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Qutline

e Learning from Demonstrations

o Imitation Learning

o  Optimal Control and Planning

e Manipulation and Navigation

o Learning using Physical Interactions

o Navigation using Auxiliary Supervision
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Notations

Trajectory Distribution MDP
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RL with Rewards

e Policy gradient, Q-learning depend on frequent rewards
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Sparse Rewards
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e High dimensional policy
o Most random trajectories don’t yield positive reward



Sparse Rewards

e High dimensional policy
o Most random trajectories don’t yield positive reward

e May be expensive to evaluate action on physical system

e Failure may not be an option
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Learning from Demonstrations

Imitation Learning Inverse RL
- Directly copy the expert - Infer the goal of the expert
- Supervised learning - Learn the reward function r
- Learn optimal policy under r

1

This talk!
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Expert Guidance

Prs(T)
e Expert provides trajectories from a good trajectory State
distribution
Prx(T) = arg max £, [r(7)] Time
p(7)

e Learner imitates the trajectories - supervised learning
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Expert Guidance

P (T)
e Expert provides trajectories from a good trajectory State
distribution
Pax(T) = argmax F,[r(7)] Time
p(T)

e |Learner imitates the trajectories - supervised learning

r = {xlaulaanuQ:' .. 7$TauT}

L=—-> . logp(u(z;) = m.(x;)|z;)

e Policy should produce trajectory distribution close to expert’s

Dk L (prs(T)||pre (7)) < €



Expert Guidance

Prs(T)
e Expert provides trajectories from a good trajectory State
distribution
Prx(T) = arg max E,[r(7)] Time
p(T)

e Who's an expert ??

o Clone demonstrations shown by humans
o Machine provides demonstrations
m  Optimal control / planning / trajectory optimization



Imitation Learning for Driving
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End to End Learning for Self-Driving Cars
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Stochastic policy for
predicting steering
wheel angle from
observations


https://arxiv.org/abs/1604.07316
https://arxiv.org/abs/1604.07316

Missing Supervision

P« (T) : On-road trajectories by the expert

DPro (T ) : Trajectories by the autonomous vehicle
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Missing Supervision

P« (T) : On-road trajectories by the expert

DPro (T ) : Trajectories by the autonomous vehicle

Compounding Errors!
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Trajectory Distribution Mismatch

Expert trajectory

Learned Policy
# i
>< orisce ...,
No data on /
how to recover ( {

Image source : hitps://katefvision.github.io


https://katefvision.github.io

A Hacky Solution

Demonstration Augmentation - Include extra supervision in expert trajectories for states that the
policy is likely to visit during test time

MW

Time

State




A Hacky Solution

Recorded
steering
wheel angle | Adjust for shift Desired steering command
and rotation
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End to End Learning for Self-Driving Cars



https://arxiv.org/abs/1604.07316
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Imitation Learning for Driving

End to End Learning for Self-Driving Cars



http://www.youtube.com/watch?v=YuyT2SDcYrU&t=114
https://arxiv.org/abs/1604.07316
https://arxiv.org/abs/1604.07316

A Machine Learning Approach to Visual Perception
of Forest Trails for Mobile Robots

Alessandro Giusti', Jéréme Guzzi!, Dan C. Ciresan', Fang-Lin He', Juan P. Rodriguez!
Flavio Fontana?, Matthias Faessler?, Christian Forster?
Jiirgen Schmidhuber-, Gianni Di Caro’, Davide Scaramuzza®, Luca M. Gambardella’



http://www.youtube.com/watch?v=umRdt3zGgpU&t=97

DAgger

Solving missing supervision or the trajectory distribution mismatch problem using on-policy data

Algorithm:

1. train m(u¢|os) from human data D = {0, uy,...,0n,un}



DAgger

Solving missing supervision or the trajectory distribution mismatch problem using on-policy data
Algorithm:

1. train m(u¢|os) from human data D = {0, uy,...,0n,un}

2. run my(u¢|og) to get dataset D = {01,...,0} ¢ Throw out
the actions!



DAgger

Solving missing supervision or the trajectory distribution mismatch problem using on-policy data
Algorithm:
1. train m(u¢|os) from human data D = {0, uy,...,0n,un}

2. run my(u¢|og) to get dataset D = {01,...,0}
3. Ask human to label D, with actions u;



DAgger

Solving missing supervision or the trajectory distribution mismatch problem using on-policy data

Algorithm:

1. train m(u¢|os) from human data D = {0, uy,...,0n,un}
2. run my(u¢|og) to get dataset D = {01,...,0}

3. Ask human to label D, with actions u;

4. Aggregate: D+ D UD,

DAgger paper



http://www.ri.cmu.edu/pub_files/2011/4/Ross-AISTATS11-NoRegret.pdf
http://www.ri.cmu.edu/pub_files/2011/4/Ross-AISTATS11-NoRegret.pdf

DAgger in Practice

Predict a steering angle, given RGB images from drone camera

Learning Monocular Reactive UAV Control in Cluttered Natural Environments



http://www.youtube.com/watch?v=hNsP6-K3Hn4&t=40
https://arxiv.org/abs/1211.1690
https://arxiv.org/abs/1211.1690

Imitation with Human Expert

Who’s an expert ??

o Clone demonstrations shown by humans
m Unnatural / hard in some cases (e.g. steering angle from images)
m Not scalable - continuous improvements not possible




Imitation with Human Expert

Who's an expert ??

o Clone demonstrations shown by humans
m Unnatural / hard in some cases (e.g. steering angle from images)
m Not scalable - continuous improvements not possible

o Machine provides demonstrations
m Optimal control / planning / trajectory optimization



Imitating Optimal Control

e Expert provides trajectories from a good trajectory distribution

Pre(7) = argmax Ep[r(7)]
p\T

Supervised Learning




Imitating Optimal Control

e Expert provides trajectories from a good trajectory distribution

Pr(7) = argmax By [r(7)]
p\T

Supervised Learning




Imitating Optimal Control

- Learn policies for various robotics tasks using only camera images
- Use Guided Policy Search as expert

End-to-End Training of Deep Visuomotor Policies



https://arxiv.org/abs/1504.00702
https://arxiv.org/abs/1504.00702

Imitating GPS

autonomous execution

End-to-End Training of Deep Visuomotor Policies



http://www.youtube.com/watch?v=Q4bMcUk6pcw&t=40
https://arxiv.org/abs/1504.00702
https://arxiv.org/abs/1504.00702

Neural Net Architecture
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End-to-End Training of Deep Visuomotor Policies



https://arxiv.org/abs/1504.00702
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Vision layers to localize target and end-effector Policy layers with expert supervision
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End-to-End Training of Deep Visuomotor Policies
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Localize Target and End-effector
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Localize Target and End-effector
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End-to-End Training

Conv3 feature maps

!

Spatial softmax on
each feature map

'

Get coordinates in Robot Configs (Angle
image-space of joints, velocity)

L/"
Fully Connected
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ISupervised Learning



Guided Policy Search (Teacher) - 10k feet view

[ Dynamics Model }

|

LQR feedback
controller

[ Reward Function R 1 —> [ 1 —» Good trajectory distribution

DaelT) = a1g m(a§( Ey[r(7)]
DP\T



GPS Challenges

Unknown!

[ Dynamics Model }

Hand-crafted! ‘
Reward Function R | — | LQRTeedback | Good trajectory distribution
controller

Pr(7) = arg max Ep[r(7)
DP\T



GPS Challenges

Unknown!

[ Dynamics Model }

Hand-crafted! ‘
Reward Function R | — | LQRTeedback | Good trajectory distribution
controller

Pr(7) = arg max Ep[r(7)
DP\T

LQR controller - approach similar to value iteration / dynamic programming!



GPS loop
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End-to-End Training with GPS
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End-to-End Training with G
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/Not covered: \

- Fit dynamics using local
linear models

- LQR constraints to obtain
good trajectory distributions
in every iteration

- Feedback from NN policy to

\ GPS for improved stability /




Manipulation and Navigation Overview




Manipulation

e Tasks
o  Grasping
o Pushing
o Poking

o Tactile sensing

e Pose invariance

e Hand-eye coordination

Image taken from Supersizing Self-supervision by Pinto et. al., arXiv 2015



https://arxiv.org/pdf/1509.06825v1.pdf
https://arxiv.org/pdf/1509.06825v1.pdf

Navigation

e Self-driving cars

e Flying robots, quadcopters

e Tasks

o Collision avoidance
o Navigation in mazes

o Dynamic environments

o Reinforcement Learning

Image taken from Waymo



https://waymo.com/ontheroad/
https://waymo.com/ontheroad/

Manipulation




Grasping — Setup

e Robot with arms and camera

e Can control grasp angle and
position

e No human interaction besides
placing objects

e Given an image want to be able to

predict a successful grasping

configuration

Supersizing Self-supervision by Pinto et. al., arXiv 2015



https://arxiv.org/pdf/1509.06825v1.pdf
https://arxiv.org/pdf/1509.06825v1.pdf

Grasping — Execution

A &
3" \ I\ 0/
Approach Execute random  Verify grasp

Query Kinect image Find objects via MOG subtraction ~ random object grasp success

e Use Mixture of Gaussians (MOG) subtraction algorithm to identify objects
e Determine arm placement (next slide) and grasp

e Verify that the grasp was successful using force sensors

Supersizing Self-supervision by Pinto et. al., arXiv 2015
D



https://arxiv.org/pdf/1509.06825v1.pdf
https://arxiv.org/pdf/1509.06825v1.pdf

Grasping — Execution

Sampled patch

e 18-way binary classification problem
e Determine probability of a successful grasp at each angle

e Patches are sampled uniformly from the region of interest

Supersizing Self-supervision by Pinto et. al., arXiv 2015
D



https://arxiv.org/pdf/1509.06825v1.pdf
https://arxiv.org/pdf/1509.06825v1.pdf

Grasping — Architecture

conv conv2 conv3 conv4 convs o
Iszgg(gg%h 9%6@  256@  384@  384@ 256 e o B
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First 5 layers pre-trained on ImageNet Ly = Z Z ;) softmax (A, ;)
'i,: :

Supersizing Self-supervision by Pinto et. al., arXiv 2015



https://arxiv.org/pdf/1509.06825v1.pdf
https://arxiv.org/pdf/1509.06825v1.pdf

Grasping — Results

Novel objects

Random 5K 10K 20K 40K - Random 5K 10K 20K 40K
Heuristic Learning based
Min Eigenvalue Optimistic Deep Net  Deep Net + Multi-stage
. i kKNN SVM
eigenvalue limit param. select (ours) (ours)
Accuracy 0.534 0.599 0.621 0.694  0.733 0.769 0.795

Generated dataset for future studies (hint: we’ll see it again soon)
Over 50K grasp attempts with random, staged, and training-test splits

Supersizing Self-supervision by Pinto et. al., arXiv 2015



https://arxiv.org/pdf/1509.06825v1.pdf
https://arxiv.org/pdf/1509.06825v1.pdf

Grasping — Demo



https://youtu.be/oSqHc0nLkm8
https://youtu.be/oSqHc0nLkm8
http://www.youtube.com/watch?v=oSqHc0nLkm8&t=23

Grasping — Takeaway

e An example of self-supervised robotic system
e DeepNet performs better than similar methods/heuristics
e Not based on reinforcement learning

e Predicts the way an object is grasped entirely based on one image



Poking — Setup

e Given a robot with arms and camera
e Forward problem: given a state and some actions, determine the outcome
e |nverse problem: given 2 states, determine actions to transition between them

e Joint training of forward and inverse models

Learning to Poke by Poking: Experiential Learning of Intuitive Physics by Agrawal et.al., arXiv 2017



https://arxiv.org/pdf/1606.07419.pdf
https://arxiv.org/pdf/1606.07419.pdf

Poklng — Archltecture

action
Pt, 6, Lt

2y
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Predict Pokef| Ré co_nv/

e Siamese CNN; first 5 layers are AlexNet
e The output of inverse model (2 images) is used as an input to the forward one

Ljoz'nt — Lz’nv (uta ﬁta W) . )\Lffwd(xt+la j\jt+1: W)

Learning to Poke by Poking: Experiential Learning of Intuitive Physics by Agrawal et.al., arXiv 2017

[ A N U D
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https://arxiv.org/pdf/1606.07419.pdf

Poking — Results | )

) Pose Error Evaluation
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— _— (c) Simulation experiments
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e Joint model outperforms both the inverse
0.1 0:2 03 0.4 and the naive one

(b) Relative location error for far away goals

Learning to Poke by Poking: Experiential Learning of Intuitive Physics by Agrawal et.al., arXiv 2017



https://arxiv.org/pdf/1606.07419.pdf
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Poking — Demo

Learning to Poke by Poking Video on YouTube



http://www.youtube.com/watch?v=QxQKI1O2ep0
https://youtu.be/QxQKI1O2ep0
https://youtu.be/QxQKI1O2ep0

Poking — Takeaway
e Practical application of a Siamese network
e Self-supervised robotic system
e Training two complementary models at the same time is beneficial

e Predicts how to move the objects given only 2 images



Learning through Physical Interactions




Question

e |s a picture always enough?

e Can we somehow use physical access to the object?



Key Idea

e Given an image we can predict some physical properties

o How and where to grasp the object
o How to move it

o How hard/soft the object is

e Those are high level features

e |et’s use them to classify images better!

The Curious Robot: Learning Visual Representations via Physical Interactions by Pinto et.al., arXiv 2016



https://arxiv.org/pdf/1604.01360v2.pdf
https://arxiv.org/pdf/1604.01360v2.pdf

Architecture — Bringing It All Together

gr_convl gr_fc3

[] Root Net [ GraspNet —  =29¢ gr_fecl ;:8 @l
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A7
puEfcz

EEEEEEEEE

Root Net is AlexNet
Poke Net uses a tactile sensor to predict how hard/soft an object is
Pose invariance

The Curious Robot: Learning Visual Representations via Physical Interactions by Pinto et.al., arXiv 2016



https://arxiv.org/pdf/1604.01360v2.pdf
https://arxiv.org/pdf/1604.01360v2.pdf

Learning Visual Representations — Results

Household UW RGBD Caltech-256

Root network with random init. 0.250 0.468 0.242
| Root network trained on robot tasks (ours) 0.354 0.693 0.317|
AlexNet trained on ImageNet 0.625 0.820 0.656
Root network trained on identity data 0.315 0.660 0.252
Auto-encoder trained on all robot data 0.296 0.657 0.280

e Better performance than AlexNet, but not consistently

e F[urther research into integrating this with vision is needed

The Curious Robot: Learning Visual Representations via Physical Interactions by Pinto et.al., arXiv 2016



https://arxiv.org/pdf/1604.01360v2.pdf
https://arxiv.org/pdf/1604.01360v2.pdf

Navigation and Auxiliary Supervision




Flight Controller — Challenges

e What are they?

Image from Wikipedia



https://en.wikipedia.org/wiki/Quadcopter#/media/File:DJI_Phantom_4_in_Flight_March_2016.jpg
https://en.wikipedia.org/wiki/Quadcopter#/media/File:DJI_Phantom_4_in_Flight_March_2016.jpg

Flight Controller — Challenges

e Real world training is expensive
o Takes up a lot of time
o Requires human supervision
o  Limited number of physical robots

o  Collision may be deadly...

e Isthere a better way?

Image from Wikipedia



https://en.wikipedia.org/wiki/Quadcopter#/media/File:DJI_Phantom_4_in_Flight_March_2016.jpg
https://en.wikipedia.org/wiki/Quadcopter#/media/File:DJI_Phantom_4_in_Flight_March_2016.jpg

Indoor Flight Controller — Approach

e Trainin a simulated environment!
o Modeled with CAD

e A reinforcement learning problem

e Single image input

e Predict discounted collision
probability and pick direction with
the lowest one

t+H
P(C|L;,a4) = Z ’ys_tP(cs|Is,as)

s=t

(CAD)2RL: Real Single-Image Flight without a Single Real Image by Sadeghi et.al., arXiv 2016



https://arxiv.org/pdf/1611.04201.pdf
https://arxiv.org/pdf/1611.04201.pdf

Indoor Flight Controller — Architecture

e Q-function represented by VGG16
o Pre-trained on ImageNet

e Outputis 41x41 grid

224 x224x3 224x224x64

112 x[112x 128

o Action-space
e _ ! a0/,
e Initialize training on the free-space (e x Lxdoon_1x1 x1000

prediction task

@ convolution+ReLU
@ max pooling
= fully connected+ReLU

o  Flying 1 meter forward ) softmax

Image from Heuritech Blog, 2016



https://blog.heuritech.com/2016/02/29/a-brief-report-of-the-heuritech-deep-learning-meetup-5/
https://blog.heuritech.com/2016/02/29/a-brief-report-of-the-heuritech-deep-learning-meetup-5/

Indoor Fllght Controller — Results

1.0
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= —_—
3
S o2
1 L L L
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e Demonstrates better performance than heuristic algorithms

e Generalizes to work on a real drone

(CAD)2RL: Real Single-Image Flight without a Single Real Image by Sadeghi et.al., arXiv 2016



https://arxiv.org/pdf/1611.04201.pdf
https://arxiv.org/pdf/1611.04201.pdf

Indoor Flight Controller — Demo

(CAD)2RL: Real Single-Image Flight without a Single Real Image Video on YouTube



http://www.youtube.com/watch?v=nXBWmzFrj5s
https://youtu.be/nXBWmzFrj5s
https://youtu.be/nXBWmzFrj5s

Dynamic Maze Navigation

First-person view

Related to the problem of indoor navigation
Landscape may change in the real world
Rewards are sparse

Learning to Navigate in Complex Environments by Mirowski et.al., ICLR 2017



https://arxiv.org/pdf/1611.03673.pdf
https://arxiv.org/pdf/1611.03673.pdf

Dynamic Maze Navigation — Auxiliary Goals

e Bootstrap reinforcement learning

with auxiliary tasks

e Depth prediction

e Loop closure prediction

e Use those as tasks as opposed to

features for better performance

e Depth as a classification problem

with 4x16 map

Learning to Navigate in Complex Environments by Mirowski et.al., ICLR 2017
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Dynamic Maze Navigation — Architecture

14 14 v,

oop Depth
v i \/ " g 0) ~0,)
T
gé‘ .
Depth
C ®,) C
\
—! I
enc enc enc enc
Xt Xt xt rt—l {vt’ at-l} Xt rt—l {vt’ at—l}

a. FF A3C b. LSTM A3C ¢. Nav A3C d. Nav A3C +DD,L

e Stacked LSTM architecture that outputs policy and value function
e Incorporates auxiliary depth and loop closure loss both on the feed-forward
stage and LSTM stage and compute loss with both

Learning to Navigate in Complex Environments by Mirowski et.al., ICLR 2017
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Dynamic Maze Navigation — Results
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() Static maze (small) (d) Random Goal maze (small)

e Performs better than humans on static mazes
e Around 70-80% of human performance on dynamic ones
e The model with LSTM depth only performs the best (marginally)

Learning to Navigate in Complex Environments by Mirowski et.al., ICLR 2017
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Dynamic Maze Navigation — Demo

Large static maze

Learning to Navigate in Complex Environments YouTube Video



http://www.youtube.com/watch?v=JL8F82qUG-Q
https://youtu.be/JL8F82qUG-Q
https://youtu.be/JL8F82qUG-Q

QueStlonS? Thank you for your attention!
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Imitation with LSTMs

Learning real manipulation tasks from virtual demonstrations using LSTM



http://www.youtube.com/watch?v=9vYlIG2ozaM
https://arxiv.org/abs/1603.03833
https://arxiv.org/abs/1603.03833

Imitation with LSTMs

e

LSTM
Nt
=)

Training the LSTM-MDN network unrolled through time

et+‘1 2 q‘t+1

it | Crz 1+50
Megative log Negative log Megative log
likelihood cost likelihood cost likelihood cost
| Softmax | | Exp | | Softmax | | Exp | | Softmax | | Exp
P T~ i~
Mixture density Mixture density Mixture density
parameters parameters parameters

Multivariate Mixture draw a sample

of Gaussians

I e'cc-‘1
Mixture density
parameters
Inverse
kinematics

LSTM-MDN netwaork performing the task in a closed loop

Learning real manipulation tasks from virtual demonstrations using LSTM
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Optimal Control

e Obtain “good” trajectories for supervised learning

e Known deterministic system dynamics f

Lt41 = f(il?ta Ut)

X2

> ,—-—-—-—-—.\ ;
P(xe41[xe, uy) \/w |
system dynamics



Optimal Control in Discrete Space

e Obtain “good” trajectories under known discrete dynamics f

max E,[r(7)]
p(T)

e Monte Carlo tree search (MCTS) for Atari
o  Obtain “good” action for a given state under known dynamics

function get _best action _from_root(): R
1. Find a suitable leaf node from root
2. Evaluate the leaf using random policy; get reward 7 S, ‘”\\/

3. Update score of all nodes between leaf and root

w(a|st)
TF(Gf| Sf)
(ae|st)
7(at|st)

4. Take action from root leading to highest score



Atari Games by MCTS

Directly using MCTS to play game

MCTS

DQN

Model-based; need access to
simulator for tree rollouts

Model-free; no information
about game dynamics; can
generalize better under POMDP

Choosing action is slow (tree
expansion)

Choosing action is fast

High scores

Lower scores than MCTS




Atari Games by Imitating MCTS

Imitating optimal control (MCTS) with DAgger
Deep Learning for Real-Time Atari Game Play
Using Offline Monte-Carlo Tree Search Planning

1. train mp(ut|os) from human data D = {o1,uy,...,0n,unx}
2. run mp(ug|og) to get dataset D, = {o1,...,0n7} bt el

Computer Science and Eng. Computer Science and Eng.
. . University of Michigan University of Michigan
3. Ask human to label D, with actions u, guoxiao@umich.edu bave ja@unich.edu
4. Aggregate: D + DUD;, Honglak Lee Richard Lewis Xiaoshi Wang
Computer Science and Eng. Department of Psychology Computer Science and Eng.
University of Michigan University of Michigan University of Michigan
honglak@umich.edu rickl@umich.edu xiaoshiw@umich.edu

Replace the human with MCTS

Train NN policy on pixels using supervision from MCTS at training time
No MCTS at test time, NN is fast!

Reduce distribution mismatch by getting on-policy data

Dg 1 (prx(7)||pro (1)) < €



GPS loop

e A policy search method that scales to high dimensional policies
o Contrast with gradient methods like REINFORCE

|
e GPS details [ et Dynarmies }
o Fitlocal linear models
o p(T) is stochastic so that we get a trajectory distribution l 2

LOR Trajectory
o Bound D, between trajectory distributions at consecutive A Database

iterations %

| p(7)

Run p(7) on
real robot




Optimal Control in Continuous Space

e Obtain “good” trajectories under known continuous dynamics f

mae Hplr p[r(7)]

N

max Z rizs, wy) S8 e = Flopu)
wy Uz —1

p(7)
rnf — Linear Quadratic
— Regulator (LQR)




Unknown Dynamics

e Obtain “good” trajectories under unknown continuous dynamics

e Learning the dynamics model using regression Zz ||f('Tu Ua:) = T; ‘ |2
o Deep nets, GP etc.

l rf
Trajectory
Database
| (7

Run p(7) on
real robot




Imitating Optimal Control

e GPS obtains “good” trajectories under unknown continuous dynamics

ir,f

Supervised learning for i,
—
Widden lnyer
N

™,
Trajectory
Database
oy
ol

Run p(7) on
real robot




Imitating Optimal Control

e GPS obtains “good” trajectories under unknown continuous dynamics

lr.f

Supervised learning for m,
Fit Dynamics { ) 1

Trajectory
h Y :
l D (T) \h o

Run p(7) on

real robot

Adaptive Teacher



GPS in action

| controllers p;

End-to-End Training of Deep Visuomotor Policies

Sergey Levine!
Chelsea Finn'
Trevor Darrell
Pieter Abbeel

| collect samples
from p;

(train global
policy 7 to match
local controllers p;

optimize local

SVLEVINE@QEECS.BERKELEY.EDU
CBFINN@EECS.BERKELEY.EDU
TREVOR@EECS.BERKELEY.EDU
PABBEEL@EECS.BERKELEY.EDU




