
Recurrent Neural Network
Architectures

Abhishek Narwekar, Anusri Pampari

CS 598: Deep Learning and Recognition, Fall 2016

Lecture Outline

1. Introduction

2. Learning Long Term Dependencies

3. Regularization

4. Visualization for RNNs

Section 1: Introduction

Applications of RNNs

Image Captioning [reference]

.. and Trump [reference]

Write like Shakespeare [reference]

… and more!

https://arxiv.org/pdf/1411.4555.pdf
https://twitter.com/deepdrumpf?lang=en
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Applications of RNNs

Technically, an RNN models sequences

Time series

Natural Language, Speech

We can even convert non-sequences to sequences, eg: feed an
image as a sequence of pixels!

Applications of RNNs

RNN Generated TED Talks

YouTube Link

RNN Generated Eminem rapper

RNN Shady

RNN Generated Music

Music Link

https://youtu.be/-OodHtJ1saY?t=31s
https://soundcloud.com/mrchrisjohnson/recurrent-neural-shady
http://www.hexahedria.com/2015/08/03/composing-music-with-recurrent-neural-networks/

Why RNNs?

Can model sequences having variable length

Efficient: Weights shared across time-steps

They work!

SOTA in several speech, NLP tasks

The Recurrent Neuron

next time step

Source: Slides by Arun

● xt: Input at time t
● ht-1: State at time t-1

http://slazebni.cs.illinois.edu/spring17/lec02_rnn.pdf

Unfolding an RNN

Weights shared over time!

Source: Slides by Arun

http://slazebni.cs.illinois.edu/spring17/lec02_rnn.pdf

Making Feedforward Neural Networks Deep

Source: http://www.opennn.net/images/deep_neural_network.png

Option 1: Feedforward Depth (df)

Feedforward depth: longest path

between an input and output at the

same timestep

Feedforward depth = 4

High level feature!Notation: h0,1⇒ time step 0, neuron #1

Option 2: Recurrent Depth (dr)

● Recurrent depth: Longest path

between same hidden state in

successive timesteps

Recurrent depth = 3

Backpropagation Through Time (BPTT)
Objective is to update the weight

matrix:

Issue: W occurs each timestep

Every path from W to L is one

dependency

Find all paths from W to L!(note: dropping subscript h from Wh for brevity)

Systematically Finding All Paths

How many paths exist from W to
L through L1?

Just 1. Originating at h0.

Systematically Finding All Paths

How many paths from W to
L through L2?

2. Originating at h0 and h1.

Systematically Finding All Paths
And 3 in this case.

The gradient has two
summations:
1: Over Lj

2: Over hk

Origin of path = basis for Σ

To skip proof, click here.

Backpropagation as two summations

First summation over L

Backpropagation as two summations
● Second summation over h:

Each Lj depends on the weight
matrices before it

Lj depends on all hk

before it.

Backpropagation as two summations

● No explicit of Lj on hk

● Use chain rule to fill missing steps

j

k

Backpropagation as two summations

● No explicit of Lj on hk

● Use chain rule to fill missing steps

j

k

The Jacobian

Indirect dependency. One final use of

the chain rule gives:

“The Jacobian”

j

k

The Final Backpropagation Equation

Backpropagation as two summations

j

k

● Often, to reduce memory requirement,

we truncate the network

● Inner summation runs from j-p to j for

some p ==> truncated BPTT

Expanding the Jacobian

The Issue with the Jacobian

Repeated matrix multiplications leads to vanishing and exploding gradients.

How? Let’s take a slight detour.

Weight Matrix Derivative of activation function

Eigenvalues and Stability
Consider identity activation function

If Recurrent Matrix Wh is a diagonalizable:

Computing powers of Wh is simple:

Bengio et al, "On the difficulty of training recurrent neural networks." (2012)

Q matrix composed of

eigenvectors of Wh

Λ is a diagonal matrix with

eigenvalues placed on the

diagonals

Eigenvalues and stability
Vanishing gradients

Exploding gradients

All Eigenvalues < 1 Eigenvalues > 1

Blog on “Explaining and illustrating orthogonal initialization for recurrent neural network”

2. Learning Long Term Dependencies

Outline
Vanishing/Exploding Gradients in RNN

Weight
Initialization

Methods

Constant Error
Carousel

Hessian Free
Optimization

Echo State
Networks

● Identity-RNN
● np-RNN

● LSTM
● GRU

Outline
Vanishing/Exploding Gradients in RNN

Weight
Initialization

Methods

Constant Error
Carousel

Hessian Free
Optimization

Echo State
Networks

● Identity-RNN
● np-RNN

● LSTM

● GRU

Weight Initialization Methods

Activation function : ReLU

Bengio et al,. "On the difficulty of training recurrent neural networks." (2012)

Weight Initialization Methods

Random Wh initialization of RNN has no constraint on eigenvalues

⇒ vanishing or exploding gradients in the initial epoch

Weight Initialization Methods

Careful initialization of Wh with suitable eigenvalues

⇒ allows the RNN to learn in the initial epochs

⇒ hence can generalize well for further iterations

Weight Initialization Trick #1: IRNN

● Wh initialized to Identity

● Activation function: ReLU

Geoffrey et al, “A Simple Way to Initialize Recurrent Networks of Rectified Linear Units”

Weight Initialization Trick #2: np-RNN
● Wh positive definite (+ve real eigenvalues)

● At least one eigenvalue is 1, others all less than equal to one

● Activation function: ReLU

Geoffrey et al, “Improving Performance of Recurrent Neural Network with ReLU nonlinearity””

np-RNN vs IRNN

Geoffrey et al, “Improving Perfomance of Recurrent Neural Network with ReLU nonlinearity””

RNN Type Accuracy Test Parameter

Complexity

Compared to RNN

Sensitivity to

parameters

IRNN 67 % x1 high

np-RNN 75.2 % x1 low

LSTM 78.5 % x4 low

Sequence Classification Task

Summary

• np-RNNs work as well as LSTMs utilizing 4 times less parameters

than a LSTM

Outline
Vanishing/Exploding Gradients in RNN

Weight
Initialization

Methods

Constant Error
Carousel

Hessian Free
Optimization

Echo State
Networks

● Identity-RNN
● np-RNN

● LSTM

● GRU

The LSTM Network

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

The LSTM Cell
● σ(): sigmoid non-linearity

● x : element-wise multiplication

Forget gate(f)

Output gate(g)

Input gate(i)

Candidate state(g)

The LSTM Cell

Forget old state Remember new state

Long Term Dependencies with LSTM

Many-one network

Saliency Heatmap

LSTM captures long term dependencies

“Jiwei LI et al, “Visualizing and Understanding Neural Models in NLP”

Sentiment Analysis

Recent words more salient

Long Term Dependencies with LSTM

Many-one network

Saliency Heatmap

LSTM captures long term dependencies

“Jiwei LI et al, “Visualizing and Understanding Neural Models in NLP”

Sentiment Analysis

Gated Recurrent Unit
● Replace forget (f) and input (i) gates

with an update gate (z)

● Introduce a reset gate (r) that

modifies ht-1

● Eliminate internal memory ct

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Comparing GRU and LSTM

• Both GRU and LSTM better than RNN with tanh on music and speech

modeling

• GRU performs comparably to LSTM

• No clear consensus between GRU and LSTM

Source: Empirical evaluation of GRUs on sequence modeling, 2014

3. Regularization in RNNs

Outline

Batch Normalization

Dropout

Recurrent Batch Normalization

Internal Covariate Shift

Source: https://i.stack.imgur.com/1bCQl.png

If these weights are updated... the distributions change in layers above!

The model needs to learn
parameters while adapting to

the changing input
distribution

⇒ slower model convergence!

Solution: Batch Normalization

Cooijmans, Tim, et al. "Recurrent batch normalization."(2016).

Hidden state, hBatch Normalization Equation:

Bias, Std Dev: To be

learned

Extension of BN to RNNs: Trivial?

• RNNs deepest along temporal dimension

• Must be careful: repeated scaling could cause exploding gradients

The method that’s effective

Original LSTM Equations Batch Normalized LSTM

Cooijmans, Tim, et al. "Recurrent batch normalization."(2016).

Observations
● x, ht-1 normalized separately

● ct not normalized

(doing so may disrupt
gradient flow) How?

● New state (ht) normalized

Cooijmans, Tim, et al. "Recurrent batch normalization."(2016).

Additional Guidelines

• Learn statistics for each time step independently till some time

step T. Beyond T, use statistics for T

● Initialize β to 0, γ to a small value such as ~0.1. Else vanishing

gradients (think of the tanh plot!)

Cooijmans, Tim, et al. "Recurrent batch normalization."(2016).

Results
A: Faster convergence due to Batch Norm

B: Performance as good as (if not better than) unnormalized LSTM

Bits per character for Penn Treebank

Cooijmans, Tim, et al. "Recurrent batch normalization."(2016).

Dropout In RNN

Recap: Dropout In Neural Networks

Srivastava et al. 2014. “Dropout: a simple way to prevent neural networks from overfitting”

Recap: Dropout In Neural Networks

Srivastava et al. 2014. “Dropout: a simple way to prevent neural networks from overfitting”

Dropout

To prevent over confident models

High Level Intuition: Ensemble of thinned networks sampled through
dropout

Interested in a theoretical proof ?

A Probabilistic Theory of Deep Learning, Ankit B. Patel, Tan Nguyen, Richard G. Baraniuk

Skip Proof Slides

https://arxiv.org/find/stat/1/au:+Patel_A/0/1/0/all/0/1
https://arxiv.org/find/stat/1/au:+Baraniuk_R/0/1/0/all/0/1

RNN Feedforward Dropout
Beneficial to use it once in correct spot rather than put it everywhere

Each color represents a different mask

Dropout hidden to output

Dropout input to hidden

Per-step mask sampling

Zaremba et al. 2014. “Recurrent neural network regularization”

RNN Recurrent Dropout

MEMORY LOSS !
Only tends to retain short term dependencies

RNN Recurrent+Feedforward Dropout
Per-sequence mask

sampling

Drop the time dependency
of an entire feature

Gal 2015. “A theoretically grounded application of dropout in recurrent neural networks”

Dropout in LSTMs

Dropout on cell state (ct)

Inefficient

Dropout on cell state update

(tanh(g)t) or (ht-1)

Optimal

Skip to Visualization

Barth (2016) : “Semenuita et al. 2016. “Recurrent dropout without memory loss”

Some Results: Language Modelling Task

Lower perplexity score is better !

Model Perplexity Scores

Original 125.2

Forward Dropout + Drop (tanh(gt)) 87 (-37)

Forward Dropout + Drop (ht-1) 88.4 (-36)

Forward Dropout 89.5 (-35)

Forward Dropout + Drop (ct) 99.9 (-25)

Barth (2016) : “Semenuita et al. 2016. “Recurrent dropout without memory loss”

Section 4: Visualizing and Understanding Recurrent
Networks

Visualization outline

Observe evolution of features during training

Visualize output predictions

Visualize neuron activations

Character Level Language
Modelling task

Character Level Language Modelling

Task: Predicting the next character

given the current character

Andrej Karpathy, Blog on “Unreasonable Effectiveness of Recurrent Neural Networks”

Generated Text:

● Remembers to

close a bracket

● Capitalize nouns

● 404 Page Not

Found! :P The

LSTM hallucinates

it.

Andrej Karpathy, Blog on “Unreasonable Effectiveness of Recurrent Neural Networks”

100 th
iteration

300 th
iteration

700 th
iteration

2000 th
iteration

Andrej Karpathy, Blog on “Unreasonable Effectiveness of Recurrent Neural Networks”

Visualizing Predictions and Neuron “firings”

Excited neuron in url
Not excited neuron outside
url

Likely prediction
Not a likely prediction

Andrej Karpathy, Blog on “Unreasonable Effectiveness of Recurrent Neural Networks”

Features RNN Captures in Common Language ?

Cell Sensitive to Position in Line
● Can be interpreted as tracking the line length

Andrej Karpathy, Blog on “Unreasonable Effectiveness of Recurrent Neural Networks”

Cell That Turns On Inside Quotes

Andrej Karpathy, Blog on “Unreasonable Effectiveness of Recurrent Neural Networks”

Features RNN Captures in C Language?

Cell That Activates Inside IF Statements

Andrej Karpathy, Blog on “Unreasonable Effectiveness of Recurrent Neural Networks”

Cell That Is Sensitive To Indentation
● Can be interpreted as tracking indentation of code.

● Increasing strength as indentation increases

Andrej Karpathy, Blog on “Unreasonable Effectiveness of Recurrent Neural Networks”

Non-Interpretable Cells
● Only 5% of the cells show such interesting properties
● Large portion of the cells are not interpretable by themselves

Andrej Karpathy, Blog on “Unreasonable Effectiveness of Recurrent Neural Networks”

Visualizing Hidden State Dynamics

Observe changes in hidden state representation overtime

Tool : LSTMVis

Hendrick et al, “Visual Analysis of Hidden State Dynamics in Recurrent Neural
Networks”

Visualizing Hidden State Dynamics

Hendrick et al, “Visual Analysis of Hidden State Dynamics in Recurrent Neural
Networks”

Visualizing Hidden State Dynamics

Hendrick et al, “Visual Analysis of Hidden State Dynamics in Recurrent Neural
Networks”

Key Takeaways
• Deeper RNNs are more expressive

• Feedforward depth

• Recurrent depth

• Long term dependencies are a major problem in RNNs. Solutions:

• Intelligent weight initialization

• LSTMs / GRUs

• Regularization helps

• Batch Norm: faster convergence

• Dropout: better generalization

• Visualization helps

• Analyze finer details of features produced by RNNs

References
Survey Papers

Lipton, Zachary C., John Berkowitz, and Charles Elkan. A critical review of recurrent neural networks for sequence learning,

arXiv preprint arXiv:1506.00019 (2015).

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Chapter 10: Sequence Modeling: Recurrent and Recursive Nets. MIT

Press, 2016.

Training

Semeniuta, Stanislau, Aliaksei Severyn, and Erhardt Barth. Recurrent dropout without memory loss. arXiv preprint

arXiv:1603.05118 (2016).

Arjovsky, Martin, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks. arXiv preprint

arXiv:1511.06464 (2015).

Le, Quoc V., Navdeep Jaitly, and Geoffrey E. Hinton. A simple way to initialize recurrent networks of rectified linear units.

arXiv preprint arXiv:1504.00941 (2015).

Cooijmans, Tim, et al. Recurrent batch normalization. arXiv preprint arXiv:1603.09025 (2016).

https://arxiv.org/abs/1506.00019
https://arxiv.org/abs/1506.00019
https://www.deeplearningbook.org/contents/rnn.html
https://www.deeplearningbook.org/contents/rnn.html
https://arxiv.org/abs/1609.01704
https://arxiv.org/abs/1609.01704
https://arxiv.org/abs/1511.06464
https://arxiv.org/abs/1511.06464
https://arxiv.org/abs/1504.00941
https://arxiv.org/abs/1504.00941
https://arxiv.org/abs/1603.09025
https://arxiv.org/abs/1603.09025

References (contd)
Architectural Complexity Measures

Zhang, Saizheng, et al, Architectural Complexity Measures of Recurrent Neural Networks. Advances in Neural Information

Processing Systems. 2016.

Pascanu, Razvan, et al. How to construct deep recurrent neural networks. arXiv preprint arXiv:1312.6026 (2013).

RNN Variants

Zilly, Julian Georg, et al. Recurrent highway networks. arXiv preprint arXiv:1607.03474 (2016)

Chung, Junyoung, Sungjin Ahn, and Yoshua Bengio. Hierarchical multiscale recurrent neural networks, arXiv preprint

arXiv:1609.01704 (2016).

Visualization

Karpathy, Andrej, Justin Johnson, and Li Fei-Fei. Visualizing and understanding recurrent networks. arXiv preprint

arXiv:1506.02078 (2015).

Hendrik Strobelt, Sebastian Gehrmann, Bernd Huber, Hanspeter Pfister, Alexander M. Rush. LSTMVis: Visual Analysis for

RNN, arXiv preprint arXiv:1606.07461 (2016).

https://arxiv.org/abs/1602.08210
https://arxiv.org/abs/1602.08210
https://arxiv.org/abs/1312.6026
https://arxiv.org/abs/1312.6026
https://arxiv.org/abs/1607.03474
https://arxiv.org/abs/1607.03474
https://arxiv.org/abs/1609.01704
https://arxiv.org/abs/1609.01704
https://arxiv.org/pdf/1506.02078.pdf
https://arxiv.org/pdf/1506.02078.pdf
http://lstm.seas.harvard.edu/
http://lstm.seas.harvard.edu/

Appendix

Why go deep?

Another Perspective of the RNN

● Affine transformation + element-wise non-linearity

● It is equivalent to one fully connected layer feedforward NN

● Shallow transformation

Visualizing Shallow Transformations

Linear separability is achieved!

Source: http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

The Fully Connected Layer does 2 things:

1: Stretch / Rotate (affine)

2: Distort (non-linearity)

Shallow isn’t always enough

Linear Separability may not be achieved for

more complex datasets using just one layer

⇒ NN isn’t expressive enough!

Need more layers.

Visualizing Deep Transformations

4 layers, tanh
activation

Linear
separability!

Deeper networks utilize high
level features ⇒more expressive!

Can you tell apart the effect of each layer?

Source: http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Which is more expressive?

Recurrent depth = 1
Feedforward depth = 4

Recurrent depth = 3
Feedforward depth = 4

Higher level features

passed on ⇒ win!

Gershgorin Circle Theorem (GCT)

Gershgorin Circle Theorem (GCT)

A =

For any square matrix: The set of all eigenvalues

is the union of of circles whose centers are aii

and the radii are ∑i≠j |aij|

Zilly, Julian Georg, et al. "Recurrent highway networks." arXiv preprint arXiv:1607.03474 (2016).

Implications of GCT

Zilly, Julian Georg, et al. "Recurrent highway networks." arXiv preprint arXiv:1607.03474 (2016).
Source: https://i.stack.imgur.com/9inAk.png

Nearly diagonal matrix

Diffused matrix

(strong off-diagonal

terms), mean of all

terms = 0

Source: https://de.mathworks.com/products/demos/machine-

learning/handwriting_recognition/handwriting_recognition.html

More Weight Initialization Methods

Weight Initialization Trick #2: np-RNN
.

● Activation Function: ReLU

● R: standard normal matrix,
values drawn from a Gaussian
distribution with mean zero
and unit variance

● N: size of R
● <,> dot product
● e: Maximum eigenvalue of

(A+I)

Geoffrey et al, “Improving Perfomance of Recurrent Neural Network with ReLU nonlinearity””

● Wh positive semi-definite (+ve real eigenvalues)

● At least one eigenvalue is 1, others all less than equal to one

Weight Initialization Trick #3: Unitary Matrix
Unitary Matrix: WhWh

* = I (note: weight matrix is now complex!)

(Wh
* is the complex conjugate matrix of Wh)

All eigenvalues of Wh have absolute value 1

Arjovsky, Martin, Amar Shah, and Yoshua Bengio. "Unitary evolution recurrent neural networks."
2015).

Challenge: Keeping a Matrix Unitary over time
Efficient Solution: Parametrize the matrix

Arjovsky, Martin, Amar Shah, and Yoshua Bengio. "Unitary evolution recurrent neural networks."
2015).

Rank 1 Matrices derived from vectors

● Storage and updates: O(n): efficient!

Results for the Copying Memory Problem

Cross entropy for the copying memory problem

uRNNs: Perfect!

● Input:

a1 a2 …… a10 0 0 0 0 0 0…

0 10 symbols T zeros

Arjovsky, Martin, Amar Shah, and Yoshua Bengio. "Unitary evolution recurrent neural networks."
2015).

● Output: a1 … a10

● Challenge: Remembering
symbols over an arbitrarily large
time gap

Summary
Model I-RNN np-RNN Unitary-RNN

Activation Function ReLu ReLu ReLu

Initialization Identity Matrix Positive Semi-definite

(normalized eigenvalues)

Unitary Matrix

Performance
compared to LSTM

Less than or equal Equal Greater

Benchmark
Tasks

Action Recognition,

Addition, MNIST

Action Recognition,

Addition MNIST

Copying Problem,

Adding Problem

Sensitivity to
hyper-parameters

High Low Low

Dropout

Model Moon (2015)
Able to learn long term dependencies, not capable of exploiting them during

test phase

Test time equations for GRU,

Moon (2015)

● P is the probability to not

drop a neuron

● For large t, hidden state

contribution is close to zero

during test

Model Barth (2016)
Drop differences that are added to the network, not the actual values

Allows to use per-step dropout

Test time equation after recursion,

Barth (2016)

● P is the probability to not

drop a neuron

● For large t, hidden state

contribution is retained as at

train time

Visualization

Visualize gradients: Saliency maps
Categorize phrase/sentence into (v.positive, positive, neutral, negative,

v.negative)

How much each unit contributes to the decision ?

Magnitude of derivative if the loss with respect to each dimension of all word inputs

“Jiwei LI et al, “Visualizing and Understanding Neural Models in NLP”

Visualize gradients: Saliency maps

“Jiwei LI et al, “Visualizing and Understanding Neural Models in NLP”

Error Analysis

N-gram Errors

Dynamic n-long memory Errors

Rare word Errors

Word model Errors

Punctuation Errors

Boost Errors

“Karpathy et al, Visualizing and Understanding Recurrent Networks”

50K -> 500K parameter model

Reduced Total Errors 44K
(184K-140K)

N-gram Error 81% (36K/44K)

Dynamic n-long memory
Errors

1.7% (0.75K/44k)

Rare words Error 1,7% (0.75K/44K)

Word model Error 1.7% (0.75K/44k)

Punctuation Error 1,7% (0.75K/44K)

Boost Error 11.36% (5K/44K)

Error Analysis: Conclusions

● N-gram Errors

○ Scale model

● Dynamic n-long memory

○ Memory Networks

● Rare words

○ Increase training size

● Word Level Predictions/ Punctuations:

○ Hierarchical context models

■ Stacked Models

■ GF RNN, CW RNN

“Karpathy et al, Visualizing and Understanding Recurrent Networks”

Recurrent Highway Networks

Understanding Long Term Dependencies from
Jacobian

Learning long term dependencies is a challenge because:

If the Jacobian has a spectral radius (absolute largest eigenvalue) < 1 ,the

network faces vanishing gradients. Here it happens if γσmax < 1

Hence, ReLU’s are an attractive option! They have σmax= 1 (given at least one positive

element)

If the Jacobian has a spectral radius > 1 ,the network faces exploding

gradients

Recurrent Highway Networks (RHN)

Zilly, Julian Georg, et al. "Recurrent highway networks." arXiv preprint arXiv:1607.03474 (2016).

LSTM! Recurrence

RHN Equations
RHN:

Recurrent depth

Feedforward depth (not shown)

Input transformations:

T, C: Transform, Carry operators

RHN Output:

State update equation for RHN with recurrence depth L:

Zilly, Julian Georg, et al. "Recurrent highway networks." arXiv preprint arXiv:1607.03474 (2016).

Indicator function

Note: h is transformed input, y is state

Recurrence layer Index

Gradient Equations in RHN

For an RHN with recurrence depth 1, RHN Output is:

Jacobian is simple:

But the gradient of A is not:

where:

Using the above and GCT, the centers of the circles are:

The radii are:

The eigenvalues lie within these circles

Analysis

Centers: , radii:

If we wish to completely remember the previous state: c = 1, t = 0

Saturation⇒ T’ = C’ = 0nxn

Thus, centers (λ) are 1, radii are 0

If we wish to completely forget the previous state: c = 0, t = 1

Eigenvalues are those of H’

Possible to span the spectrum between these two cases by adjusting the Jacobian A

(*) Increasing depth improves expressivity

Results

BPC on Penn Treebank

BPC on enwiki8 (Hutter Prize) BPC on text8 (Hutter Prize)

LSTMs for Language Models

LSTMs are Very Effective!

Application: Language Model

Task: Predicting the next character

given the current character

Train Input: Wikipedia Data

Hutter Prize 100 MB Dataset of raw wikipedia, 96 MB for training

Trained overnight on a LSTM

Generated Text:

● Remembers to

close a bracket

● Capitalize nouns

● 404 Page Not

Found! :P The

LSTM hallucinates

it.

Train Input:
16MB of Latex source of algebraic stacks/geometry

Trained on Multi-Layer LSTM

Test Output
Generated Latex files “almost” compile, the authors had to fix some issues

manually

We will look at some of these errors

Generated Latex Source Code

● Begins with a proof but

ends with a lemma

● Begins enumerate but does

not end it

● Likely because of the long

term dependency.

● Can be reduced with

larger/better models

Compiled Latex Files: Hallucinated Algebra

● Generates Lemmas and

their proofs

● Equations with correct latex

structure

● No, they dont mean anything

yet !

Compiled Latex Files: Hallucinated AlgebraNice try on the

diagrams !

