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Rollouts, random initially!

High 
reward
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● High dimensional policy 
○ Most random trajectories don’t yield positive reward

● May be expensive to evaluate action on physical system

● Failure may not be an option 

Sparse Rewards 
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Use an expert (teacher) to guide the 
learning process!

Learning from demonstrations!



Learning from Demonstrations

Imitation Learning
 

- Directly copy the expert 
- Supervised learning

Inverse RL

- Infer the goal of the expert 
- Learn the reward function r
- Learn optimal policy under r

This talk!
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● Expert provides trajectories from a good trajectory 
distribution
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● Learner imitates the trajectories - supervised learning 

● Policy should produce trajectory distribution close to expert’s 



Expert Guidance

● Expert provides trajectories from a good trajectory 
distribution

● Who’s an expert ??

○ Clone demonstrations shown by humans
○ Machine provides demonstrations

■ Optimal control / planning / trajectory optimization
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Time



Imitation Learning for Driving

Stochastic policy for 
predicting steering 
wheel angle from 
observations

End to End Learning for Self-Driving Cars

https://arxiv.org/abs/1604.07316
https://arxiv.org/abs/1604.07316
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Missing Supervision

State

Time

: On-road trajectories by the expert

: Trajectories by the autonomous vehicle

Compounding Errors!



Trajectory Distribution Mismatch

Image source : https://katefvision.github.io

https://katefvision.github.io


A Hacky Solution

Demonstration Augmentation - Include extra supervision in expert trajectories for states that the 
policy is likely to visit during test time

State

Time



A Hacky Solution

End to End Learning for Self-Driving Cars

Labelled data from 
left and right 
camera to recover 
from mistakes

https://arxiv.org/abs/1604.07316
https://arxiv.org/abs/1604.07316


Imitation Learning for Driving

End to End Learning for Self-Driving Cars

http://www.youtube.com/watch?v=YuyT2SDcYrU&t=114
https://arxiv.org/abs/1604.07316
https://arxiv.org/abs/1604.07316


http://www.youtube.com/watch?v=umRdt3zGgpU&t=97


DAgger

Solving missing supervision or the trajectory distribution mismatch problem using on-policy data
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DAgger

Solving missing supervision or the trajectory distribution mismatch problem using on-policy data

Algorithm:

DAgger paper

http://www.ri.cmu.edu/pub_files/2011/4/Ross-AISTATS11-NoRegret.pdf
http://www.ri.cmu.edu/pub_files/2011/4/Ross-AISTATS11-NoRegret.pdf


DAgger in Practice

Predict a steering angle, given RGB images from drone camera

Learning Monocular Reactive UAV Control in Cluttered Natural Environments

http://www.youtube.com/watch?v=hNsP6-K3Hn4&t=40
https://arxiv.org/abs/1211.1690
https://arxiv.org/abs/1211.1690


Imitation with Human Expert 

Who’s an expert ??

○ Clone demonstrations shown by humans
■ Unnatural / hard in some cases (e.g. steering angle from images)
■ Not scalable - continuous improvements not possible 



Imitation with Human Expert 

Who’s an expert ??

○ Clone demonstrations shown by humans
■ Unnatural / hard in some cases (e.g. steering angle from images)
■ Not scalable - continuous improvements not possible 

○ Machine provides demonstrations
■ Optimal control / planning / trajectory optimization



Imitating Optimal Control

● Expert provides trajectories from a good trajectory distribution

Supervised Learning
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● Expert provides trajectories from a good trajectory distribution

Supervised Learning



Imitating Optimal Control  

End-to-End Training of Deep Visuomotor Policies

- Learn policies for various robotics tasks using only camera images
- Use Guided Policy Search as expert

https://arxiv.org/abs/1504.00702
https://arxiv.org/abs/1504.00702


Imitating GPS 

End-to-End Training of Deep Visuomotor Policies

http://www.youtube.com/watch?v=Q4bMcUk6pcw&t=40
https://arxiv.org/abs/1504.00702
https://arxiv.org/abs/1504.00702


Neural Net Architecture

End-to-End Training of Deep Visuomotor Policies

https://arxiv.org/abs/1504.00702
https://arxiv.org/abs/1504.00702


End-to-End Training of Deep Visuomotor Policies

Vision layers to localize target and end-effector Policy layers with expert supervision

https://arxiv.org/abs/1504.00702
https://arxiv.org/abs/1504.00702


Localize Target and End-effector

Conv3 feature maps

Spatial softmax on 
each feature map

Get coordinates in 
image-space 
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End-to-End Training

Conv3 feature maps

Spatial softmax on 
each feature map

Get coordinates in 
image-space 

Robot Configs (Angle 
of joints, velocity)

Fully Connected 
Layers

Motor Torques

Supervised Learning



Guided Policy Search (Teacher) - 10k feet view

Good trajectory distribution

Dynamics Model

LQR feedback 
controllerReward Function R



GPS Challenges
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GPS Challenges

Good trajectory distribution

Dynamics Model

LQR feedback 
controllerReward Function R

Unknown!

Hand-crafted!

LQR controller - approach similar to value iteration / dynamic programming!



GPS loop



End-to-End Training with GPS

Conv3 feature maps

Spatial softmax on each 
feature map

Get coordinates in 
image-space 

Robot Configs (Angle of 
joints, velocity)

Fully Connected 
Layers

Motor Torques

Supervision



End-to-End Training with GPS
Conv3 feature maps

Spatial softmax on each 
feature map

Get coordinates in 
image-space 

Robot Configs (Angle of 
joints, velocity)

Fully Connected 
Layers

Motor Torques

Supervision
Not covered:

- Fit dynamics using local 
linear models

- LQR constraints to obtain 
good trajectory distributions 
in every iteration

- Feedback from NN policy to 
GPS for improved stability 



Manipulation and Navigation Overview



Manipulation

● Tasks

○ Grasping

○ Pushing

○ Poking

○ Tactile sensing

● Pose invariance

● Hand-eye coordination

Image taken from Supersizing Self-supervision by Pinto et. al., arXiv 2015

https://arxiv.org/pdf/1509.06825v1.pdf
https://arxiv.org/pdf/1509.06825v1.pdf


Navigation

● Self-driving cars

● Flying robots, quadcopters

● Tasks

○ Collision avoidance

○ Navigation in mazes

○ Dynamic environments

○ Reinforcement Learning

Image taken from Waymo

https://waymo.com/ontheroad/
https://waymo.com/ontheroad/


Manipulation



Grasping — Setup

● Robot with arms and camera

● Can control grasp angle and 

position

● No human interaction besides 

placing objects

● Given an image want to be able to 

predict a successful grasping 

configuration

Supersizing Self-supervision by Pinto et. al., arXiv 2015

https://arxiv.org/pdf/1509.06825v1.pdf
https://arxiv.org/pdf/1509.06825v1.pdf


Grasping — Execution

● Use Mixture of Gaussians (MOG) subtraction algorithm to identify objects

● Determine arm placement (next slide) and grasp

● Verify that the grasp was successful using force sensors

Supersizing Self-supervision by Pinto et. al., arXiv 2015

https://arxiv.org/pdf/1509.06825v1.pdf
https://arxiv.org/pdf/1509.06825v1.pdf


Grasping — Execution

● 18-way binary classification problem

● Determine probability of a successful grasp at each angle

● Patches are sampled uniformly from the region of interest

Supersizing Self-supervision by Pinto et. al., arXiv 2015

https://arxiv.org/pdf/1509.06825v1.pdf
https://arxiv.org/pdf/1509.06825v1.pdf


Grasping — Architecture

● First 5 layers pre-trained on ImageNet

Supersizing Self-supervision by Pinto et. al., arXiv 2015

https://arxiv.org/pdf/1509.06825v1.pdf
https://arxiv.org/pdf/1509.06825v1.pdf


Grasping — Results

● Generated dataset for future studies (hint: we’ll see it again soon)
● Over 50K grasp attempts with random, staged, and training-test  splits

Supersizing Self-supervision by Pinto et. al., arXiv 2015

https://arxiv.org/pdf/1509.06825v1.pdf
https://arxiv.org/pdf/1509.06825v1.pdf


Grasping — Demo

Supersizing Self-supervision Video on YouTube by Pinto et. al., arXiv 2015

https://youtu.be/oSqHc0nLkm8
https://youtu.be/oSqHc0nLkm8
http://www.youtube.com/watch?v=oSqHc0nLkm8&t=23


Grasping — Takeaway

● An example of self-supervised robotic system

● DeepNet performs better than similar methods/heuristics

● Not based on reinforcement learning

● Predicts the way an object is grasped entirely based on one image



Poking — Setup

● Given a robot with arms and camera

● Forward problem: given a state and some actions, determine the outcome

● Inverse problem: given 2 states, determine actions to transition between them

● Joint training of forward and inverse models

Learning to Poke by Poking: Experiential Learning of Intuitive Physics by Agrawal et.al., arXiv 2017

https://arxiv.org/pdf/1606.07419.pdf
https://arxiv.org/pdf/1606.07419.pdf


Poking — Architecture

● Siamese CNN; first 5 layers are AlexNet
● The output of inverse model (2 images) is used as an input to the forward one

Learning to Poke by Poking: Experiential Learning of Intuitive Physics by Agrawal et.al., arXiv 2017

https://arxiv.org/pdf/1606.07419.pdf
https://arxiv.org/pdf/1606.07419.pdf


Poking — Results

● Joint model outperforms both the inverse 
and the naive one

Learning to Poke by Poking: Experiential Learning of Intuitive Physics by Agrawal et.al., arXiv 2017

https://arxiv.org/pdf/1606.07419.pdf
https://arxiv.org/pdf/1606.07419.pdf


Poking — Demo

Learning to Poke by Poking Video on YouTube

http://www.youtube.com/watch?v=QxQKI1O2ep0
https://youtu.be/QxQKI1O2ep0
https://youtu.be/QxQKI1O2ep0


Poking — Takeaway

● Practical application of a Siamese network

● Self-supervised robotic system

● Training two complementary models at the same time is beneficial

● Predicts how to move the objects given only 2 images



Learning through Physical Interactions



Question

● Is a picture always enough?

● Can we somehow use physical access to the object?



Key Idea

● Given an image we can predict some physical properties

○ How and where to grasp the object

○ How to move it

○ How hard/soft the object is

● Those are high level features

● Let’s use them to classify images better!

The Curious Robot: Learning Visual Representations via Physical Interactions by Pinto et.al., arXiv 2016

https://arxiv.org/pdf/1604.01360v2.pdf
https://arxiv.org/pdf/1604.01360v2.pdf


Architecture — Bringing It All Together

The Curious Robot: Learning Visual Representations via Physical Interactions by Pinto et.al., arXiv 2016

● Root Net is AlexNet
● Poke Net uses a tactile sensor to predict how hard/soft an object is
● Pose invariance

https://arxiv.org/pdf/1604.01360v2.pdf
https://arxiv.org/pdf/1604.01360v2.pdf


Learning Visual Representations — Results

The Curious Robot: Learning Visual Representations via Physical Interactions by Pinto et.al., arXiv 2016

● Better performance than AlexNet, but not consistently
● Further research into integrating this with vision is needed

https://arxiv.org/pdf/1604.01360v2.pdf
https://arxiv.org/pdf/1604.01360v2.pdf


Navigation and Auxiliary Supervision



Flight Controller — Challenges

● What are they?

Image from Wikipedia

https://en.wikipedia.org/wiki/Quadcopter#/media/File:DJI_Phantom_4_in_Flight_March_2016.jpg
https://en.wikipedia.org/wiki/Quadcopter#/media/File:DJI_Phantom_4_in_Flight_March_2016.jpg


Flight Controller — Challenges

● Real world training is expensive

○ Takes up a lot of time

○ Requires human supervision

○ Limited number of physical robots

○ Collision may be deadly…

● Is there a better way?

Image from Wikipedia

https://en.wikipedia.org/wiki/Quadcopter#/media/File:DJI_Phantom_4_in_Flight_March_2016.jpg
https://en.wikipedia.org/wiki/Quadcopter#/media/File:DJI_Phantom_4_in_Flight_March_2016.jpg


Indoor Flight Controller — Approach

● Train in a simulated environment!
○ Modeled with CAD

● A reinforcement learning problem
● Single image input
● Predict discounted collision 

probability and pick direction with 
the lowest one

(CAD)2RL: Real Single-Image Flight without a Single Real Image by Sadeghi et.al., arXiv 2016

https://arxiv.org/pdf/1611.04201.pdf
https://arxiv.org/pdf/1611.04201.pdf


Indoor Flight Controller — Architecture

● Q-function represented by VGG16

○ Pre-trained on ImageNet

● Output is 41x41 grid

○ Action-space

● Initialize training on the free-space 

prediction task

○ Flying 1 meter forward

Image from Heuritech Blog, 2016

https://blog.heuritech.com/2016/02/29/a-brief-report-of-the-heuritech-deep-learning-meetup-5/
https://blog.heuritech.com/2016/02/29/a-brief-report-of-the-heuritech-deep-learning-meetup-5/


Indoor Flight Controller — Results

● Demonstrates better performance than heuristic algorithms

● Generalizes to work on a real drone

(CAD)2RL: Real Single-Image Flight without a Single Real Image by Sadeghi et.al., arXiv 2016

https://arxiv.org/pdf/1611.04201.pdf
https://arxiv.org/pdf/1611.04201.pdf


Indoor Flight Controller — Demo

(CAD)2RL: Real Single-Image Flight without a Single Real Image Video on YouTube

http://www.youtube.com/watch?v=nXBWmzFrj5s
https://youtu.be/nXBWmzFrj5s
https://youtu.be/nXBWmzFrj5s


Dynamic Maze Navigation

● First-person view
● Related to the problem of indoor navigation
● Landscape may change in the real world
● Rewards are sparse

Learning to Navigate in Complex Environments by Mirowski et.al., ICLR 2017

https://arxiv.org/pdf/1611.03673.pdf
https://arxiv.org/pdf/1611.03673.pdf


Dynamic Maze Navigation — Auxiliary Goals

● Bootstrap reinforcement learning 

with auxiliary tasks

● Depth prediction

● Loop closure prediction

● Use those as tasks as opposed to 

features for better performance

● Depth as a classification problem 

with 4x16 map

Learning to Navigate in Complex Environments by Mirowski et.al., ICLR 2017

https://arxiv.org/pdf/1611.03673.pdf
https://arxiv.org/pdf/1611.03673.pdf


Dynamic Maze Navigation — Architecture

● Stacked LSTM architecture that outputs policy and value function
● Incorporates auxiliary depth and loop closure loss both on the feed-forward 

stage and LSTM stage and compute loss with both

Learning to Navigate in Complex Environments by Mirowski et.al., ICLR 2017

https://arxiv.org/pdf/1611.03673.pdf
https://arxiv.org/pdf/1611.03673.pdf


Dynamic Maze Navigation — Results

● Performs better than humans on static mazes
● Around 70-80% of human performance on dynamic ones
● The model with LSTM depth only performs the best (marginally)

Learning to Navigate in Complex Environments by Mirowski et.al., ICLR 2017

https://arxiv.org/pdf/1611.03673.pdf
https://arxiv.org/pdf/1611.03673.pdf


Dynamic Maze Navigation — Demo

Learning to Navigate in Complex Environments YouTube Video

http://www.youtube.com/watch?v=JL8F82qUG-Q
https://youtu.be/JL8F82qUG-Q
https://youtu.be/JL8F82qUG-Q


Questions? Thank you for your attention!



Reading List

● End to End Learning for Self-Driving Cars by Bojarski et.al.
● A Machine Learning Approach to Visual Perception of Forest Trails for Mobile Robots by Giusti 

et.al.
● A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning by 

Ross et.al.
● Learning Monocular Reactive UAV Control in Cluttered Natural Environments by Ross et.al.
● End-to-End Training of Deep Visuomotor Policies by Levine et.al.
● Supersizing Self-supervision by Pinto et. al.
● Learning to Poke by Poking: Experiential Learning of Intuitive Physics by Agrawal et.al.
● The Curious Robot: Learning Visual Representations via Physical Interactions by Pinto et.al.
● (CAD)2RL: Real Single-Image Flight without a Single Real Image by Sadeghi et.al.
● Learning to Navigate in Complex Environments by Mirowski et.al.

https://arxiv.org/pdf/1604.07316.pdf
https://arxiv.org/pdf/1604.07316.pdf
http://rpg.ifi.uzh.ch/docs/RAL16_Giusti.pdf
http://rpg.ifi.uzh.ch/docs/RAL16_Giusti.pdf
http://rpg.ifi.uzh.ch/docs/RAL16_Giusti.pdf
http://rpg.ifi.uzh.ch/docs/RAL16_Giusti.pdf
https://www.ri.cmu.edu/pub_files/2011/4/Ross-AISTATS11-NoRegret.pdf
https://www.ri.cmu.edu/pub_files/2011/4/Ross-AISTATS11-NoRegret.pdf
https://www.ri.cmu.edu/pub_files/2011/4/Ross-AISTATS11-NoRegret.pdf
https://www.ri.cmu.edu/pub_files/2011/4/Ross-AISTATS11-NoRegret.pdf
https://arxiv.org/pdf/1211.1690.pdf
https://arxiv.org/pdf/1211.1690.pdf
https://arxiv.org/pdf/1504.00702.pdf
https://arxiv.org/pdf/1504.00702.pdf
https://arxiv.org/pdf/1509.06825v1.pdf
https://arxiv.org/pdf/1509.06825v1.pdf
https://arxiv.org/pdf/1606.07419.pdf
https://arxiv.org/pdf/1606.07419.pdf
https://arxiv.org/pdf/1604.01360v2.pdf
https://arxiv.org/pdf/1604.01360v2.pdf
https://arxiv.org/pdf/1611.04201.pdf
https://arxiv.org/pdf/1611.04201.pdf
https://arxiv.org/pdf/1611.03673.pdf
https://arxiv.org/pdf/1611.03673.pdf


Backup Slides



Imitation with LSTMs

Learning real manipulation tasks from virtual demonstrations using LSTM

http://www.youtube.com/watch?v=9vYlIG2ozaM
https://arxiv.org/abs/1603.03833
https://arxiv.org/abs/1603.03833


Imitation with LSTMs

Learning real manipulation tasks from virtual demonstrations using LSTM

https://arxiv.org/abs/1603.03833
https://arxiv.org/abs/1603.03833


Optimal Control

● Obtain “good” trajectories for supervised learning

● Known deterministic system dynamics f



Optimal Control in Discrete Space

● Obtain “good” trajectories under known discrete dynamics f 

● Monte Carlo tree search (MCTS) for Atari
○ Obtain “good” action for a given state under known dynamics

function get_best_action_from_root():

1. Find a suitable leaf node from root

2. Evaluate the leaf using random policy; get reward

3. Update score of all nodes between leaf and root

4. Take action from root leading to highest score



Atari Games by MCTS

● Directly using MCTS to play game

MCTS DQN

Model-based; need access to 
simulator for tree rollouts

Model-free; no information 
about game dynamics; can 
generalize better under POMDP

Choosing action is slow (tree 
expansion)

Choosing action is fast

High scores Lower scores than MCTS



Atari Games by Imitating MCTS

● Imitating optimal control (MCTS) with DAgger

● Replace the human with MCTS
● Train NN policy on pixels using supervision from MCTS at training time
● No MCTS at test time, NN is fast!
● Reduce distribution mismatch by getting on-policy data



GPS loop

● A policy search method that scales to high dimensional policies
○ Contrast with gradient methods like REINFORCE

● GPS details
○ Fit local linear models

○          is stochastic so that we get a trajectory distribution

○ Bound DKL between trajectory distributions at consecutive 
iterations



Optimal Control in Continuous Space

● Obtain “good” trajectories under known continuous dynamics f 

Linear Quadratic 
Regulator (LQR)

r, f



Unknown Dynamics

● Obtain “good” trajectories under unknown continuous dynamics

● Learning the dynamics model using regression
○ Deep nets, GP etc.                               



Imitating Optimal Control 

● GPS obtains “good” trajectories under unknown continuous dynamics  



Imitating Optimal Control 

● GPS obtains “good” trajectories under unknown continuous dynamics  

Adaptive Teacher



GPS in action


