Deep Learning for Manipulation and Navigation

Andrey Zaytsev and Tanmay Gangwani

Outline

- Learning from Demonstrations
 - Imitation Learning
 - Optimal Control and Planning

- Manipulation and Navigation
 - Learning using Physical Interactions
 - Navigation using Auxiliary Supervision

Notations

Trajectory

 $\tau = \{x_1, u_1, x_2, u_2, \dots, x_T, u_T\}$

Notations

Trajectory Distribution

 $p(\tau) = p(x_1, u_1, x_2, u_2, \dots, x_T, u_T)$

A few samples from the distribution

Notations

Trajectory Distribution

State

$$p(\tau) = p(x_1, u_1, x_2, u_2, \dots, x_T, u_T)$$

MDP

$$p(\tau) = p(x_1) \prod_{t=1}^{T} \pi_{\theta}(u_t|x_t) p(x_{t+1}|x_t, u_t)$$

RL with Rewards

Policy gradient, Q-learning depend on frequent rewards

$$\nabla_{\theta} J(\theta) = \sum_{s \in \mathcal{S}} d(s) \sum_{a \in \mathcal{A}} \pi_{\theta}(s, a) \nabla_{\theta} \log \pi_{\theta}(s, a) \mathcal{R}_{s, a}$$
$$= \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) r \right]$$

RL with Rewards

Policy gradient, Q-learning depend on frequent rewards

$$\nabla_{\theta} J(\theta) = \sum_{s \in \mathcal{S}} d(s) \sum_{a \in \mathcal{A}} \pi_{\theta}(s, a) \nabla_{\theta} \log \pi_{\theta}(s, a) \mathcal{R}_{s, a}$$
$$= \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) r \right]$$

Rollouts, random initially!

- High dimensional policy
 - Most random trajectories don't yield positive reward

- High dimensional policy
 - Most random trajectories don't yield positive reward
- May be expensive to evaluate action on physical system
- Failure may not be an option

- High dimensional policy
 - Most random trajectories don't yield
- May be expensive to evaluate action on ph
- Failure may not be an option

Use an expert (teacher) to guide the learning process!

Learning from demonstrations!

Learning from Demonstrations

Imitation Learning

- Directly copy the expert
- Supervised learning

This talk!

Inverse RL

- Infer the goal of the expert
- Learn the reward function *r*
- Learn optimal policy under r

Expert provides trajectories from a good trajectory distribution

$$p_{\pi*}(\tau) = \arg\max_{p(\tau)} E_p[r(\tau)]$$

Expert provides trajectories from a good trajectory distribution

$$p_{\pi*}(\tau) = \arg\max_{p(\tau)} E_p[r(\tau)]$$

$$\tau = \{x_1, u_1, x_2, u_2, \dots, x_T, u_T\}$$

$$L = -\sum_{i} \log p(\mathbf{u}(x_i) = \pi_*(x_i)|x_i)$$

Expert provides trajectories from a good trajectory distribution

$$p_{\pi*}(\tau) = \arg\max_{p(\tau)} E_p[r(\tau)]$$

Learner imitates the trajectories - supervised learning

$$\tau = \{x_1, u_1, x_2, u_2, \dots, x_T, u_T\}$$

$$L = -\sum_{i} \log p(\mathbf{u}(x_i) = \pi_*(x_i)|x_i)$$

Policy should produce trajectory distribution close to expert's

$$D_{KL}(p_{\pi*}(\tau)||p_{\pi_{\theta}}(\tau)) < \epsilon$$

Expert provides trajectories from a good trajectory distribution

$$p_{\pi*}(\tau) = \arg\max_{p(\tau)} E_p[r(\tau)]$$

- Who's an expert ??
 - Clone demonstrations shown by humans
 - Machine provides demonstrations
 - Optimal control / planning / trajectory optimization

Imitation Learning for Driving

Stochastic policy for predicting steering wheel angle from observations

Missing Supervision

 $p_{\pi*}(au)$: On-road trajectories by the expert

 $p_{\pi_{\theta}}(au)$: Trajectories by the autonomous vehicle

Missing Supervision

 $p_{\pi*}(au)$: On-road trajectories by the expert

 $p_{\pi_{\theta}}(au)$: Trajectories by the autonomous vehicle

Missing Supervision

 $p_{\pi*}(au)$: On-road trajectories by the expert

 $p_{\pi_{ heta}}(au)$: Trajectories by the autonomous vehicle

Trajectory Distribution Mismatch

$$p_{\pi*}(\tau) \neq p_{\pi_{\theta}}(\tau)$$

Image source : https://katefvision.github.io

A Hacky Solution

Demonstration Augmentation - Include extra supervision in expert trajectories for states that the policy is likely to visit during test time

A Hacky Solution

Labelled data from left and right camera to recover from mistakes

Imitation Learning for Driving

End to End Learning for Self-Driving Cars

A Machine Learning Approach to Visual Perception of Forest Trails for Mobile Robots

Alessandro Giusti¹, Jérôme Guzzi¹, Dan C. Cireşan¹, Fang-Lin He¹, Juan P. Rodríguez¹ Flavio Fontana², Matthias Faessler², Christian Forster² Jürgen Schmidhuber¹, Gianni Di Caro¹, Davide Scaramuzza², Luca M. Gambardella¹

Solving missing supervision or the trajectory distribution mismatch problem using on-policy data

1. train
$$\pi_{\theta}(\mathbf{u}_t|\mathbf{o}_t)$$
 from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{u}_1, \dots, \mathbf{o}_N, \mathbf{u}_N\}$

Solving missing supervision or the trajectory distribution mismatch problem using on-policy data

- 1. train $\pi_{\theta}(\mathbf{u}_t|\mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{u}_1, \dots, \mathbf{o}_N, \mathbf{u}_N\}$
- 2. run $\pi_{\theta}(\mathbf{u}_t|\mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$ Throw out the actions!

Solving missing supervision or the trajectory distribution mismatch problem using on-policy data

- 1. train $\pi_{\theta}(\mathbf{u}_t|\mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{u}_1, \dots, \mathbf{o}_N, \mathbf{u}_N\}$
- 2. run $\pi_{\theta}(\mathbf{u}_t|\mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$
- 3. Ask human to label \mathcal{D}_{π} with actions \mathbf{u}_t

Solving missing supervision or the trajectory distribution mismatch problem using on-policy data

- 1. train $\pi_{\theta}(\mathbf{u}_t|\mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{u}_1, \dots, \mathbf{o}_N, \mathbf{u}_N\}$
- 2. run $\pi_{\theta}(\mathbf{u}_t|\mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$
- 3. Ask human to label \mathcal{D}_{π} with actions \mathbf{u}_t
- 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

DAgger in Practice

Predict a steering angle, given RGB images from drone camera

Learning Monocular Reactive UAV Control in Cluttered Natural Environments

Imitation with Human Expert

Who's an expert ??

- Clone demonstrations shown by humans
 - Unnatural / hard in some cases (e.g. steering angle from images)
 - Not scalable continuous improvements not possible

Imitation with Human Expert

Who's an expert ??

- Clone demonstrations shown by humans
 - Unnatural / hard in some cases (e.g. steering angle from images)
 - Not scalable continuous improvements not possible
- Machine provides demonstrations
 - Optimal control / planning / trajectory optimization

Imitating Optimal Control

Expert provides trajectories from a **good** trajectory distribution

$$p_{\pi*}(\tau) = \arg\max_{p(\tau)} E_p[r(\tau)]$$

Supervised Learning

$$\pi_{ heta}(\mathbf{u}_t|\mathbf{o}_t)$$

Imitating Optimal Control

Expert provides trajectories from a good trajectory distribution

$$p_{\pi*}(\tau) = \arg\max_{p(\tau)} E_p[r(\tau)]$$

Supervised Learning

Imitating Optimal Control

- Learn policies for various robotics tasks using only camera images
- Use Guided Policy Search as expert

Imitating GPS

End-to-End Training of Deep Visuomotor Policies

Neural Net Architecture

End-to-End Training of Deep Visuomotor Policies

Vision layers to localize target and end-effector

Policy layers with expert supervision

End-to-End Training of Deep Visuomotor Policies

Localize Target and End-effector

Localize Target and End-effector

End-to-End Training

Guided Policy Search (Teacher) - 10k feet view

GPS Challenges

GPS Challenges

LQR controller - approach similar to value iteration / dynamic programming!

GPS loop

End-to-End Training with GPS

End-to-End Training with GPS

Manipulation and Navigation Overview

Manipulation

- Tasks
 - Grasping
 - Pushing
 - Poking
 - Tactile sensing
- Pose invariance
- Hand-eye coordination

Navigation

- Self-driving cars
- Flying robots, quadcopters

- Tasks
 - Collision avoidance
 - Navigation in mazes
 - Dynamic environments
 - Reinforcement Learning

Manipulation

Grasping — Setup

- Robot with arms and camera
- Can control grasp angle and position
- No human interaction besides placing objects
- Given an image want to be able to predict a successful grasping configuration

Grasping — Execution

- Use Mixture of Gaussians (MOG) subtraction algorithm to identify objects
- Determine arm placement (next slide) and grasp
- Verify that the grasp was successful using force sensors

Grasping — Execution

- 18-way binary classification problem
- Determine probability of a successful grasp at each angle
- Patches are sampled uniformly from the region of interest

Grasping — Architecture

First 5 layers pre-trained on ImageNet

$$L_B = \sum_{i=1}^{B} \sum_{j=1}^{N=18} \delta(j, \theta_i) \cdot \operatorname{softmax}(A_{ji}, l_i)$$

Grasping — Results

	Heuristic			Learning based			
	Min	Eigenvalue	Optimistic	1-NINI	SVM	Deep Net	Deep Net + Multi-stage
	eigenvalue	limit	param. select	kNN	2 A IM	(ours)	(ours)
Accuracy	0.534	0.599	0.621	0.694	0.733	0.769	0.795

Seen objects

0.872

10K

20K

Random

5K

- Generated dataset for future studies (hint: we'll see it again soon)
- Over 50K grasp attempts with random, staged, and training-test splits

Grasping — Demo

Supersizing Self-supervision Video on YouTube by Pinto et. al., arXiv 2015

Grasping — Takeaway

- An example of self-supervised robotic system
- DeepNet performs better than similar methods/heuristics
- Not based on reinforcement learning
- Predicts the way an object is grasped entirely based on one image

Poking — Setup

- Given a robot with arms and camera
- Forward problem: given a state and some actions, determine the outcome
- Inverse problem: given 2 states, determine actions to transition between them
- Joint training of forward and inverse models

Poking — Architecture

- Siamese CNN; first 5 layers are AlexNet
- The output of inverse model (2 images) is used as an input to the forward one

$$L_{joint} = L_{inv}(u_t, \hat{u}_t, W) + \lambda L_{fwd}(x_{t+1}, \hat{x}_{t+1}, W)$$

Learning to Poke by Poking: Experiential Learning of Intuitive Physics by Agrawal et.al., arXiv 2017

Poking — Results

 Joint model outperforms both the inverse and the naive one

Poking — Demo

Learning to Poke by Poking Video on YouTube

Poking — Takeaway

- Practical application of a Siamese network
- Self-supervised robotic system
- Training two complementary models at the same time is beneficial
- Predicts how to move the objects given only 2 images

Learning through Physical Interactions

Question

- Is a picture always enough?
- Can we somehow use physical access to the object?

Key Idea

- Given an image we can predict some physical properties
 - How and where to grasp the object
 - How to move it
 - How hard/soft the object is
- Those are high level features
- Let's use them to classify images better!

Architecture — Bringing It All Together

- Root Net is AlexNet.
- Poke Net uses a tactile sensor to predict how hard/soft an object is
- Pose invariance

Learning Visual Representations — Results

	Household	UW RGBD	Caltech-256
Root network with random init.	0.250	0.468	0.242
Root network trained on robot tasks (ours)	0.354	0.693	0.317
AlexNet trained on ImageNet	0.625	0.820	0.656
Root network trained on identity data	0.315	0.660	0.252
Auto-encoder trained on all robot data	0.296	0.657	0.280

- Better performance than AlexNet, but not consistently
- Further research into integrating this with vision is needed

Navigation and Auxiliary Supervision

Flight Controller — Challenges

• What are they?

Flight Controller — Challenges

- Real world training is expensive
 - Takes up a lot of time
 - Requires human supervision
 - Limited number of physical robots
 - Collision may be deadly...
- Is there a better way?

Indoor Flight Controller — Approach

- Train in a simulated environment!
 - Modeled with CAD
- A reinforcement learning problem
- Single image input
- Predict discounted collision probability and pick direction with the lowest one

$$P(C|\mathbf{I}_t, a_t) = \sum_{s=t}^{t+H} \gamma^{s-t} P(c_s|\mathbf{I}_s, a_s)$$

Indoor Flight Controller — Architecture

- Q-function represented by VGG16
 - Pre-trained on ImageNet
- Output is 41x41 grid
 - Action-space
- Initialize training on the free-space prediction task
 - Flying 1 meter forward

Indoor Flight Controller — Results

- Demonstrates better performance than heuristic algorithms
- Generalizes to work on a real drone

Indoor Flight Controller — Demo

(CAD)2RL: Real Single-Image Flight without a Single Real Image Video on YouTube

Dynamic Maze Navigation

- First-person view
- Related to the problem of indoor navigation
- Landscape may change in the real world
- Rewards are sparse

Dynamic Maze Navigation — Auxiliary Goals

- Bootstrap reinforcement learning with auxiliary tasks
- Depth prediction
- Loop closure prediction
- Use those as tasks as opposed to features for better performance
- Depth as a classification problem with 4x16 map

Dynamic Maze Navigation — Architecture

- Stacked LSTM architecture that outputs policy and value function
- Incorporates auxiliary depth and loop closure loss both on the feed-forward stage and LSTM stage and compute loss with both

Dynamic Maze Navigation — Results

- Performs better than humans on static mazes
- Around 70-80% of human performance on dynamic ones
- The model with LSTM depth only performs the best (marginally)

Learning to Navigate in Complex Environments by Mirowski et.al., ICLR 2017

Dynamic Maze Navigation — Demo

Questions?

Thank you for your attention!

Reading List

- End to End Learning for Self-Driving Cars by Bojarski et.al.
- A Machine Learning Approach to Visual Perception of Forest Trails for Mobile Robots by Giusti et.al.
- A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning by Ross et.al.
- Learning Monocular Reactive UAV Control in Cluttered Natural Environments by Ross et.al.
- End-to-End Training of Deep Visuomotor Policies by Levine et.al.
- Supersizing Self-supervision by Pinto et. al.
- Learning to Poke by Poking: Experiential Learning of Intuitive Physics by Agrawal et.al.
- The Curious Robot: Learning Visual Representations via Physical Interactions by Pinto et.al.
- (CAD)2RL: Real Single-Image Flight without a Single Real Image by Sadeghi et.al.
- Learning to Navigate in Complex Environments by Mirowski et.al.

Backup Slides

Imitation with LSTMs

Learning real manipulation tasks from virtual demonstrations using LSTM

Imitation with LSTMs

Optimal Control

- Obtain "good" trajectories for supervised learning
- Known deterministic system dynamics f

$$x_{t+1} = f(x_t, u_t)$$

Optimal Control in Discrete Space

Obtain "good" trajectories under known discrete dynamics f

$$\max_{p(\tau)} E_p[r(\tau)]$$

- Monte Carlo tree search (MCTS) for Atari
 - Obtain "good" action for a given state under known dynamics

function get_best_action_from_root():

- 1. Find a suitable leaf node from root
- 2. Evaluate the leaf using random policy; get reward
- 3. Update score of all nodes between leaf and root
- 4. Take action from root leading to highest score

Atari Games by MCTS

• Directly using MCTS to play game

MCTS	DQN
Model-based; need access to simulator for tree rollouts	Model-free; no information about game dynamics; can generalize better under POMDP
Choosing action is slow (tree expansion)	Choosing action is fast
High scores	Lower scores than MCTS

Atari Games by Imitating MCTS

Imitating optimal control (MCTS) with DAgger

- 1. train $\pi_{\theta}(\mathbf{u}_t|\mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{u}_1, \dots, \mathbf{o}_N, \mathbf{u}_N\}$
- 2. run $\pi_{\theta}(\mathbf{u}_t|\mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$
- 3. Ask human to label \mathcal{D}_{π} with actions \mathbf{u}_t
- 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

Deep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Search Planning

Xiaoxiao Guo

Computer Science and Eng. University of Michigan guoxiao@umich.edu

Satinder Singh

Computer Science and Eng. University of Michigan baveja@umich.edu

Honglak Lee

Computer Science and Eng. University of Michigan honglak@umich.edu

Richard Lewis

Department of Psychology University of Michigan rickl@umich.edu

Xiaoshi Wang

Computer Science and Eng. University of Michigan xiaoshiw@umich.edu

- Replace the human with MCTS
- Train NN policy on pixels using supervision from MCTS at training time
- No MCTS at test time, NN is fast!
- Reduce distribution mismatch by getting on-policy data

$$D_{KL}(p_{\pi*}(\tau)||p_{\pi_{\theta}}(\tau)) < \epsilon$$

GPS loop

- A policy search method that scales to high dimensional policies
 - Contrast with gradient methods like REINFORCE
- GPS details
 - Fit local linear models
 - \circ p(au) is stochastic so that we get a trajectory distribution
 - Bound D_{KL} between trajectory distributions at consecutive iterations

Optimal Control in Continuous Space

Obtain "good" trajectories under known continuous dynamics f

$$\max_{p(\tau)} E_p[r(\tau)]$$

$$\max_{u_1, u_2, \dots u_T} \sum_{t=1}^{T} r(x_t, u_t) \quad \text{s.t.} \quad x_{t+1} = f(x_t, u_t)$$

Unknown Dynamics

- Obtain "good" trajectories under unknown continuous dynamics
- Learning the dynamics model using regression $\sum_i ||f(x_i,u_i) x_i'||^2$ \circ Deep nets, GP etc.

Imitating Optimal Control

GPS obtains "good" trajectories under unknown continuous dynamics

Imitating Optimal Control

GPS obtains "good" trajectories under unknown continuous dynamics

GPS in action

End-to-End Training of Deep Visuomotor Policies

Sergey Levine[†] Chelsea Finn[†] Trevor Darrell Pieter Abbeel SVLEVINE@EECS.BERKELEY.EDU
CBFINN@EECS.BERKELEY.EDU
TREVOR@EECS.BERKELEY.EDU
PABBEEL@EECS.BERKELEY.EDU

