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Background
● Action-value function using parameters θ

● Policy was generated from the Q(s,a)

● We will focus on parameterizing the policy directly:



Overview
● Motivation
● Policy Gradients

○ REINFORCE
■ Simple Statistical Gradient-Following Algorithms for. Connectionist Reinforcement 

Learning

○ Actor-critic methods: REINFORCE + e.g. Q-learning
■ Asynchronous Advantage Actor-Critic (A3C)

● Model-based learning
○ Planning

■ Value Iteration Networks

● Applications
■ Recurrent Models of Visual Attention
■ End-to-end Learning of Action Detection from Frame Glimpses in Videos
■ Alpha-Go



Motivation: Iterated Rock-Paper-Scissors
● Consider value-function based policies for iterated 

rock-paper-scissors

● Optimal Policy?

Slide from David Silver

Random



● The agent cannot distinguish the grey states

Motivation: Aliased Gridworld

Slide from David Silver

● Optimal deterministic policy?
○ Move Left in both grey states
○ Move Right in both grey states



● An optimal policy will randomly move E or W in grey states

Motivation: Aliased Gridworld

Slide from David Silver

● Policy-based RL can learn the optimal stochastic policy!



○ Better convergence properties

○ Effective in high-dimensional or continuous action 
spaces

Policy-Based RL

Slide from David Silver

● Advantages:
○ Can learn stochastic policies that are useful for 

POMDP environments

● Disadvantages:
○ Evaluating a policy is typically inefficient and high 

variance --- naive Monte Carlo sampling



○ Hill climbing

● Find θ that maximizes J(θ)

Policy Optimization

Slide from David Silver

● Policy based reinforcement learning is an optimization 
problem

● Some approaches do not use gradient



Salimans et al. Evolution Strategies as a Scalable Alternative to Reinforcement Learning arXiv:1703.03864v1

● Highest scoring parameter vectors are then recombined to 
form the population for the next generation

Evolution Strategies - Hill Climbing
● At every iteration (“generation”)

○ Population of parameter vectors (“genotypes”) is 
perturbed (“mutated”)

○ Objective function value (“fitness”) is evaluated

● Gradient Free!



Salimans et al. Evolution Strategies as a Scalable Alternative to Reinforcement Learning arXiv:1703.03864v1

Evolution Strategies - Hill Climbing
● Highly parallelizable



Salimans et al. Evolution Strategies as a Scalable Alternative to Reinforcement Learning arXiv:1703.03864v1

Evolution Strategies - Results



○ Genetic algorithms
○ Hill climbing

● Find θ that maximizes J(θ)

Policy Optimization

Slide from David Silver

● Policy based reinforcement learning is an optimization 
problem

● Some approaches do not use gradient

○ Quasi-newton
○ Gradient Descent

● Greater efficiency often possible using gradient

● From now on, we focus primarily on Gradient Descent



Δθ = α∇θJ(θ)

● Policy gradient algorithms search for a 
local maximum in J(θ)

Policy Gradient

Slide from David Silver

● Let J(θ) be any policy objective function

● Where ∇θJ(θ) is the policy gradient
○ α is a step-size parameter



Policy Gradient Theorem



Williams et al. Simple Statistical Gradient-Following Algorithms for. Connectionist Reinforcement Learning. 
Machine Learning, 8(3):229-256, 1992

REINFORCE

● Maximizing J is non-trivial
○ Expectation over high-dimensional action sequences

R



Connection with value learning:
Actor-critic methods



Motivation: PG vs value functions
● Q-learning: learns ( , ) (action-value function)

● PG: directly learns policy ( , )
○ Pro: 

Better convergence
Can learn stochastic policy
Get action directly; compact

○ Con: 
suffers from high variance when training 



Motivation: PG vs value functions
● Q-learning: learns ( , ) (action-value function)

● PG: directly learns policy ( , )
○ Con: suffers from high variance when training 

... reduce variance?

Action-value Function

Figure from David Silver

REINFORCEe.g. Q-learning



Method outline
● Use Q to reduce variance

○ Recall gradient descent in PG:

Slide from David Silver

Future return
from experience

(real world samples)

Also future return!
Learned along 

with 

]

○ Many equivalent forms



Example (1): A3C
Asynchronous Advantage Actor-Critic

● Bias from Q actor-critic

○ Encourages action if ( , ) is large 
○ Should encourage good action on state

(not just random actions that happen on good state)

Mnih et al. Asynchronous Methods for Deep Reinforcement Learning. ICML 2016



Example (1): A3C
Asynchronous Advantage Actor-Critic

● Advantage actor-critic

○ Only counts the advantage (return minus baseline)

○ Reduces variance
○ Learn  ,  normally; learn  by replacing  with .

Mnih et al. Asynchronous Methods for Deep Reinforcement Learning. ICML 2016

Encourage 
doing better 

than "baseline"

(in practice)



Example (1): A3C
Asynchronous Advantage Actor-Critic

● Deep Q Network:

○ (to reduce correlation in training data -- crucial for DQN)
● Experience from past policy

○ Applies to off-policy learning only
○ Cannot apply to e.g. actor-critic!

Mnih et al. Asynchronous Methods for Deep Reinforcement Learning. ICML 2016

Replay
Buffer

(experience)
TrainingEnvironment

GPU
parallelism

Update 



Example (1): A3C
Asynchronous Advantage Actor-Critic

● Asynchronous RL:

○ (Also reduces correlation in training data!)

● Experience is on-policy

Training
Training
Training

Environment (1)
Environment (2)
Environment (n)

Asynchronously update  and 

CPU parallelism
experience (1)
experience (2)
experience (n)

Replay
Buffer

(experience)

Mnih et al. Asynchronous Methods for Deep Reinforcement Learning. ICML 2016

* cf. T. Salimans et al. Evolution Strategies 
as a Scalable Alternative to RL



Example (1): A3C
● Implementation details

○ Use k-step estimate of advantage

○ Actor/critic share some layers
○ Entropy regularization
○ Asynchronous RMSProp

Mnih et al. Asynchronous Methods for Deep Reinforcement Learning. ICML 2016

Reward
obtained

Estimate
@ future
time step

Baseline
return



Example (1): A3C
Playing racing simulator TORCS 

http://www.youtube.com/watch?v=0xo1Ldx3L5Q


Mnih et al. Asynchronous Methods for Deep Reinforcement Learning. ICML 2016

Example (1): A3C
● Results on Atari games (averaged)

Human normalized 
scores



Mnih et al. Asynchronous Methods for Deep Reinforcement Learning. ICML 2016

Example (1): A3C
● Results

Score w.r.t. Training time (hrs).
Note: hyperparameter fiddling may be at play



Example (2): Continuous control
Before: model ( , ) or ( , ) by enumerating 

● When  is continuous...
○ Actor-critic!

Lillicrap et al. Continuous Control with Deep Reinforcement Learning. ICLR 2016

model ( 1),..., ( n)

Fit  normally
Update 

to maximize 

Actor
( )

Critic
( , )

expected 
return

(∊ℝ )



Example (2): Continuous control
Simulated control tasks

http://www.youtube.com/watch?v=tJBIqkC1wWM


Planning



The story so far

● Model-free RL
○ Q-Learning / Sarsa: 

Learn action-value function directly from experience

○ Policy Gradient:

Learn policy directly from experience



● Model-based RL
○ Learn a model of the environment
○ Use the model to learn policy/value function

The story so far

Planning



Why Plan?

● Simulation cheaper than real interaction
● Speed up learning
● Generalize to new environments
● Predict a future even



Why Plan?

● Simulation cheaper than real interaction
○ Planning based Q-Learning

● Speed up learning
○ Dyna-Q

● Generalize to new environments
○ Value Iteration Networks

● Predict a future even
○ The Predictron



Simplest Model-based RL



Simplest Model-based RL

MDP with Unknown
○ Rewards 
○ Transition Probabilities



Simplest Model-based RL

Solution:
○ Gain experience



Simplest Model-based RL

Solution:
○ Gain experience

○ Estimate model 



Simplest Model-based RL

Solution:
○ Gain experience

○ Estimate model 



Simplest Model-based RL

Use the estimated MDP to get optimal 
policy/value function

● Value Iteration
● Policy Iteration



Sampling-based Planning with Q Learning

Given: An estimated MDP

Algorithm:

1. Randomly sample a state and action, 
2. Sample
3. Update Q function

4. Repeat  

Learning from simulated experience

What if the model is incorrect?



Dyna-Q

Learning from both real and simulated experience

D. Silver. RL course Lecture 8 http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html



Dyna-Q

Learning from both real and simulated experience

D. Silver. RL course Lecture 8 http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html



Dyna-Q

D. Silver. RL course Lecture 8 http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html



Generalization to novel environments

Learn Optimal
Policy / Value Function

Learn Optimal
Policy / Value Function

D. Silver. RL course Lecture 8 http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html



Generalization to novel environments

Policies trained using traditional CNNs are Reactive

State 
Representation

Policy

Q Network /
Policy Network

Learning to React 
vs 

Learning to Plan



Value Iteration Network
Best Paper NIPS 2016

Tamar, Aviv, et al. "Value iteration networks." NIPS. 2016.



Value Iteration Networks 

Policy Network 

Policy Network 
Optimal 
Policy

Learning

Tamar, Aviv, et al. "Value iteration networks." NIPS. 2016.



& transition

Value Iteration Networks 

  MDP Solve using 
Value Iteration

Select relevant information
(Attention)

"State 
ovservation"

(Estimate of the 
real new M)

Tamar, Aviv, et al. "Value iteration networks." NIPS. 2016.

Planning!



& transition

Value Iteration Networks 

  MDP Solve using 
Value Iteration

Select relevant information
(Attention)

Tamar, Aviv, et al. "Value iteration networks." NIPS. 2016.

Planning!

Make it End-to-End Differentiable
Questions?



Value Iteration Networks 

  MDP Rewards:

Transition probabilities
(same for all maps!):

Tamar, Aviv, et al. "Value iteration networks." NIPS. 2016.



Value Iteration Networks 

  MDP Solve using 
Value Iteration

Tamar, Aviv, et al. "Value iteration networks." NIPS. 2016.

Planning!



Value Iteration Networks 

  MDP Solve using 
Value Iteration

Conv Kernel
Tamar, Aviv, et al. "Value iteration networks." NIPS. 2016.

Planning!



Value Iteration Networks 

  MDP Solve using 
Value Iteration

Conv Max Pool
V Q V

R

R: m×n×1 Q: m×n×a
V: m×n×1 Conv: 3×3×a Tamar, Aviv, et al. "Value iteration networks." NIPS. 2016.

Planning!

Questions?



Value Iteration Networks 

Solve using 
Value Iteration

Select relevant information
(Attention)

Attention:
Select

Tamar, Aviv, et al. "Value iteration networks." NIPS. 2016.



Value Iteration Networks 

Solve using 
Value Iteration

Select relevant information
(Attention)

Attention:
Select

Tamar, Aviv, et al. "Value iteration networks." NIPS. 2016.

Questions?



Grid World Experiment

Success Rate VIN CNN FCN

8x8 99.6% 97.9% 97.3%

16x16 99.3% 87.6% 88.3%

28x28 97% 74.2% 76.6%

(DQN) (dense pixelwise 
classification)
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Grid World Experiment

Success Rate VIN CNN FCN

8x8 99.6% 97.9% 97.3%

16x16 99.3% 87.6% 88.3%

28x28 97% 74.2% 76.6%

Tamar, Aviv, et al. "Value iteration networks." NIPS. 2016.



Mars Rover Experiment

Rover needs to avoid elevation angles greater than 10 degrees.
Elevation needs to be inferred from the input image.

VIN
GT

Tamar, Aviv, et al. "Value iteration networks." NIPS. 2016.



The Predictron: 
End-to-End Learning and 

Planning
David Silver et. al

Silver, David, et al. "The predictron: End-to-end learning and planning."  arXiv:1612.08810 (2016).



Motivation

Silver, David, et al. "The predictron: End-to-end learning and planning."  arXiv:1612.08810 (2016).



Motivation
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Motivation

Silver, David, et al. "The predictron: End-to-end learning and planning."  arXiv:1612.08810 (2016).



Motivation

Current deep classification/regression nets cannot 
unfold into the future for making predictions

Silver, David, et al. "The predictron: End-to-end learning and planning."  arXiv:1612.08810 (2016).



Motivation

Predictron: An architecture for prediction tasks with 
inbuilt planning computation

Silver, David, et al. "The predictron: End-to-end learning and planning."  arXiv:1612.08810 (2016).



Imagine a Markov Reward Process with:

Architecture motivated by MRP

1. Initial state set as Input

2. Network for value of a state

3. Network for state transition

1-step Preturn:
Silver, David, et al. "The predictron: End-to-end learning and planning."  arXiv:1612.08810 (2016).



Imagine a Markov Reward Process with:

Architecture motivated by MRP

1. Initial state set as Input

2. Network for value of a state

3. Network for state transition

2-step Preturn:
Silver, David, et al. "The predictron: End-to-end learning and planning."  arXiv:1612.08810 (2016).



Inference

State 
Transition 
Network

m

s1

s0

r1 1

β0

1-step Preturn:

Value 
Network

v

s1

v1



Inference

State 
Transition 
Network

m

s1

s0

r1 1

β0

State 
Transition 
Network

m

s2

s1

r2 2

β1

2-step Preturn:

Value 
Network

v

s2

v2



Inference

k-step Predictron output is a 
Monte-Carlo estimate of expected

k-step Preturns

Silver, David, et al. "The predictron: End-to-end learning and planning."  arXiv:1612.08810 (2016).Silver, David, et al. "The predictron: End-to-end learning and planning."  arXiv:1612.08810 (2016).



Learning

Real Environment

Silver, David, et al. "The predictron: End-to-end learning and planning."  arXiv:1612.08810 (2016).Silver, David, et al. "The predictron: End-to-end learning and planning."  arXiv:1612.08810 (2016).



Experiments

Silver, David, et al. "The predictron: End-to-end learning and planning."  arXiv:1612.08810 (2016).



Experiments

Silver, David, et al. "The predictron: End-to-end learning and planning."  arXiv:1612.08810 (2016).



Experiments

Silver, David, et al. "The predictron: End-to-end learning and planning."  arXiv:1612.08810 (2016).



Summary
● Policy Gradients

○ Stochastic; 
○ Better properties; variance in training
○ Maximize expected returns
○ Actor-critic methods: Using value-networks to reduce variance
○ A3C: parallel environments decorrelates training data

● Model-based learning
○ Planning helps learning by modeling environment
○ Dyna: new data from model
○ Value Iteration Networks: generalization
○ Predictron: reason about future



Applications



Recurrent Models of Visual Attention
Volodymyr Mnih, Nicolas Heess, Alex Graves, Koray Kavukcuoglu



● Task: Classify digits in MNIST
● Motivation: Full image convolution is expensive!

Motivation

● Humans focus attention selectively on parts of an image
● Combine information from different fixations over time



Overview

● Agent needs to learn a stochastic policy

○ Policy π is defined by the Location Network in the RNN

● True state of the environment is unobserved
○ Glimpses can be seen as a partial view of the state 

● State: ht = fh (ht−1  , gt ; θh  )

● Actions:
○ Location: lt ~ p(.|fl (ht ; θl ))

○ An environment action: at ~ p(.|fa (ht ; θa ))

● Reward: Cross-Entropy Loss



● Retina-like representation ρ(xt , lt−1) 
○ Contains multiple resolution patches

● Centered at location lt−1 of image xt 

Glimpse



● ρ(xt , lt−1) and lt-1 are mapped into a hidden space

Glimpse Network



Model Architecture

Glimpse 
Network

Internal 
State

Environment 
Action

Location 
Action

Reward (at+1,gt)



Training



Training

● Parameters of the agent are: θ = {θg, θh, θa}
○ Can be trained using standard backpropagation

● RL Objective: Maximize the reward given by: J(θ) = E[R] 
○ Can maximize J(θ) using REINFORCE



Results



Results



End-to-end Learning of Action Detection 
from Frame Glimpses in Videos

Serena Yeung, Olga Russakovsky, Greg Mori, Li Fei-Fei



● Process of detecting actions is one of observation and 
refinement

● Task: Detect and classify moments in an untrimmed video
● Motivation: Looking at all frames in a video is slow!

Motivation



● Agent needs to learn a stochastic policy

○ Policy π is defined by the Location Network in the RNN

● True state of the environment is unobserved
○ Observation Network can be seen as a partial view of 

the state 
● State: hn = fh (hn−1  , on ; θh  )

● Actions:
○ Candidate detection: dn=fd(hn;θd) 
○ Binary indication: pn=fp(hn;θp)
○ Temporal location: ln+1= fl(hn; θl )

● Reward: 

Overview



● Observes a single video frame at each timestep and 
encodes the frame and it’s location into a feature vector on
○ Inspired by the Glimpse network

Observation Network



Model Architecture

Observation 
Network

Internal 
State

Environment 
Action Location 

Action

Reward

Binary Indicator 
Action



● RL Objective: Maximize the reward given by: J(θ) = E[R] 
○
○ Can maximize J(θ) using REINFORCE

● Parameters of the agent are: θ = { θo, θh, θd }
○ Can be trained using standard backpropagation

Training



Results - I
● THUMOS 14’ Dataset

○ Correct Predictions



Results - II

● Key Takeaways: 
○ Accuracy is comparable to state-of-the-art
○ Less frames observed



AlphaGo:
A bit of everything

(but mostly plain PG + planning)
https://www.youtube.com/watch?v=4D5yGiYe8p4

https://www.youtube.com/watch?v=4D5yGiYe8p4
https://www.youtube.com/watch?v=4D5yGiYe8p4


Thanks!



AlphaGo slides



Background: Monte-Carlo Tree Search
Another planning method.

● Sample future paths using stochastic policy 
○ Biased towards reasonable moves
○ The predictron paper may do this if they modeled the 

environment ℙ( ′| , ).

(talk) D. Silver. Mastering the game of Go with Deep Neural Networks and Tree Search. ICML Workshop 2016



Background: Monte-Carlo Tree Search
Deterministic environment version.

1. Select path according to  plus exploration

D. Silver. Mastering the game of Go with Deep Neural Networks and Tree Search. Nature, vol. 529 issue 7587

2. Expand leaf node  (compute children and their ℙ(·))
3. Evaluate ( ) by rolling out (play till the end)
4. Backup: update ( , ) along the path (count)



D. Silver. Mastering the game of Go with Deep Neural Networks and Tree Search. Nature, vol. 529 issue 7587

AlphaGo models overview

Policy 
gradient



D. Silver. Mastering the game of Go with Deep Neural Networks and Tree Search. Nature, vol. 529 issue 7587

AlphaGo models

● Supervised learning
○ On human expert moves

1-layer network
(fast!)

13-layer CNN

○ One small (very fast rollout)
■ 2㎲; 24.2% accuracy

○ One deeper
■ 57% accuracy w/ handcrafted features; 
■ 55.7% using only raw board + past move



D. Silver. Mastering the game of Go with Deep Neural Networks and Tree Search. Nature, vol. 529 issue 7587

AlphaGo models

Importance of
classification 
accuracy

(win rate against 
final AlphaGo)

1-layer network
(fast!)

13-layer CNN



D. Silver. Mastering the game of Go with Deep Neural Networks and Tree Search. Nature, vol. 529 issue 7587

AlphaGo models
● Policy gradient

○ Improve SL policy to RL policy 
■ Playing against its past iterations (less overfitting)

○ Training: PG w/o discount (rewards win = +1; lose= -1)
● Wins 80% against SL policy

○ 85% to Pachi (open source s-o-t-a)
○ Ranks ~ 3 amateur dan

Policy 
gradient



D. Silver. Mastering the game of Go with Deep Neural Networks and Tree Search. Nature, vol. 529 issue 7587

AlphaGo models 
● Value network: evaluate the win-rate of state

○ Use self-play instead of human moves
(less overfit)

○ Under "optimal policy" (the RL one)
○ David: "perhaps the key of AlphaGo dev."

■ (first strong state evaluator)



D. Silver. Mastering the game of Go with Deep Neural Networks and Tree Search. Nature, vol. 529 issue 7587

AlphaGo models recap

Policy 
gradient

Fast policy

Human-like policy

"Optimal" policy

Value according 
to "optimal" policy

Any 
policy 
can 
play go



Putting everything together w/ MCTS
Deterministic environment version.

1. Select path by maximizing estimated Q and exploration u

D. Silver. Mastering the game of Go with Deep Neural Networks and Tree Search. Nature, vol. 529 issue 7587

2. Expand leaf node  (compute children's ℙ(·) using )
3. Evaluate ( ) by rolling out (using fast  and value )
4. Backup: update ( , ) along the path (using count)

Using Q and u 
estimated by 

MCTS

Using 
human-like  

Using a linear 
combination 
of fast  and 

value 



AlphaGo results

D. Silver. Mastering the game of Go with Deep Neural Networks and Tree Search. Nature, vol. 529 issue 7587

AlphaGo vs 
human or 

related work

Ablation study 
of the 

components

Ablation study 
of distributed 

MCTS


