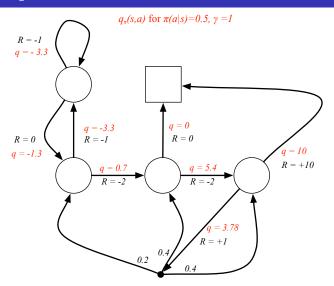
Example: $v_{\pi}(s)$



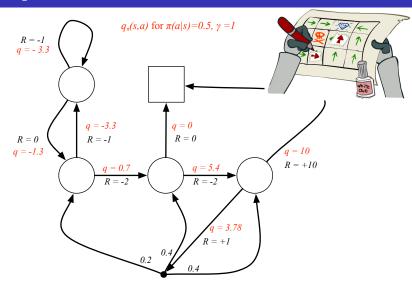
Example: $v_{\pi}(s)$



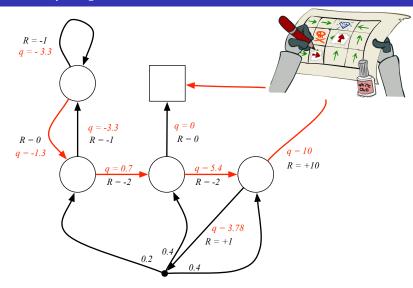
Example: $q_{\pi}(s,a)$



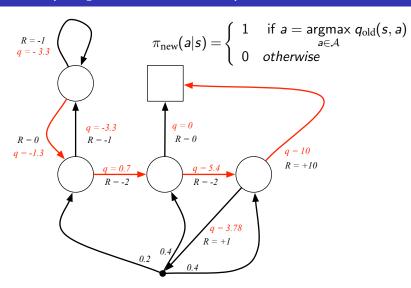
Example: $q_{\pi}(s,a)$



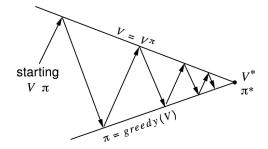
Example: Policy improvement



Example: Policy improvement - Greedy

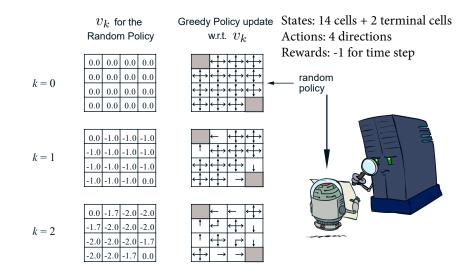


Policy Iteration

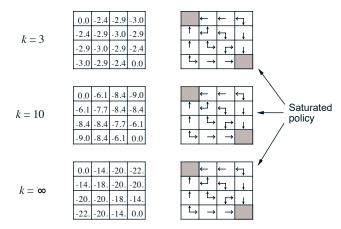


Policy evaluation Estimate v_{π} Iterative policy evaluation Policy improvement Generate $\pi' \geq \pi$ Greedy policy improvement

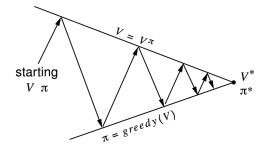
Iterative Policy Evaluation in Small Gridworld



Iterative Policy Evaluation in Small Gridworld (2)



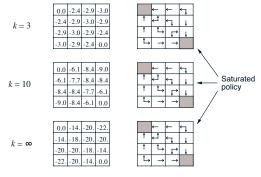
Policy Iteration



Policy evaluation Estimate v_{π} Iterative policy evaluation Policy improvement Generate $\pi' \geq \pi$ Greedy policy improvement

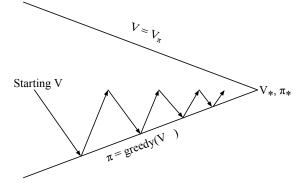
Modified Policy Iteration - Value Iteration

- Policy converges faster than value function
- In the small gridworld k = 3 was sufficient to achieve optimal policy
- Why not update policy every iteration? i.e. stop after k = 1
 - This is value iteration



Modified Policy Iteration - Value Iteration

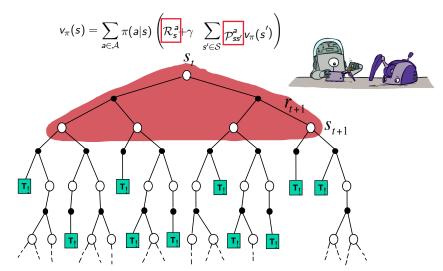
- Policy converges faster than value function
- In the small gridworld k = 3 was sufficient t o achieve optimal policy
- Why not update policy every iteration? i.e. stop after k = 1
 - This is value iteration



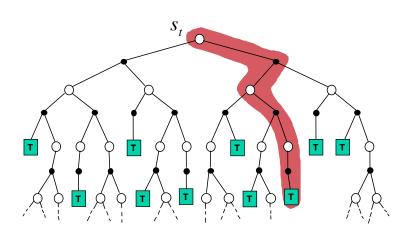
Part 3: Model-Free Prediction

Bellman Equation Estimate

v in terms of other v:

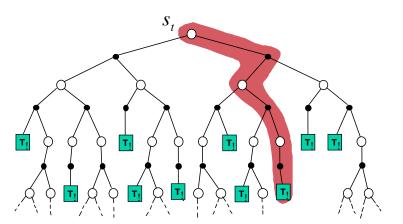


Monte-Carlo Sampling



Monte-Carlo Estimate

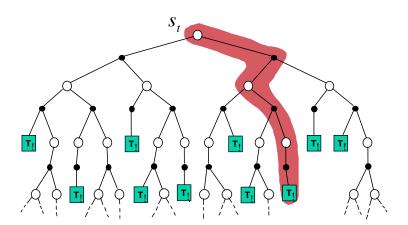
$$v_{\pi}(s) = \mathbb{E}\left[R_{t+1} + \gamma R_{t+2} + ... | S_t = s\right]$$
 [actual]
$$V(S_t)$$
 [estimate]



Monte-Carlo Estimate

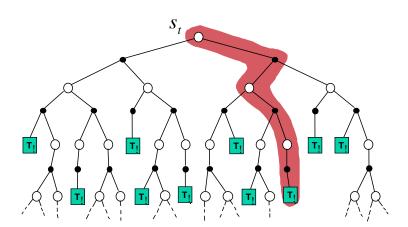
$$v_{\pi}(s) = \mathbb{E} [R_{t+1} + \gamma R_{t+2} + ... | S_t = s]$$

$$V(S_t) := V(S_t) + \alpha (R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} ... - V(S_t))$$



Monte-Carlo Estimate

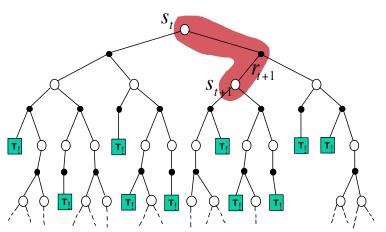
$$V(S_t) := V(S_t) + \alpha (R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} ... - V(S_t))$$



Temporal-Difference Estimate

$$V(S_{t}) := V(S_{t}) + \alpha (R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} ... - V(S_{t}))$$

$$V(S_{t}) := V(S_{t}) + \alpha (R_{t+1} + \gamma V(S_{t+1}) - V(S_{t}))$$



Temporal-Difference Estimate

$$V(S_t) := V(S_t) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_t)\right)$$

$$S_t$$

$$Guess towards a guess$$

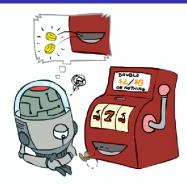
MC vs. TD

MC:
$$V(S_t) := V(S_t) + \alpha (R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} ... - V(S_t))$$

TD: $V(S_t) := V(S_t) + \alpha (R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$

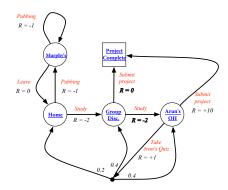
- TD can learn before knowing the final outcome
- TD target $R_{t+1} + \gamma \mathbf{V}(S_{t+1})$ is biased estimate of $R_{t+1} + \gamma \mathbf{v}_{\pi}(S_{t+1})$
- TD target is much lower variance than MC target

Part 4: Model-Free Control

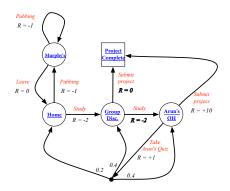


- MDP: States, actions
- Environment: Transitions and rewards
- Agent: Policy over actions
- Policy iteration
 - o Policy evaluation
 - o Policy improvement
- Value Iteration
- Model free policy evaluation
- Model free policy control

- MDP: States, actions
- Environment: Transitions and rewards
- Agent: Policy over actions
- Policy iteration
 - o Policy evaluation
 - o Policy improvement
- Value Iteration
- Model free policy evaluation
- Model free policy control



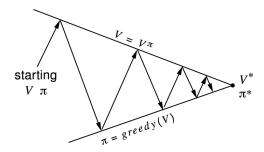
- MDP: States, actions
- Environment: Transitions and rewards
- Agent: Policy over actions
- Policy iteration
 - o Policy evaluation
 - o Policy improvement
- Value Iteration
- Model free policy evaluation
- Model free policy control



- MDP: States, actions
- Environment: Transitions and rewards
- Agent: Policy over actions
- Policy iteration
 - o Policy evaluation
 - o Policy improvement
- Value Iteration
- Model free policy evaluation
- Model free policy control

$$\pi(a|s) = \mathbb{P}[A_t = a|S_t = s]$$

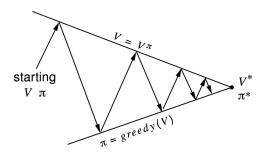
- MDP: States, actions
- Environment: Transitions and rewards
- Agent: Policy over actions
- Policy iteration
 - Policy evaluation
 - Policy improvement
- Value Iteration
- Model free policy evaluation
- Model free policy control



v in terms of other v

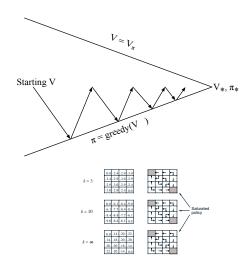
q in terms of other q

- MDP: States, actions
- Environment: Transitions and rewards
- Agent: Policy over actions
- Policy iteration
 - Policy evaluation
 - o Policy improvement
- Value Iteration
- Model free policy evaluation
- Model free policy control

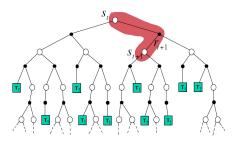


$$\pi_{\mathrm{new}}\!\!\left(a|s
ight) = \left\{ egin{array}{ll} 1 & ext{if } a = \operatorname{argmax} \ q_{\mathrm{old}}\!\!\left(s,a
ight) \ & a \in \mathcal{A} \ 0 & otherwise \end{array}
ight.$$

- MDP: States, actions
- Environment: Transitions and rewards
- Agent: Policy over actions
- Policy iteration
 - Policy evaluation
 - o Policy improvement
- Value Iteration
- Model free policy evaluation
- Model free policy control



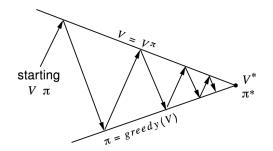
- MDP: States, actions
- Environment: Transitions and rewards
- Agent: Policy over actions
- Policy iteration
 - Policy evaluation
 - o Policy improvement
- Value Iteration
- Model free policy evaluation
- Model free policy control



$$V(S_t) \coloneqq V(S_t) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_t)\right)$$

- MDP: States, actions
- Environment: Transitions and rewards
- Agent: Policy over actions
- Policy iteration
 - o Policy evaluation
 - Policy improvement
- Value Iteration
- Model free policy evaluation
- Model free policy control

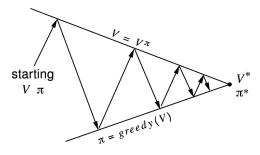
Generalised Policy Iteration (Refresher)



Policy evaluation Estimate v_{π} Model-based: Iterative policy evaluation Policy improvement Generate $\pi' \geq \pi$ Model-based Greedy policy improvement

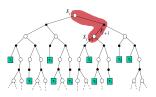
$$v_{k+1}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_k(s') \right)$$

Generalised Policy Iteration



Policy evaluation Estimate v_{π} Model-free: TD Policy evaluation

Policy improvement Generate $\pi' \ge \pi$ Model-free: Greedy policy improvement



Model-Free Policy Improvement

■ Greedy policy improvement from V and Q values

$$\pi'(s) = \operatorname*{argmax}_{a \in \mathcal{A}} Q(s, a)$$
 $\pi'(s) = \operatorname*{argmax}_{a \in \mathcal{A}} \mathcal{R}^{a}_{s} + \sum_{s' \in \mathcal{S}} \mathcal{P}^{a}_{ss'} V(s')$

Model-Free Policy Improvement

Greedy policy improvement from V and Q values

$$\pi'(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} \ Q(s, a) \qquad \pi'(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} \ \mathcal{R}_{s}^{a} + \sum_{s' \in \mathcal{S}} \ \mathcal{P}_{ss'}^{a} \ V(s')$$

$$\pi_{\text{new}}(a|s) = \begin{cases} 1 & \text{if } a = \underset{a \in \mathcal{A}}{\operatorname{argmax}} \ q_{\text{old}}(s, a) \\ 0 & \text{otherwise} \end{cases}$$

$$\pi_{\text{new}}(a|s) = \begin{cases} 1 & \text{if } a = \underset{a \in \mathcal{A}}{\operatorname{argmax}} \ q_{\text{old}}(s, a) \\ 0 & \text{otherwise} \end{cases}$$

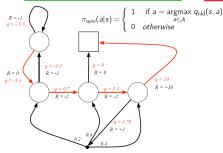
$$\pi_{\text{new}}(a|s) = \begin{cases} 1 & \text{if } a = \underset{a \in \mathcal{A}}{\operatorname{argmax}} \ q_{\text{old}}(s, a) \\ 0 & \text{otherwise} \end{cases}$$

Model-Free Policy Improvement

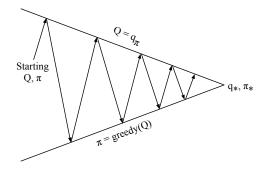
• Greedy policy improvement over V(s) requires model of MDP

$$\pi'(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} \ Q(s, a)$$

$$\pi'(s) = \mathop{\mathsf{argmax}}_{s \in \mathcal{A}} \mathcal{R}^{m{a}}_{m{s}} + \sum_{s' \in \mathcal{S}} \; \mathcal{P}^{m{a}}_{m{s}s'} \, V(s')$$



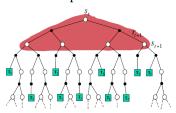
Generalised Policy Iteration with Q values



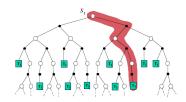
Policy evaluation TD policy evaluation, $Q = q_{\pi}$ Policy improvement Greedy policy improvement?

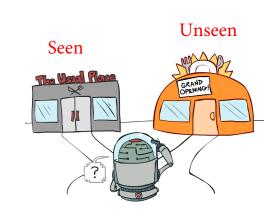
Thinking beyond Greedy - Exploration-Exploitation

What we hoped we had:



What we have:

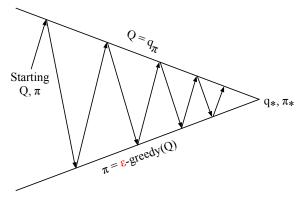




ϵ -Greedy Exploration

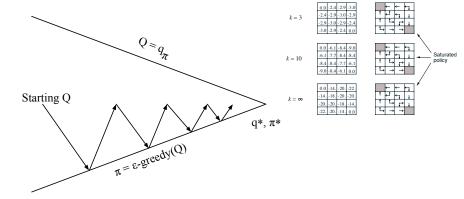
- Simplest idea for ensuring continual exploration
- With probability 1ϵ choose the greedy action
- With probability ϵ choose an action at random

TD Policy Iteration



Policy evaluation TD policy evaluation, $Q = q_{\pi}$ Policy improvement ϵ -greedy policy improvement

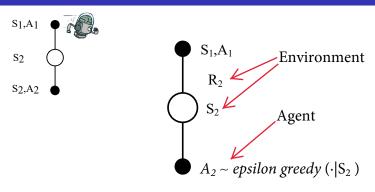
SARSA: TD Value Iteration



One step of evaluation:

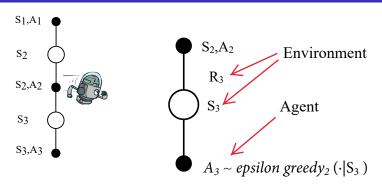
Policy evaluation TD policy evaluation, $Q \approx q_{\pi}$ Policy improvement ϵ -greedy policy improvement

SARSA: Step by Step



$$Q(S_1, A_1) := Q(S_1, A_1) + \alpha (R_2 + \gamma Q(S_2, A_2) - Q(S_1, A_1))$$

SARSA: Step by Step



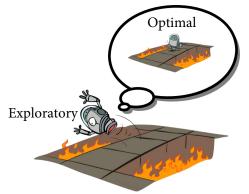
$$Q(S_2, A_2) := Q(S_2, A_2) + \alpha(R_3 + \gamma Q(S_3, A_3) - Q(S_2, A_2))$$

Q Learning

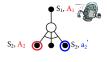
- Learn about optimal policy while following exploratory policy
- Target policy: Greedy [Optimal]
- Behaviour policy: Epsilon-greedy [Exploratory]

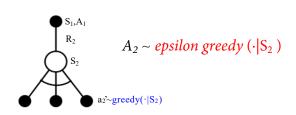
Q Learning

- Learn about optimal policy while following exploratory policy
- Target policy: Greedy [Optimal]
- Behaviour policy: Epsilon-greedy [Exploratory]



Q-Learning Control Algorithm





$$Q(S_1, A_1) := Q(S_1, A_1) + \alpha \left(R_2 + \gamma \max_{a_2'} Q(S_2, a_2') - Q(S_1, A_1)\right)$$

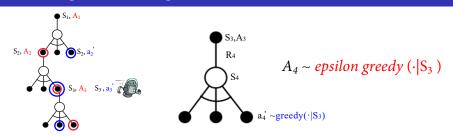
Sarsa:
$$Q(S_1, A_1) := Q(S_1, A_1) + \alpha (R_2 + \gamma Q(S_2, A_2) - Q(S_1, A_1))$$

Q-Learning Control Algorithm

 $A_3 \sim epsilon\ greedy\ (\cdot|S_3)$

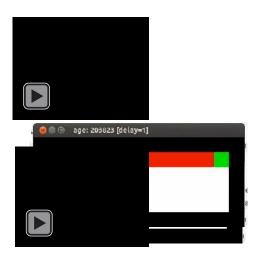
$$Q(S_2, A_2) := Q(S_2, A_2) + \alpha \left(R_3 + \gamma \max_{a_3'} Q(S_3, a_3') - Q(S_2, A_2) \right)$$

Q-Learning Control Algorithm



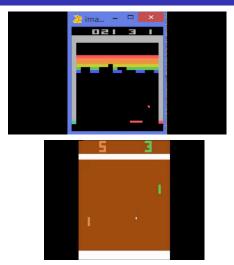
$$Q(S_3, A_3) := Q(S_3, A_3) + \alpha \left(R_4 + \gamma \max_{a_4'} Q(S_4, a_4') - Q(S_3, A_3) \right)$$

SARSA and Q-Learning example



What's in store for Lec 13?

What's in store for Lec 13?



Questions?

The only stupid question is the one you were afraid to ask but never did.

-Rich Sutton

References

- Introduction to RL by David Silver (UCL & DeepMind) www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html [Lec 1-5] https://youtu.be/2pWv7GOvuf0
- Artificial Intelligence by Peter Abbeel (UCB) https://edge.edx.org/courses/BerkeleyX/CS188x-SP15/ SP15/20021a0a32d14a31b087db8d4bb582fd/
- Artificial Intelligence by Svetlana Lazebnik (UIUC)
 http://slazebni.cs.illinois.edu/fall16/

Appendix

Incremental Monte-Carlo Updates

- Update V(s) incrementally after episode $S_1, A_1, R_2, ..., S_T$
- For each state S_t with return G_t

$$\begin{split} N(S_t) &:= N(S_t) + 1 \\ V(S_t) &:= V(S_t) + \frac{1}{N(S_t)} (G_t - V(S_t)) \\ &= \frac{1}{k} \left(x_k + \sum_{j=1}^{k-1} x_j \right) \\ &= \frac{1}{k} (x_k + (k-1)\mu_{k-1}) \\ &= \mu_{k-1} + \frac{1}{k} (x_k - \mu_{k-1}) \end{split}$$

Idea:

 In non-stationary problems, it can be useful to track a running mean, i.e. forget old episodes.

$$V(S_t) := (1-\alpha) V(S_t) + \alpha G_t$$

:= $V(S_t) + \alpha (G_t - V(S_t))$

GLIE

Definition

Greedy in the Limit with Infinite Exploration (GLIE)

All state-action pairs are explored infinitely many times,

$$\lim_{k\to\infty} N_k(s,a) = \infty$$

The policy converges on a greedy policy,

$$\lim_{k o \infty} \pi_k(a|s) = \mathbf{1}(a = \operatorname*{argmax}_{a' \in \mathcal{A}} Q_k(s,a'))$$

■ For example, ϵ -greedy is GLIE if ϵ reduces to zero at $\epsilon_k = \frac{1}{k}$

Convergence of Sarsa

Theorem

Sarsa converges to the optimal action-value function, $Q(s, a) \rightarrow q_*(s, a)$, under the following conditions:

- GLIE sequence of policies $\pi_t(a|s)$
- Robbins-Monro sequence of step-sizes α_t

$$\sum_{t=1}^{\infty} \alpha_t = \infty$$

$$\sum_{t=1}^{\infty} \alpha_t^2 < \infty$$

Monte-Carlo Control

- Sample kth episode using π : $\{S_1, A_1, R_2, ..., S_T\} \sim \pi$
- For each state S_t and action A_t in the episode,

$$N(S_t, A_t) := N(S_t, A_t) + 1$$

$$Q(S_t, A_t) := Q(S_t, A_t) + \frac{1}{N(S_t, A_t)} (G_t - Q(S_t, A_t))$$

Improve policy based on new action-value function

$$\epsilon = 1/k$$
 $\pi = \epsilon$ -greedy(Q)

Theorem

Decaying epsilon Monte-Carlo control converges to the optimal action-value function, $Q(s, a) \rightarrow q_*(s, a)$

Sarsa Algorithm for On-Policy Control

```
Initialize Q(s,a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state, \cdot) = 0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from Q (e.g., \varepsilon\text{-}greedy)
Repeat (for each step of episode):
Take action A, observe R, S'
Choose A' from S' using policy derived from Q (e.g., \varepsilon\text{-}greedy)
Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma Q(S',A') - Q(S,A)\right]
S \leftarrow S'; A \leftarrow A';
until S is terminal
```

Q-Learning Algorithm for Off-Policy Control

```
Initialize Q(s,a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state, \cdot) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from Q (e.g., \varepsilon\text{-}greedy)
Take action A, observe R, S'
Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',a) - Q(S,A)\right]
S \leftarrow S';
until S is terminal
```