Policy Gradients + Planning
Rajbir Kataria, Zhizhong Li, and Tanmay Gupta

Background

e Action-value function using parameters 6
Vio(s) =~ V7 (s)
QG(S: a) ~ Qﬂ(sa a)

e Policy was generated from the Q(s.,a)

m(s) = argmazx,Q(s, a)

e \We will focus on parameterizing the policy directly:
71—9(5: 3) =P [3 | 5, 9]

Overview

e Motivation

e Policy Gradients
o REINFORCE

m Simple Statistical Gradient-Following Algorithms for. Connectionist Reinforcement
Learning

o Actor-critic methods: REINFORCE + e.g. Q-learning
m Asynchronous Advantage Actor-Critic (A3C)

e Model-based learning

o Planning
m Value lteration Networks

e Applications

m Recurrent Models of Visual Attention
m End-to-end Learning of Action Detection from Frame Glimpses in Videos
m Alpha-Go

Motivation: Iterated Rock-Paper-Scissors

e Consider value-function based policies for iterated
rock-paper-scissors

e Optimal Policy? | Random

Slide from David Silver

Motivation: Aliased Gridworld

e The agent cannot distinguish the grey states

e Optimal deterministic policy?
o Move Left in both grey states
o Move Right in both grey states

Slide from David Silver

Motivation: Aliased Gridworld

$

e An optimal policy will randomly move E or W in grey states
mg(wall to N and S, move E) = 0.5
mg(wall to N and S, move W) = 0.5

e Policy-based RL can learn the optimal stochastic policy!

Slide from David Silver

Policy-Based RL

e Advantages:
o Can learn stochastic policies that are useful for
POMDP environments

o Effective in high-dimensional or continuous action
spaces

o Better convergence properties
e Disadvantages:

o Evaluating a policy is typically inefficient and high
variance --- naive Monte Carlo sampling

Slide from David Silver

Policy Optimization

e Policy based reinforcement learning is an optimization
problem

e Find 0 that maximizes J(0)

e Some approaches do not use gradient
o Hill climbing

Slide from David Silver

Evolution Strategies - Hill Climbing

e At every iteration ("generation”)
o Population of parameter vectors (“genotypes”) is
perturbed (“mutated”)
o Objective function value (“fitness”) is evaluated

e Highest scoring parameter vectors are then recombined to
form the population for the next generation

e Gradient Free!

Salimans et al. Evolution Strategies as a Scalable Alternative to Reinforcement Learning arXiv:1703.03864v1

Evolution Strategies - Hill Climbing
e Highly parallelizable

Algorithm 2 Parallelized Evolution Strategies

I: Input: Learning rate «, noise standard deviation o,
initial policy parameters @

2: Initialize: n workers with known random seeds, and
initial parameters #y

3fort=10,1.2.... do

4: for each workerz = 1..... 1 do

5: Sample ¢; ~ N(0, 1)

f: Compute returns F; = F(6; 4 o¢;

7 end for

8 Send all scalar returns F; from each worker to every

other worker

9: for each workeri=1.....ndo

1(): Reconstruct all perturbations ¢; for j = 1.....n

1: Set 0y 11 + 0: + oz 30, Fie;

12: end for

13: end for

Salimans et al. Evolution Strategies as a Scalable Alternative to Reinforcement Learning arXiv:1703.03864v1

Evolution Strategies - Results

Evolution Strategies as an Alternative for Reinforcement Learning

Game DQN A3CFF, 1 day ESFEFE I hour
Alien 570.2 182.1 0994.0)
Amidar 133.4 283.9 112.0
Assault 3332.3 3746.1 1673.9
Asterix 124.5 6723.0 1440.0
Asteroids ________ 697.1 _____ 0094 __ 1562.0_
CAtiantis """ 701080 7T 773920 T 2674100
Bank Heist 176.3 946.0 225.0
Battle Zone 17560.0 11340.0 16600.0
Beam Rider 8672.4 13235.9 744.0
Berzerk NaN 1433.4 686.0
Bowling 41.2 36.2 30.0
Boxing 25.8 337 49.8
Breakout 303.9 551.6 9.5
Centipede 3773.1 3306.5 7783.9
Chopper Command _ _ _ 3046.0. _ _ _ _ - 4669.0 _ _ _ _ _ 3710.0_
[Crazy Climber __ _ _ _ 50992.0 ©__ 1016240 __ _ 26430.0 |
Demon Attack 12835.2 84997.5 1166.5
Double Dunk -21.6 0.1 0.2
Enduro 475.6 -82.2 95.0
Fishing Derby -2.3 13.6 -49.0
Freeway 25.8 0.1 31.0
Frostbite 157.4 180.1 370.0
Gopher 2731.8 8442.8 582.0
Gravitar 216.5 269.5 805.0

Salimans et al. Evolution Strategies as a Scalable Alternative to Reinforcement Learning arXiv:1703.03864v1

Policy Optimization

e Policy based reinforcement learning is an optimization
problem

e Find 0 that maximizes J(0)

e Some approaches do not use gradient
o Hill climbing
o Genetic algorithms

e Greater efficiency often possible using gradient
o Gradient Descent

o Quasi-newton

e From now on, we focus primarily on Gradient Descent

Slide from David Silver

Policy Gradient

e Let J(0) be any policy objective function

e Policy gradient algorithms search for a
local maximum in J(0)

A8 = aV J(6)

e Where V,J(0) is the policy gradient - &\ | o
o ais a step-size parameter s

Slide from David Silver

Policy Gradient Theorem

*I(g) — ﬂﬂ[}{}
VeJ(0) =VeE,,|R]|

= Vy Z d(s Z mg(als)R™ (s, a)

seS acA
= Zd Z Vomg(als)R™ (s, a)
seS acA
- Zd Zﬂ'g(u\ s)Vglogmg(a|s)R™ (s, a)
acA

= Eﬂg (Vologmg(a|s)R™ (s,a)]

——_—__—_—_—_—_—_—_—_—_—__J

REINFORCE

e Maximizing J is non-trivial
o Expectation over high-dimensional action sequences

function REINFORCE
Initialise @ arbitrarily
for each episode {s1,a1,r,...,ST_1,ar_1,rr} ~ mp do
fort=1to 7T —1do
0 <+ 0 + aVyglogmo(st, at) R
end for
end for
return 0
end function

: T , M T e 1
: VoJ = ;Eﬁ(:;l:*r;ﬁ) (Vo logm(ue|sy.; 0)R] ~ - ;;Valc}g m(ug|st.q; H)R“:

Williams et al. Simple Statistical Gradient-Following Algorithms for. Connectionist Reinforcement Learning.
Machine Learning, 8(3):229-256, 1992

Connection with value learning:
Actor-critic methods

Motivation: PG vs value functions

e Q-learning: learns QO(s,a) (action-value function)

e PG: directly learns policy x(s,a)
o Pro:
Better convergence
Can learn stochastic policy
Get action directly; compact
o Con:
suffers from high variance when training

Motivation: PG vs value functions

e Q-learning: learns QO(s,a) (action-value function)

e PG: directly learns policy 7z(s,a)
o Con: suffers from high variance when training

... reduce variance?

REINFORCE

e.g. Q-learning Value Fungtion Policy
\Aztion-value Function /

Actor
Critic

Value-Based Policy-Based

Figure from David Silver

Method outline

e Use Q to reduce variance
o Recall gradient descent in PG: Euture return

from experience
(real world samples)
VoJ(0) = Er, [V logme(s,a) R REINFORCE

¥ Also future return!
Learned along

o Many equivalent forms with 7

= E,, [Vologmg(s,a) A (s,a)] Advantage Actor-Critic
= Er, [Vologmg(s, a) 9] TD Actor-Critic
= Er, [Vologmg(s, a) de] TD(A) Actor-Critic
G, 'VeJ(0) = w Natural Actor-Critic

Er, [Vologmg(s,a) Q (s,a)] Q Actor-Critic <:I

=

Slide from David Silver

Example (1): A3C
Asynchronous Advantage Actor-Critic

e Bias from Q actor-critic

VoJ(6)

Er, [Vologme(s,a) Q (s,a)] Q Actor-Critic <j
Er, [Vologme(s,a) A (s,a)] Advantage Actor-Critic

o Encourages action if Q(s,a) is large
o Should encourage good action on state
(not just random actions that happen on good state)

Mnih et al. Asynchronous Methods for Deep Reinforcement Learning. ICML 2016

Example (1): A3C
Asynchronous Advantage Actor-Critic

e Advantage actor-critic

VoJ(0) = E,, [Vologme(s,a) Q (s,a)] Q Actor-Critic
-

o [Vologmg(s,a) A (s,a)] Advantage Actor-Critic <j

o Only counts the advantage (return minus baseline)
A(s,a)=Q (s.a) — V (s)

(in practice) =r+~V (s')—V (S‘L\ Encourage
doing better

o Reduces variance than “baseline

o Learn @ ,V normally;learn = by replacing R with A.

Mnih et al. Asynchronous Methods for Deep Reinforcement Learning. ICML 2016

Example (1): A3C
Asynchronous Advantage Actor-Critic

e Deep Q Network:

GPU
— —parallelism

~ 1 _
_ Replay .
(Q —» Environment —» Buffer — Training
A (experience) | —» ,
I "~
G T |
Update QO

o (to reduce correlation in training data -- crucial for DQN)

e EXxperience from past policy

o Applies to off-policy learning only

o Cannot apply to e.g. actor-critic!
Mnih et al. Asynchronous Methods for Deep Reinforcement Learning. ICML 2016

Example (1): A3C
Asynchronous Advantage Actor-Critic

e Asynchronous RL.:

CPU parallelism
E Environment (1) —» experience (1) —» Training

Q, m Environment (2) —» experience (2) —» Training
A Environment (n) —» experience (n) —» Training
|
e |
Asynchronously update Q and = Y
~
o Replay
o (Also reduces correlation in training data!) Buffer
(experience)
N~

® Experience iS On'pOIiCy * cf. T. Salimans et al. Evolution Strategies

as a Scalable Alternative to RL
Mnih et al. Asynchronous Methods for Deep Reinforcement Learning. ICML 2016

Example (1): A3C

e Implementation details
o Use k-step estimate of advantage

k—1
Ast,ae) = Y 7' Regi + 7"V (seqn) — Vist)
\u=0 J
t x ?
Reward Estimate Baseline
obtained @ future return

time step
o Actor/critic share some layers

o Entropy regularization
o Asynchronous RMSProp

Mnih et al. Asynchronous Methods for Deep Reinforcement Learning. ICML 2016

Example (1): A3C
Playing racing simulator TORCS

http://www.youtube.com/watch?v=0xo1Ldx3L5Q

Example (1): A3C

e Results on Atari games (averaged)

Method Training Time Mean Median
'DQN . j 8 days on GPU 121.9% | 47.5%
Gorila 4 days, 100 machines | 215.2% | 71.3%
M-DON — — — 8 days on GPU 332.9% | 110.9%
IDueling D-DQN 8 days on GPU 343.8% | 117.1%
Prioritized DQN 8 days on GPU 463.6% | 127.6%
A3C, FF 1 day on CPU 344.1% | 68.2%
A3C. FR 4 days on CPU 496.8% | 116.6%
A3C,LSTM 4 days on CPU 623.0% | 112.6%

Mnih et al. Asynchronous Methods for Deep Reinforcement Learning. ICML 2016

}

}

Human normalized
scores

Example (1): A3C

e Results

Score w.r.t. Training time (hrs).
Note: hyperparameter fiddling may be at play

16000 Beamrider 600 - Breakout 30 Fong
— DOMN — DON
. i-siep EAHSA | 500 = i-step EAHEA | <9
12000~ - oP : =
n-step Q 400 — n=step Q 10
10000 - A3C A3C

=
o 8000 -
]
6000 - — DON
— 1-step Q
4000 -
— 1l-step SARSA
2000 - n-step Q
A3C
W / d :
0 2 4 6 8 10 12 14 0O 2 4 6 8 10 12 14 o0 2 4 6 8 10 12 14
Training time (hours) Training time (hours) Training time (hours}
£ =
12000- Q*bert 1600 Space Invaders
— DONM — DON
10000. — Lstep Q 1400 — 1.step Q
! — 1-step SARSA — 1-step SARSA
' — n-step Q 1200 s n-step Q DEIN
et — 1 1000 — AdC -
: — 1-step O
(.
- BO00 - = BO0 -]
3 e — 1-step SARSA
600 - " .
HAR P e n-step Q

= 400"
200 &

A3C

- 2000 -

J 0.]
o 2 4 6 8 101214 0 2 4 6 8 10 1214 ap Reinforcement Learning. ICML 2016

Training time (hours) Training time (hours)

Example (2): Continuous control

Before: model O(s,a) or x(s,a) by enumerating a

s —> model —> fla,)...fla)

e \When g Is continuous...

o Actor-critic!
S LActor >, L Critic . expected

j-[(s) i Q(S,a) return
T = E[Q(s, n(s))] (&) .
0J () Or 0 Fit O normally
o~ pdate =
00 b { oa 897T] " to maximize 0

Lillicrap et al. Continuous Control with Deep Reinforcement Learning. ICLR 2016

Example (2): Continuous control

Simulated control tasks

Cheetah
Low Dimensional Features

5=

http://www.youtube.com/watch?v=tJBIqkC1wWM

Planning

The story so far

e Model-free RL

o Q-Learning / Sarsa:
Learn action-value function directly from experience
o Policy Gradient:

Learn policy directly from experience

The story so far

e Model-based RL

O

O

Learn a model of the environment

Use the model to learn policy/value function

Planning

Why Plan?

Simulation cheaper than real interaction
Speed up learning

Generalize to new environments
Predict a future even

Why Plan?

e Simulation cheaper than real interaction
o Planning based Q-Learning

e Speed up learning
o Dyna-Q

e (Generalize to new environments
o Value lteration Networks

e Predict a future even
o The Predictron

Simplest Model-based RL

Simplest Model-based RL

MDP with Unknown
o Rewards R(s)
o Transition Probabilities P(s'|s,a)

Simplest Model-based RL

ke

Solution:
o Gain experience {s1,71,a1,52,72,Q2, "}

Simplest Model-based RL

Solution:
o Gain experience {s1,71,a1,52,72,Q2, "}

o Estimate model R(s)= ﬁs) > . rills = 5]

Simplest Model-based RL

Solution:
o Gain experience {s1,71,a1,52,72,Q2, "}

o Estimate model R(s)= ﬁs) > . rills = 5]

(,‘8 CL) N(S a) Zt [(Stva’tast-l-l) — (Sva’a 3,)]

Simplest Model-based RL

Use the estimated MDP to get optimal
policy/value function

e Value lteration

e Policy lteration

V*(s) = R(s) + max, Y, P(s'|s,a)V*(s')
m*(s) = argmax, Y., P(s'|s,a)V*(s)

Sampling-based Planning with Q Learning

Given: An estimated MDP

Algorithm:

1. Randomly sample a state and action, (s:,a:)
2. Sample St41 ™~ P(st+1|st,at)
3. Update Q function

Q(st,a¢) < Q(84,a¢) + a[R(s) + max, Q(s¢41,0") — Q(5¢, az)]

4. Repeat

Learning from simulated experience

What if the model is incorrect?

Dyna-Q

Learning from both real and simulated experience

I%litialize Q(s,a) and Model(s,a) for all s € 8 and a € A(s)
o forever:

(a)|S < current (nonterminal) state
(b)|A « e-greedy(S, Q)

(¢) [Execute action A; observe resultant reward, R, and state, S|
(d) Q(Sv A) « Q(S, A) + a| R+ ymax, Q(S!aa) — Q(Sa A)
(e) |[Model(S, A) + R, S’ (assuming deterministic environment)
(f) Repeat n times:

S + random previously observed state

A + random action previously taken in S

R,S" < Model(S, A)

Q(S,A) + Q(S,A) + a|R + ymax, Q(S’,a) — Q(S, A)

D. Silver. RL course Lecture 8 http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

Dyna-Q

Learning from both real and simulated experience

A
Initialize Q(s,a) and Model(},a) for all s [e S and a € A(s)
Do forever:
(a) S < current (nonterminlal) state
(b) A < e-greedy(S, Q)
(c)|Execute action A; observe resultant reward, R, and state, S’
()| Q(S, 4) Q(S, A) + a[R+ ymat, Q(S', a) — Q(S, A)]
(e) Model(S, A) < R, S (assuming d¢terministic environment)
(f) [Repeat n times:
S + random previously observed state
A + random action previously taken in S
R,S" < Model(S, A)
Q(S,4) <+ Q(S,A) + a|R +ymax, Q(S',a) — Q(S, A)]

D. Silver. RL course Lecture 8 http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

Dyna-Q

G
800
S
600- . actions
Steps 0 planning steps
per 4004 (direct RL only)
eplsode 5 planning steps
50 planning steps
200
14_ e]
| | | | | |
2 10 20 30 40 50

D. Silver. RL course Lecture 8 http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

Generalization to novel environments

S S
Learn Optimal Learn Optimal
Policy / Value Function Policy / Value Function

D. Silver. RL course Lecture 8 http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

Generalization to novel environments

Policies trained using traditional CNNs are Reactive

Q Network /
Policy Network

¢(3) > Wre(a"¢(8))

State Policy
Representation

Learning to React
VS
Learning to Plan

Value lteration Network
Best Paper NIPS 2016

Tamar, Aviv, et al. "Value iteration networks." NIPS. 2016.

Value lteration Networks

Learning

» Policy Network

Tamar, Aviv, et al. "Value iteration networks." NIPS. 2016.

Value lteration Networks

(Estimate of the
real new M)

MDP

M

Planning!

Solve using

>

‘7*

Value lteration

¢

Select relevant information
(Attention)

> Tlre (a\gb(s))

Tamar, Aviv, et al. "Value iteration networks." NIPS. 2016.

Value lteration Networks

Planning!

Solve using

MDP M

[7
> Value lteration |4

¢

Select relevant information
(Attention)

l

> mre(ald(s), V*)

+a
‘.‘--

Make it End-to-End Differentiable

Questions? orks." NIPS. 2016.

Value lteration Networks

MDP M Rewards: 15
A fr(¢(s);0r) € R.

Transition probabilities
(same for all maps!):

gﬁ& Let s’ —S—i—As
¢(8) Q@@ P(s'|s,a) P(As|a) if 8" € nbr(s)

P(s'|s,a) = 0 if s ¢ nbr(s)

Tamar, Aviv, et al. "Value iteration networks." NIPS. 2016.

Value lteration Networks

Solve using
Value lteration

‘_/*

V(s) = max, Q(s,a)

Tamar, Aviv, et al. "Value iteration networks." NIPS. 2016.

Value lteration Networks

1 Al _
. H PIanmng.» Solve using ‘—/*
H” Value lteration

Qs.a)=R(s) 4| Y [PAslav(s)
s’enbr(s) f

V(s) = max, Q(s, a) /

;
Conv Kernel

Tamar, Aviv, et al. "Value iteration networks." NIPS. 2016.

Value lteration Networks

- Planning!
>

Solve using
Value lteration

‘7*

0.5
o !
1
2.5

=
5 10 15 20 25 5 10 15 20 25

77— Conv Max Pool —

R: mxnx1 Q: mxnxa Questions?
V: mxnx1 COﬂV: 3x3xa Tamar, Aviv, et al. "Value iteration networks." NIPS. 2016.

Value lteration Networks

Attention: Solve using i
Select Q*(S,) c RIA Value lteration x
¢ L i
Select relevant information
(Attention)

Tre(ale(s), V")

Tamar, Aviv, et al. "Value iteration networks." NIPS. 2016.

Value lteration Networks

Attention: Solve using i
Select Q*(S,) c RIA Value lteration x
¢ L i
Select relevant information

(Attention)

—> 7-‘-?"6(0"¢(8)7 Q*(Sv))

Questions?

Tamar, Aviv, et al. "Value iteration networks." NIPS. 2016.

Grid World Experiment

=

Shortest path 3 ' Shor.tcﬁt path
Predicted path o : Predicted path

Success Rate VIN CNN FCN
8x8 99.6% 97.9% 97.3%
16x16 99.3% 87.6% 88.3%
28x28 97% 74.2% 76.6%

(dense pixelwise

(DQN) classification)

Grid World Experiment

=

Shortest path 3 ' Shor.tcﬁt path
Predicted path o : Predicted path

Success Rate VIN CNN FCN
8x8 99.6% 97.9% 97.3%
16x16 99.3% 87.6% 88.3%
28x28 97% 74.2% 76.6%

Tamar, Aviv, et al. "Value iteration networks." NIPS. 2016.

Grid World Experiment

Shortest path 3 ' Sh-:r.tcﬁt path
Predicted path o : Predicted path

Success Rate VIN CNN FCN
8x8 99.6% 97.9% 97.3%
16x16 99.3% 87.6% 88.3%
28x28 97% 74.2% 76.6%

Tamar, Aviv, et al. "Value iteration networks." NIPS. 2016.

Grid World Experiment

Shortest path 4 ' Shc-r.tcﬁt path
Predicted path : : Predicted path

Success Rate VIN CNN FCN
8x8 99.6% 97.9% 97.3%
16x16 99.3% 87.6% 88.3%
28x28 97% 74.2% 76.6%

Tamar, Aviv, et al. "Value iteration networks." NIPS. 2016.

Grid World Experiment

Shortest path 4 ' Shortest path
Predicted path : _ Predicted path

Success Rate VIN CNN FCN
8x8 99.6% 97.9% 97.3%
16x16 99.3% 87.6% 88.3%
28x28 97% 74.2% 76.6%

Tamar, Aviv, et al. "Value iteration networks." NIPS. 2016.

Mars Rover Experiment

Rover needs to avoid elevation angles greater than 10 degrees.
Elevation needs to be inferred from the input image.

Tamar, Aviv, et al. "Value iteration networks." NIPS. 2016.

The Predictron:
End-to-End Learning and
Planning

David Silver et. al

Silver, David, et al. "The predictron: End-to-end learning and planning." arXiv:1612.08810 (2016).

Motivation

\1‘

Silver, David, et al. "The predictron: End-to-end learning and planning." arXiv:1612.08810 (2016).

Motivation

\/»C

Silver, David, et al. "The predictron: End-to-end learning and planning." arXiv:1612.08810 (2016).

Motivation

Silver, David, et al. "The predictron: End-to-end learning and planning." arXiv:1612.08810 (2016).

Motivation

%
Ty

Current deep classification/regression nets cannot

unfold into the future for making predictions
Silver, David, et al. "The predictron: End-to-end learning and planning." arXiv:1612.08810 (2016).

Motivation

%
Ty

Predictron: An architecture for prediction tasks with

inbuilt planning computation
Silver, David, et al. "The predictron: End-to-end learning and planning." arXiv:1612.08810 (2016).

Architecture motivated by MRP

Imagine a Markov Reward Process with:

1. Initial state set as Input
So — 1

2. Network for value of a state
v; = v(8i;6y)
3. Network for state transition
Sit1,Tit1, Yirl = M(Si, 55 0m)

1-step Preturn: g1 = 71 + Y101

Silver, David, et al. "The predictron: End-to-end learning and planning." arXiv:1612.08810 (2016).

Architecture motivated by MRP

Imagine a Markov Reward Process with:

1. Initial state set as Input
So — 1

2. Network for value of a state
v; = v(8i;6y)
3. Network for state transition
Sit1,Tit1, Yirl = M(Si, 55 0m)

2-step Preturn: g2 = 11 + y1(72 + Y2v2)

Silver, David, et al. "The predictron: End-to-end learning and planning." arXiv:1612.08810 (2016).

Inference

State
Transition
Network

]

By

1-step Preturn:
g1 =T1+ Y101

Vi

!

Value
Network
v

|

S

Inference

I I Vv
BN S
State State |
. . Value
Transition Transition Network
Network Network y
m m

Ll

2-step Preturn:
g2 =11+ 71(r2 + Y2v2)

Inference

k-step Predictron output is a
Monte-Carlo estimate of expected
k-step Preturns

Em|gkls)

Silver, David, et al. "The predictron: End-to-end learning and planning." arXiv:1612.08810 (2016).

Learning

| =

L(Om,0.;8) = 5||Eplg|s]|— Em[gkls]HQ
/

Real Environment

\)

Silver, David, et al. "The predictron: End-to-end learning and planning." arXiv:1612.08810 (2016).

Experiments

recurrent ResNet

JF
recurrent ConvNet
&
-
ResNet @
e]
- &
&
o
Q Sy |
"o&%
o% L
e | (r, ¥, A)-predictron
ConvNet

Silver, David, et al. "The predictron: End-to-end learning and planning." arXiv:1612.08810 (2016).

Experiments

recurrent ResNet

recurrent ConvNet \

A

A
]
Q@
o
0.4 g
O
- & :
O 0.3 % . (ry,M-predictr
Ll ConvNet
g
Z 0.2

0 500K 1M
Updates

Silver, David, et al. "The predictron: End-to-end learning and planning." arXiv:1612.08810 (2016).

Experiments

recurrent ResNet

recurrent Convf\

(r, v, A)-predictron
ConvNet

0 500K 1M
Updates

Silver, David, et al. "The predictron: End-to-end learning and planning." arXiv:1612.08810 (2016).

Summary

e Policy Gradients

o Stochastic;

Better properties; variance in training

Maximize expected returns

Actor-critic methods: Using value-networks to reduce variance
A3C: parallel environments decorrelates training data

O O O O

e Model-based learning

o Planning helps learning by modeling environment
o Dyna: new data from model

o Value lteration Networks: generalization

o Predictron: reason about future

Applications

Recurrent Models of Visual Attention

Volodymyr Mnih, Nicolas Heess, Alex Graves, Koray Kavukcuoglu

Motivation

e Task: Classify digits in MNIST
e Motivation: Full image convolution is expensive!

e Humans focus attention selectively on parts of an image
e Combine information from different fixations over time

=

pa
.

Overview

True state of the environment is unobserved
o Glimpses can be seen as a partial view of the state
State: h=f(h_,g;0,)

Actions:
o Location: I~ p(.|f,(h,; 6))

o An environment action: a ~ p(.|f (h,; 0))
Reward: Cross-Entropy Loss

Agent needs to learn a stochastic policy

o Policy 7 is defined by the Location Network in the RNN

Glimpse

e Retina-like representation p(x, /)
o Contains multiple resolution patches
e Centered at location /_, of image x,

| -

Glimpse Sensor

—> (X, I)

Glimpse Network

e p(x,l _,)andl are mapped into a hidden space

9 0
Glimpse g
Sensor » »

p(xt, lt-])

X; ;
98
e > >
Glimpse Network : f,(6,)

OOiO (?OO

QQOOUC)

Model Architecture

Glimpse
Network

81

hr-f —

)\

®\I

Internal
State

i

||

— JelOg) l
i |
elele |
| O hy |
fn(Ow|—> S |
O |
PR

|

Ja®d) | | S1(OD

h:—f

Jh(Cn) |—>

0000

A

fa(®d) | | 1OV

Reward (a,, ,gt)

Training

“OK, I've shown you the ropes, given you the low down, and
gotten you up to speed. All that’s left is actually training you.”

Training

R R

fg(Og) Je(0g)

Jh(On)

hei—> fu(On)|—

og
Q000

,%;___
Q000

fa®d) | | fi(BY fa®a) | | fi(6Y

& & 66

e Parameters of the agent are: 0 = g, 0,0}
o Can be trained using standard backpropagation

e RL Objective: Maximize the reward given by: J(0) = E[R]
o Can maximize J(0) using REINFORCE

Results

AT

Results

(a) 60x60 Cluttered Translated MNIST

(b) 100x100 Cluttered Translated MNIST

Model Error

FC, 2 layers (64 hiddens each) 28.58%

FC, 2 layers (256 hiddens each) ___ __ 11.96%
:_Convolutional, 2 layers 8.09% 1
' RAM, 4 glimpses, 12 x 12, 3 scales 4.96%
~RAM, 6 glimpses, 12 X 12, 3 scales _ 4.08%
' RAM, 8 glimpses, 12 X 12, 3 scales _ 4.04% |
' RAM, 8 random glimpses 14.4%

Model
 Convolutional, 2 layers

Error
14.35%:

End-to-end Learning of Action Detection
from Frame Glimpses in Videos

Serena Yeung, Olga Russakovsky, Greg Mori, Li Fei-Fei

Motivation

e Task: Detect and classify moments in an untrimmed video
e Motivation: Looking at all frames in a video is slow!

e Process of detecting actions is one of observation and
refinement

Charlie bites finger

Overview

True state of the environment is unobserved

o Observation Network can be seen as a partial view of
the state

State: i =f, (h _,,0 ;0,)

Actions:

o Candidate detection: d =f (h ;0)

o Binary indication: Pn=fp(hn"‘9p)

o Temporal location: I =f(h ;0,)

Ry if M >0and N, =0

Reward: Ry =
N NiRy + N_R_ otherwise

Agent needs to learn a stochastic policy

o Policy 7 is defined by the Location Network in the RNN

Observation Network

e Observes a single video frame at each timestep and
encodes the frame and it's location into a feature vector o
o Inspired by the Glimpse network

on 1000

f

: |
Observation £.(6,)

Network

Video Frames

Model Architecture

Binary Indicator

Action Predictions Action Reward
Environment —~ |
. N i i e S e e i e i i B e B A -l i i
Action Q9-=7== T x | { IR Location
dy = (8, €nsCn) Pn lntr- . tdpe1 Pnal r’,,+3~ . otz Pns2 !u-i-:t<: Action
Internal ol il | S i :
State
) o) ® o)
- = [h(f) =|;3_| = () =E| o () ‘-=|;:)—| -
I |Q| Iy @ 1 |9|
hy fyst Bosa
l
EO OO0] Gt ont2 [OOO]
I I]
Observation (00) fo(8) fo(0o)
Network 'y A A
I [| [] |
. : -

Video Frames

__

Training

T
d,, : 2 ;J,_,I. 2 Ints-. .
o]
1 In(6n) ’i_‘
3 B :
f— >
| .
2 | OO0
| nl]
Video Frames - : : y

e Parameters of the agentare: 0={0,0,86 .}

o Can be trained using standard backpropagation
e RL Objective: Maximize the reward given by: J(0) = E[R]

O L(D)=)_ Les(dn) +7Y_ Y _1[ynm = 1]Lioc(dn, gm)
o Can maximize J(0) using REINFORCE

S
| Vod = ZEP(SI:T;Q) (Vg log m(uyg|s1.4;0)R) =~ i szfglog m(ug|si.;; 0) R

Results - |

e THUMOS 14’ Dataset
o Correct Predictions

a -
a W

Baseball
Pitch

Basketball Basketball Baseball
Dunlk Dunk Pitch

Diving

Diving

Results - |

[23] | Owurs 23] | Owurs
Baseball Pitch 8.6 14.6 || Hamm. Throw | 34.7 | 28.9
Basket. Dunk 1.0 6.3 || HighJump | | 17.6 | 33.3 .
_Billiards______|__ 2.6__|_94__||_JavelinThrow | 22.0 | 204
' Cleanand Jerk | 133 | 42.8 || Long Jump 47.6 | 39.0 |
Cliff Diving | 17.7 | 15.6 || Pole Vault | 19.6 | 163
Cricket Bowl. 9.5 10.8 Shotput 11.9 | 16.6
Cricket Shot 2.6 35 Soccer Penalty | 8.7 8.3
Diving 4.6 10.8 Tennis Swing 3.0 5.6
_ Frisbee Catch | 1.2 | 10.4 || Throw Discus 36.2 | 295
'_ Golf Swing | 22.6 | 13.8 ||| Volley. Spike 1.4 52
mAP 144 | 17.1

e Key Takeaways:

o Accuracy is comparable to state-of-the-art

o Less frames observed

AlphaGo:
A bit of everything

(but mostly plain PG + planning)
https://www.youtube.com/watch?v=4D5yGiYe8p4

https://www.youtube.com/watch?v=4D5yGiYe8p4
https://www.youtube.com/watch?v=4D5yGiYe8p4

Thanks!

AlphaGo slides

Background: Monte-Carlo Tree Search

Another planning method.

e Sample future paths using stochastic policy

o Biased towards reasonable moves
o The predictron paper may do this if they modeled the
environment P(s'|s,a).

(talk) D. Silver. Mastering the game of Go with Deep Neu. . .\etworks and Tree Search. ICML Workshop 2016

Background: Monte-Carlo Tree Search

Deterministic environment version.

1. Select path according to z plus exploration
2. Expand leaf node s (compute children and their [P())

3. Evaluate V(s) by rolling out (play till the end)
4. Backup: update Q(s,a) along the path (count)

Selection b Expansion c Evaluation d Backup

H\. Q-+ ul i * ﬁi\
W oo oW o# m T
BT E O U~ ST € W Bt 48

N i
() @ oEo

D. Silver. Mastering the game of Go with Deep Neural Networks and Tree Search. Nature, vol. 529 issue 7587

%.-: -y _._
et

AlphaGo models overview

Py
Human expert

positions M M Rollout policy

m SL policy network
@ Policy
b, gradient

M m BL policy network

. .--..- = IJ”
Self-play pnsitm @

D. Silver. Mastering the game of Go with Deep Neural Networks and Tree Search. Nature, vol. 529 issue 7587

Value network

AlphaGo models

Py, 815)
P

Human expert

i i - K
positions M m Rollout policy zfgzzlsl’ networ L ﬁ e

. E‘; pl.l
]
4 B& SL policy network 13-layer CNN

e Supervised learning
o On human expert moves
o One small (very fast rollout)

m 2US; 24.2% accuracy

o One deeper

m 57% accuracy w/ handcrafted features;

m 55.7% using only raw board + past move
D. Silver. Mastering the game of Go with Deep Neural Networks and Tree Search. Nature, vol. 529 issue 7587

AlphaGo models

Py @18)

Py
Human expert

i i 1-l K
positions M Rollout policy (fazil!?r networ L - ®
i

s __._.'-"'-'l:-.-- p”
% m SL policy network 1 3-Iayer CNN

70+
Importance of o] — 128fiters
e : = 09 — 102 filter's
classification L | — zseiiters
aCCuracy -E — 384 filters
c 401
_ , =
(win rate against g 907
.]
final AlphaGo) 5. 20
"2
O 1 1 1 L) 1 1 L) L) 1

50 51 52 53 54 55 56 57 58 59
Training accuracy on KGS dataset (%)

D. Silver. Mastering the game of Go with Deep Neural Networks and Tree Search. Nature, vol. 529 issue 7587

AlphaGo models

e Policy gradient
o Improve SL policy to RL policy

m Playing against its past iterations (less overfitting)
P,

m SL policy network
Policy
P gradient

% BL policy network

o Training: PG w/o discount (rewards R . = +1; R
e Wins 80% against SL policy

o 85% to Pachi (open source s-o-t-a)
o Ranks ~ 3 amateur dan

D. Silver. Mastering the game of Go with Deep Neural Networks and Tree Search. Nature, vol. 529 issue 7587

:-1)

lose

AlphaGo models

e Value network: evaluate the win-rate of state
o Use self-play instead of human moves
(less overfit)
o Under "optimal policy" (the RL one)
o David: "perhaps the key of AlphaGo dev."

m (first strong state evaluator)

pJ"I
M m BL policy network

s
Self-play positions 4

D. Silver. Mastering the game of Go with Deep Neural Networks and Tree Search. Nature, vol. 529 issue 7587

Value network

vy 1S

Value network

AlphaGo models recap

P,
Human expert

positions M m Rolloutpolicy Fast policy

can
@ Policy play go

gradient

W&Eﬂﬂr
w SL policy network Human ||ke polle >pOIICy

M m RL policy network "Optlma|" pOI|Cy J
]
Self-pl tions Y .
Ay Pusih @ Value network Value dCCoO I'd | ng

to "optimal” policy

D. Silver. Mastering the game of Go with Deep Neural Networks and Tree Search. Nature, vol. 529 issue 7587

Putting everything together w/ MCTS
Deterministic environment version.

1. Select path by maximizing estimated Q and exploration u
2. Expand leaf node s (compute children's P(-) using p)

3. Evaluate V(s) by rolling out (using fast p_and value v,)

4. Backup: update Q(s,a) along the path (using count)

Selection b Expansion c Evaluation d Backup
B8 . #
o maxdy Q+ ulP) ik T
rrr s S S L 2 - S C: < I I
e N N Using a linear -
13 e(780) e o(#F) BY combindlidn, 13%
_ P/NF o] of fast p_ and
USII‘.]g Qandu Using pﬁ; | alue
eStll\r;](a:?g by human-like p_ r(ﬁ) i“é/ % i:é

D. Silver. Mastering the game of Go with Deep Neural Networks and Tree Search. Nature, vol. 529 issue 7587

Elo Rating

AlphaGo results

3,500 =

3,000 =

2,500 -

2,000 =

1,500 =

1,000 =

500 -

b c
1,500= 1,500 4
1,000+ 1,000
%% E é" é) %?’ g E g’ Hnlln?rt-so] ® & Threa(:i;1 2 4 B 1692 40 pum g 12 24 40 B4
crEJ) 8 I < 2 5 %" Value network & e ® @ GPUs § a 1 1 2 4 8 84112176280
E_D o 'gu‘g Policynetwork @ ® @ & L I '
o . Single_machine Distributed
AlphaGo vs Ablation stud Ablation study
human or of the of distributed
related work components MCTS

D. Silver. Mastering the game of Go with Deep Neural Networks and Tree Search. Nature, vol. 529 issue 7587

