
Bonus Lecture: Introduction to 
Reinforcement Learning

Garima Lalwani, Karan Ganju and Unnat Jain

Credits: These slides and images are borrowed from slides by David Silver and Peter Abbeel

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
https://edge.edx.org/courses/BerkeleyX/CS188x-SP15/SP15/20021a0a32d14a31b087db8d4bb582fd/


Outline

1 RL Problem Formulation

2 Model-based Prediction and Control

3 Model-free Prediction  

4 Model-free Control

5   Summary 



Part 1: RL Problem Formulation

uj2
Stamp



Characteristics of Reinforcement Learning

What makes reinforcement learning different from other machine
learning paradigms?

There is no supervisor, only a reward signal 
Feedback is delayed, not instantaneous

Time really matters (correlated, non i.i.d data) 
Agent’s actions affect the subsequent data it receives



Agent and Environment

Observed state

reward

action

At

Rt

St

Agent

Environment



Rewards

A reward Rt is a scalar feedback signal

Indicates how well agent is doing at step t

The agent’s job is to maximise cumulative reward



Rod Balancing Demo

https://www.youtube.com/watch?v=Lt-KLtkDlh8Learn to swing up and balance a real pole based on raw visual input data, ICNIP 2012

https://www.youtube.com/watch?v=Lt-KLtkDlh8
https://www.youtube.com/watch?v=Lt-KLtkDlh8


RL based visual control

https://www.youtube.com/watch?v=CE6fBDHPbP8End-to-end training of deep visuomotor policies, JMLR 2016

https://www.youtube.com/watch?v=CE6fBDHPbP8


RL based visual control

Source: https://68.media.tumblr.com/Link: https://goo.gl/kY4RmS 

https://68.media.tumblr.com/6985b34602b6c5ead8f059f361dfbf59/tumblr_omewejVZzC1s02vreo1_400.gif


Examples of Rewards

Fly stunt manoeuvres in a helicopter
+ve reward for following desired trajectory

−ve reward for crashing

Defeat the world champion at Go
+/−ve reward for winning/losing a game

Play many Atari games better than humans
+/−ve reward for increasing/decreasing score

https://deepmind.com/research/alphago/

Stanford autonomous helicopter
Abbeel et. Al.

https://gym.openai.com/



Sample model of RL problem
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States
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Actions
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Rewards
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Transition probabilities
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Markov Decision Process

A Markov decision process (MDP) is an environment in which all
states are Markov.

MDP
A Markov Decision Process has the following 〈S, A, P, R, γ〉

Pa
ss′ = P [St+1 = s

S is a finite set of states

A is a finite set of actions

P is a state transition
′ 

probability matrix,
| St = s,At = a]

aR is a reward function, Rs = E [Rt+1 | St = s, At = a]

P [St+1 | St , At = a  ] = P [St+1 | S1, ..., S t , At = a  ]



Major Components of an RL Agent

An RL agent may include one or more of these components:
Policy: agent’s behaviour function
Model: agent’s representation of the environment
Value function: how good is each state and/or action



Policy

A policy is the agent’s behaviour

It is a map from state to action, e.g.

Deterministic policy: π(s) = 1 for At= a
Stochastic policy: π(a|s) = P[At = a|St = s]



Actions
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Model

A model predicts what the environment will do next

P : Transition probabilities
R : Expected rewards 

Pa
ss′ = P[St+1 = s ′ | St = s,At = a]

Ra
s = E [Rt+1 | St = s,At = a]



Beyond Rewards
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Value function - Concept of Return 

Return Gt

The return Gt is cumulative discounted reward from time-step t.

Gt = Rt+1 + γRt+2 + ... =
∞∑
k=0

γkRt+k+1

The discount γ ∈ [0, 1] is the present value of future rewards
This values immediate reward above delayed reward.
Avoids infinite returns in cyclic Markov processes



Value Function

State Value Function   vπ(s)

vπ(s) of an MDP is the expected return starting from state s, and 
then following policy π

vπ(s) = Eπ [Gt | St = s]

Action Value Function   qπ(s,a)

qπ(s, a) is the expected return starting from state s, taking action 
a, and then following policy π

qπ(s, a) = Eπ [Gt | St = s,At = a]



Subproblems in RL

Model based
Model free

Prediction: evaluate the future 
Given a policy

Control: optimise the future
Find the best policy



Part 2: Model-based Prediction and Control
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Connecting v(s) and q(s,a): Bellman equations

v⇡(s) 7!s

q⇡(s, a) 7!a

vπ(s) =
∑
a∈A

π(a|s)qπ(s, a)

q in terms of v :

7!v⇡(s0) s0

q⇡(s, a) 7!s, a

r qπ(s, a) = Rs
a + γ

∑
s′∈S
Pa
ss′ vπ(s ′)

v in terms of q :

Pa
ss′ vπ(s ′)

π(a|s)qπ(s, a)

π(a1|s )qπ (s , a) π(an|s )qπ (s , a)



Connecting v(s) and q(s,a): Bellman equations (2)

q⇡(s, a) 7!s, a

q⇡(s0, a0) 7!a0

r

s0
qπ(s, a) = Ra

s + γ
∑
s′∈S
Pa
ss′

∑
a′∈A

π(a′|s ′)qπ(s ′, a′)

7!v⇡(s0) s0

v⇡(s) 7!s

r

a vπ(s) =
∑
a∈A

(
π(a|s) Rs

a
 + γ

∑
s′∈S

Pa
ss′ vπ(s ′)

)

q in terms of other q :

v in terms of other v :



Example: vπ(s)
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Example: qπ(s,a)
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Example: qπ(s,a)
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Example: Policy improvement
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Example: Policy improvement - Greedy
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Policy Iteration

Policy evaluation Estimate vπ
Iterative policy evaluation

Policy improvement Generate π′ ≥ π
Greedy policy improvement



Iterative Policy Evaluation in Small Gridworld

 0.0  0.0  0.0

 0.0  0.0  0.0  0.0

 0.0  0.0  0.0  0.0

 0.0  0.0  0.0

-1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0

-1.7 -2.0 -2.0

-1.7 -2.0 -2.0 -2.0

-2.0 -2.0 -2.0 -1.7

-2.0 -2.0 -1.7

-2.4 -2.9 -3.0

-2.4 -2.9 -3.0 -2.9

-2.9 -3.0 -2.9 -2.4

-3.0 -2.9 -2.4

-6.1 -8.4 -9.0

-6.1 -7.7 -8.4 -8.4

-8.4 -8.4 -7.7 -6.1

-9.0 -8.4 -6.1

-14. -20. -22.

-14. -18. -20. -20.

-20. -20. -18. -14.

-22. -20. -14.

Vk  for the
Random Policy

Greedy Policy update
w.r.t. Vk

k = 0

k = 1

k = 2

k = 10

k = °

k = 3

optimal 
policy

random 
policy

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

vk
vk

States: 14 cells + 2 terminal cells
Actions: 4 directions
Rewards: -1 for time step



Iterative Policy Evaluation in Small Gridworld (2)
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Policy Iteration

Policy evaluation Estimate vπ
Iterative policy evaluation

Policy improvement Generate π′ ≥ π
Greedy policy improvement



Modified Policy Iteration - Value Iteration

Policy converges faster than value function
In t he small gridworld k = 3 was sufficient t o achieve optimal policy

Why not update policy every iteration? i.e. stop after k = 1
This is value iteration
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Modified Policy Iteration - Value Iteration

Policy converges faster than value function
In the small gridworld k = 3 was sufficient t  o achieve optimal policy 
Why not update policy every iteration? i.e. stop after k = 1

This is value iteration

Starting V

π = greedy(V )

V = Vπ

V*, π*
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Bellman Equation Estimate
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Monte-Carlo Sampling
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Monte-Carlo Estimate
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Monte-Carlo Estimate
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Monte-Carlo Estimate
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Temporal-Difference Estimate

V (  St ) := V (St ) + α (Rt+1 + γV (St+1) − V (St ))
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Temporal-Difference Estimate

V (  St ) := V (St ) + α (Rt+1 + γV (St+1) − V (St ))
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MC vs. TD

MC: 
 TD: V ( St ) :=  V ( St ) + α ( Rt+1 + γV (St+1) − V ( St ))

TD can learn before knowing the final outcome

TD target Rt+1 + γV ( St+1) is biased estimate of Rt+1 + γvπ(St+1 ) 
TD target is much lower variance than MC target

V ( St ) := V ( St ) + α ( Rt+1 + γ Rt+2 + γ2Rt+3 ... − V ( St ))
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Today's takeaways

• MDP: States, actions
• Environment: Transitions and
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• Agent: Policy over actions
• Policy iteration

o Policy evaluation
o Policy improvement

• Value Iteration
• Model free policy evaluation
• Model free policy control
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Today's takeaways
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Today's takeaways
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Generalised Policy Iteration (Refresher)

Policy evaluation Estimate vπ
Model-based: Iterative policy evaluation

Policy improvement Generate π′ ≥ π
Model-based Greedy policy improvement



Generalised Policy Iteration

Policy evaluation Estimate vπ
Model-free: TD Policy evaluation

Policy improvement Generate π′ ≥ π
Model-free: Greedy policy improvement



Model-Free Policy Improvement

π′(s) = argmax
a∈A

a

Greedy policy improvement from V and Q values

π′(s) = argmax
a∈A

Q(s, a)
∑
s

Rs +  
′
        Pass′ V (s ′)
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Model-Free Policy Improvement
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Model-Free Policy Improvement

Greedy policy improvement over V (s) requires model of MDP

π′(s) = argmax
a∈A

aπ′(s) = argmax
a∈A

Q(s, a)
∑
s

Rs +  
′
        Pass′ V (s ′)
∈S
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Generalised Policy Iteration with Q values

Starting 
Q, π

π = greedy(Q)

Q = qπ

q*, π*

Policy evaluation TD policy evaluation, Q = qπ 

Policy improvement Greedy policy improvement?



Thinking beyond Greedy - Exploration-Exploitation

Unseen
Seen

What we hoped we had:

What we have:



ε-Greedy Exploration

Simplest idea for ensuring continual exploration

With probability 1 − ε choose the greedy action

With probability ε choose an action at random



TD Policy Iteration

Starting 
Q, π

π = ε-greedy(Q)

Q = qπ

q*, π*

Policy evaluation TD policy evaluation, Q = qπ 

Policy improvement ε-greedy policy improvement



SARSA: TD Value Iteration

Starting Q

π = ε-greedy(Q)

Q = qπ

q*, π*

One step of evaluation:

Policy evaluation TD policy evaluation, Q ≈ qπ 
Policy improvement ε-greedy policy improvement

-2.4 -2.9 -3.0
-2.4 -2.9 -3.0 -2.9
-2.9 -3.0 -2.9 -2.4
-3.0 -2.9 -2.4

-6.1 -8.4 -9.0
-6.1 -7.7 -8.4 -8.4
-8.4 -8.4 -7.7 -6.1
-9.0 -8.4 -6.1

-14. -20. -22.
-20.
-14.

-14. -18. -20.
-20. -20. -18.
-22. -20. -14.

k = 10

k = °

k = 3

Saturated 
policy

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

∞



SARSA: Step by Step

S1,A1

R2

S2

Q(S1  , A 1)  := Q(S1 , A      1)  +   α
(
R2 + γQ(S2, A2) − Q(S1 , A1)

)
A2 ~ epsilon greedy (·|S2 )

S1,A1

S2

S2,A2

uj2
Typewritten Text
Agent

uj2
Typewritten Text
Environment

uj2
Line

uj2
Line

uj2
Line



SARSA: Step by Step

S2,A2

R3

S3

Q(S2  ,A 2)  := Q(S2  , A 2)  +   α
(
R3 + γQ(S3, A 3) − Q (S2 , A 2)

)
A3 ~ epsilon greedy2 (·|S3 )

S1,A1

S2

S2,A2

S3,A3

S3
Agent

Environment

uj2
Line

uj2
Line

uj2
Line



Q Learning

Learn about optimal policy while following exploratory policy 
Target policy: Greedy [Optimal]
Behaviour policy:  Epsilon-greedy [Exploratory]



Q Learning

Learn about optimal policy while following exploratory policy 
Target policy: Greedy [Optimal]
Behaviour policy:  Epsilon-greedy [Exploratory]

Optimal

Exploratory



Q-Learning Control Algorithm

S1,A1

R2

a 2’~ g r e e d y ( · | S 2  )

S2

Q(S1 , A 1) := Q(S1  , A 1) + α
(

a2
R2 + γ max

′ Q(S2,  a2
′ ) − Q(S1 , A1)

)

A2 ~ epsilon greedy (·|S2 )

Q(S1  , A 1)  := Q(S1  ,A     1)  +    α
(
R2 +    γQ(S2, A       2 )  − Q(S1  , A       1 )

)
Sarsa  :

S1, A1

S2, A2 S2, a2
'

uj2
Oval

uj2
Oval



Q-Learning Control Algorithm

S2,A2

R3

a 3’~ g r e e d y ( · | S 3 )

S3

A3 ~ epsilon greedy (·|S3 )

S1, A1

S2, A2

S3, A3

S2, a2
'

S3 , a3
'

Q(S2 , A 2)  :=Q(S2 , A 2)  + α
(
R3 +  γ m ax

a3
′
Q(S3, a3

′ ) − Q(S2 , A 2)
)

uj2
Oval

uj2
Oval

uj2
Oval

uj2
Oval



Q-Learning Control Algorithm

S3,A3

R4

a 4' ~ g r e e d y ( · | S 3 ) 

S4
A4 ~ epsilon greedy (·|S3 )

S1, A1

S2, A2

S3, A3

S2, a2
'

S3 , a3
'

Q(S3 , A 3) := Q(S3 , A 3) +   α
(
R4 +  γ m ax

a4
′
Q(S4, a4

′ ) − Q(S3 , A 3)
)

uj2
Oval

uj2
Oval

uj2
Oval

uj2
Oval

uj2
Oval

uj2
Oval



SARSA and Q-Learning example

https://studywolf.wordpress.com/2013/07/01/reinforcement-learning-sarsa-vs-q-learning/























What's in store for Lec 13?

https://memegenerator.net/instance/73854727



What's in store for Lec 13?

https://www.youtube.com/watch?v=60pwnLB0DqY 
https://www.youtube.com/watch?v=V1eYniJ0Rnk

https://www.youtube.com/watch?v=cjpEIotvwFY&feature=youtu.be
https://www.youtube.com/watch?v=60pwnLB0DqY
https://www.youtube.com/watch?v=V1eYniJ0Rnk
https://www.youtube.com/watch?v=60pwnLB0DqY


Questions?

The only stupid question is the one you were afraid to
ask but never did.
-Rich Sutton
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Appendix



Incremental Monte-Carlo Updates

Update V (s) incrementally after episode S1,A1,R2, ...,ST

For each state St with return Gt

N(St ) := N(St ) + 1

V (St ) := V (St ) + 1

N(St )
(Gt − V (St))

In non-stationary problems, it can be useful
to track a running mean, i.e. forget old episodes.

V (St ) := (1-α) V(St ) + α Gt  
            := V (St ) + α ( Gt − V (St ))

Idea:



GLIE

Definition

Greedy in the Limit with Infinite Exploration (GLIE)

All state-action pairs are explored infinitely many times,

lim
k→∞

Nk(s, a) =∞

The policy converges on a greedy policy,

lim
k→∞

πk(a|s) = 1(a = argmax
a′∈A

Qk(s, a′))

For example, ε-greedy is GLIE if ε reduces to zero at εk = 1
k



Convergence of Sarsa

Theorem

Sarsa converges to the optimal action-value function,
Q(s, a)→ q∗(s, a), under the following conditions:

GLIE sequence of policies πt(a|s)

Robbins-Monro sequence of step-sizes αt

∞∑
t=1

αt =∞

∞∑
t=1

α2
t <∞



Monte-Carlo Control

Sample kth episode using π: {S1,A1,R2, ...,ST} ∼ π
For each state St and action At in the episode,

N(St , At ) := N(St , At ) + 1
1

N(St ,At)
(Gt − Q(St ,At))

Improve policy based on new action-value function

ε = 1/k

π  = ε-greedy(Q)

Theorem

Decaying epsilon Monte-Carlo control converges to the optimal 
action-value function, Q(s, a) → q∗(s, a)

Q (St , At ) := Q (St , At ) +



Sarsa Algorithm for On-Policy Control



Q-Learning Algorithm for Off-Policy Control
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