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Section 1: Introduction



Applications of RNNs

Image Captioning [reference]

.. and Trump [reference]

Write like Shakespeare [reference]

… and more!

https://arxiv.org/pdf/1411.4555.pdf
https://twitter.com/deepdrumpf?lang=en
http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Applications of RNNs

Technically, an RNN models sequences

Time series

Natural Language, Speech

We can even convert non-sequences to sequences, eg: feed an 
image as a sequence of pixels!



Applications of RNNs

RNN Generated TED Talks

YouTube Link

RNN Generated Eminem rapper

RNN Shady

RNN Generated Music

Music Link

https://youtu.be/-OodHtJ1saY?t=31s
https://soundcloud.com/mrchrisjohnson/recurrent-neural-shady
http://www.hexahedria.com/2015/08/03/composing-music-with-recurrent-neural-networks/


Why RNNs?

Can model sequences having variable length

Efficient: Weights shared across time-steps 

They work! 

SOTA in several speech, NLP tasks



The Recurrent Neuron

next time step

Source: Slides by Arun

● xt: Input at time t
● ht-1: State at time t-1

http://slazebni.cs.illinois.edu/spring17/lec02_rnn.pdf


Unfolding an RNN

Weights shared over time!

Source: Slides by Arun

http://slazebni.cs.illinois.edu/spring17/lec02_rnn.pdf


Making Feedforward Neural Networks Deep

Source: http://www.opennn.net/images/deep_neural_network.png



Option 1: Feedforward Depth (df)

Feedforward depth: longest path 

between an input and output at the

same timestep

Feedforward depth = 4 

High level feature!Notation: h0,1⇒ time step 0, neuron #1



Option 2: Recurrent Depth (dr)

● Recurrent depth: Longest path 

between same hidden state in 

successive timesteps

Recurrent depth = 3



Backpropagation Through Time (BPTT)
Objective is to update the weight 

matrix:

Issue: W occurs each timestep

Every path from W to L is one 

dependency

Find all paths from W to L!(note: dropping subscript h from Wh for brevity)



Systematically Finding All Paths

How many paths exist from W to 
L through L1?

Just 1. Originating at h0.



Systematically Finding All Paths

How many paths from W to 
L through L2?

2. Originating at h0 and h1.



Systematically Finding All Paths
And 3 in this case.

The gradient has two 
summations:
1: Over Lj

2: Over hk

Origin of path = basis for Σ

To skip proof, click here.



Backpropagation as two summations

First summation over L



Backpropagation as two summations
● Second summation over h: 

Each Lj depends on the weight 
matrices before it

Lj depends on all hk 

before it.



Backpropagation as two summations

● No explicit of Lj on hk

● Use chain rule to fill missing steps

j

k



Backpropagation as two summations

● No explicit of Lj on hk

● Use chain rule to fill missing steps

j

k



The Jacobian

Indirect dependency. One final use of 

the chain rule gives:

“The Jacobian”

j

k



The Final Backpropagation Equation



Backpropagation as two summations

j

k

● Often, to reduce memory requirement, 

we truncate the network

● Inner summation runs from  j-p to j for 

some p ==> truncated BPTT



Expanding the Jacobian



The Issue with the Jacobian 

Repeated matrix multiplications leads to vanishing and exploding gradients.

How? Let’s take a slight detour. 

Weight Matrix Derivative of activation function



Eigenvalues and Stability
Consider identity activation function

If Recurrent Matrix Wh is a diagonalizable: 

Computing powers of Wh is simple:

Bengio et al, "On the difficulty of training recurrent neural networks." (2012)

Q matrix composed of 

eigenvectors of Wh

Λ is a diagonal matrix with 

eigenvalues placed on the 

diagonals



Eigenvalues and stability
Vanishing gradients

Exploding gradients



All Eigenvalues < 1                    Eigenvalues > 1

Blog on “Explaining and illustrating orthogonal initialization for recurrent neural network”



2. Learning Long Term Dependencies



Outline
Vanishing/Exploding Gradients in RNN

Weight 
Initialization 

Methods

Constant Error 
Carousel

Hessian Free 
Optimization

Echo State 
Networks

● Identity-RNN
● np-RNN

● LSTM
● GRU
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Weight Initialization Methods

Activation function : ReLU

Bengio et al,. "On the difficulty of training recurrent neural networks." (2012)



Weight Initialization Methods

Random Wh initialization of RNN has no constraint on eigenvalues

⇒ vanishing or exploding gradients in the initial epoch



Weight Initialization Methods

Careful initialization of Wh with suitable eigenvalues

⇒ allows the RNN to learn in the initial epochs 

⇒ hence can generalize well for further iterations



Weight Initialization Trick #1: IRNN

● Wh initialized to Identity

● Activation function: ReLU

Geoffrey et al, “A Simple Way to Initialize Recurrent Networks of Rectified Linear Units” 



Weight Initialization Trick #2: np-RNN
● Wh  positive definite (+ve real eigenvalues) 

● At least one eigenvalue is 1, others all less than equal to one

● Activation function: ReLU

Geoffrey et al, “Improving Performance of Recurrent Neural Network with ReLU nonlinearity”” 



np-RNN vs IRNN

Geoffrey et al, “Improving Perfomance of Recurrent Neural Network with ReLU nonlinearity”” 

RNN Type Accuracy Test Parameter 

Complexity

Compared to RNN

Sensitivity to 

parameters

IRNN 67 % x1 high

np-RNN 75.2 % x1 low

LSTM 78.5 % x4 low

Sequence Classification Task



Summary

• np-RNNs work as well as LSTMs utilizing 4 times less parameters 

than a LSTM
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The LSTM Network

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/



The LSTM Cell
● σ(): sigmoid non-linearity

● x : element-wise multiplication

Forget gate(f)

Output gate(g)

Input gate(i)

Candidate state(g)



The LSTM Cell

Forget old state Remember new state



Long Term Dependencies with LSTM

Many-one network

Saliency Heatmap

LSTM captures long term dependencies

“Jiwei LI  et al, “Visualizing and Understanding Neural Models in NLP”

Sentiment Analysis

Recent words more salient



Long Term Dependencies with LSTM

Many-one network

Saliency Heatmap

LSTM captures long term dependencies

“Jiwei LI  et al, “Visualizing and Understanding Neural Models in NLP”

Sentiment Analysis



Gated Recurrent Unit
● Replace forget (f) and input (i) gates 

with an update gate (z)

● Introduce a reset gate (r )  that 

modifies ht-1

● Eliminate internal memory ct

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/



Comparing GRU and LSTM

• Both GRU and LSTM better than RNN with tanh on music and speech 

modeling

• GRU performs comparably to LSTM

• No clear consensus between GRU and LSTM

Source: Empirical evaluation of GRUs on sequence modeling, 2014



3. Regularization in RNNs



Outline

Batch Normalization

Dropout 



Recurrent Batch Normalization



Internal Covariate Shift

Source: https://i.stack.imgur.com/1bCQl.png

If these weights are updated... the distributions change in layers above!

The model needs to learn 
parameters while adapting to 

the changing input 
distribution

⇒ slower model convergence!



Solution: Batch Normalization

Cooijmans, Tim, et al. "Recurrent batch normalization."(2016).

Hidden state, hBatch Normalization Equation:

Bias, Std Dev: To be 

learned



Extension of BN to RNNs: Trivial?

• RNNs deepest along temporal dimension

• Must be careful: repeated scaling could cause exploding gradients



The method that’s effective

Original LSTM Equations Batch Normalized LSTM

Cooijmans, Tim, et al. "Recurrent batch normalization."(2016).



Observations
● x, ht-1 normalized separately

● ct not normalized

(doing so may disrupt 
gradient flow) How?

● New state (ht) normalized

Cooijmans, Tim, et al. "Recurrent batch normalization."(2016).



Additional Guidelines

• Learn statistics for each time step independently till some time 

step T. Beyond T, use statistics for T

● Initialize β to 0, γ to a small value such as ~0.1. Else vanishing 

gradients (think of the tanh plot!)

Cooijmans, Tim, et al. "Recurrent batch normalization."(2016).



Results
A: Faster convergence due to Batch Norm

B: Performance as good as (if not better than) unnormalized LSTM

Bits per character for Penn Treebank

Cooijmans, Tim, et al. "Recurrent batch normalization."(2016).



Dropout In RNN



Recap: Dropout In Neural Networks

Srivastava et al. 2014. “Dropout: a simple way to prevent neural networks from overfitting” 



Recap: Dropout In Neural Networks

Srivastava et al. 2014. “Dropout: a simple way to prevent neural networks from overfitting” 



Dropout  

To prevent over confident models

High Level Intuition: Ensemble of thinned networks sampled through 
dropout

Interested in a theoretical proof ?

A Probabilistic Theory of Deep Learning, Ankit B. Patel, Tan Nguyen, Richard G. Baraniuk

Skip Proof Slides

https://arxiv.org/find/stat/1/au:+Patel_A/0/1/0/all/0/1
https://arxiv.org/find/stat/1/au:+Baraniuk_R/0/1/0/all/0/1


RNN Feedforward Dropout
Beneficial to use it once in correct spot rather than put it everywhere

Each color represents a different mask 

Dropout hidden to output

Dropout input to hidden

Per-step mask sampling

Zaremba et al. 2014. “Recurrent neural network regularization”



RNN Recurrent Dropout

MEMORY LOSS !
Only tends to retain short term dependencies



RNN Recurrent+Feedforward Dropout
Per-sequence mask 

sampling

Drop the time dependency 
of an entire feature 

Gal 2015. “A theoretically grounded application of dropout in recurrent neural networks”



Dropout in LSTMs

Dropout on cell state (ct)

Inefficient

Dropout on cell state update 

(tanh(g)t) or (ht-1)

Optimal

Skip to Visualization

Barth (2016) : “Semenuita et al. 2016. “Recurrent dropout without memory loss”



Some Results: Language Modelling Task

Lower perplexity score is better !

Model Perplexity Scores

Original 125.2

Forward Dropout + Drop (tanh(gt)) 87 (-37)

Forward Dropout + Drop (ht-1) 88.4 (-36)

Forward Dropout 89.5 (-35)

Forward Dropout + Drop (ct) 99.9 (-25)

Barth (2016) : “Semenuita et al. 2016. “Recurrent dropout without memory loss”



Section 4: Visualizing and Understanding Recurrent 
Networks



Visualization outline

Observe evolution of features during training

Visualize output predictions

Visualize neuron activations

Character Level Language 
Modelling task



Character Level Language Modelling

Task: Predicting the next character 

given the current character

Andrej Karpathy, Blog on “Unreasonable Effectiveness of Recurrent Neural Networks”



Generated Text:

● Remembers to 

close a bracket

● Capitalize nouns

● 404 Page Not 

Found! :P  The 

LSTM hallucinates 

it.

Andrej Karpathy, Blog on “Unreasonable Effectiveness of Recurrent Neural Networks”



100 th
iteration

300 th
iteration

700 th
iteration

2000 th
iteration

Andrej Karpathy, Blog on “Unreasonable Effectiveness of Recurrent Neural Networks”



Visualizing Predictions and Neuron “firings”

Excited neuron in url
Not excited neuron outside 
url

Likely prediction
Not a likely prediction

Andrej Karpathy, Blog on “Unreasonable Effectiveness of Recurrent Neural Networks”



Features RNN Captures in Common Language ?



Cell Sensitive to Position in Line
● Can be interpreted as tracking the line length

Andrej Karpathy, Blog on “Unreasonable Effectiveness of Recurrent Neural Networks”



Cell That Turns On Inside Quotes

Andrej Karpathy, Blog on “Unreasonable Effectiveness of Recurrent Neural Networks”



Features RNN Captures in C Language?



Cell That Activates Inside IF Statements

Andrej Karpathy, Blog on “Unreasonable Effectiveness of Recurrent Neural Networks”



Cell That Is Sensitive To Indentation
● Can be interpreted as tracking indentation of code.

● Increasing strength as indentation increases

Andrej Karpathy, Blog on “Unreasonable Effectiveness of Recurrent Neural Networks”



Non-Interpretable Cells
● Only 5% of the cells show such interesting properties
● Large portion of the cells are not interpretable by themselves

Andrej Karpathy, Blog on “Unreasonable Effectiveness of Recurrent Neural Networks”



Visualizing Hidden State Dynamics

Observe changes in hidden state representation overtime

Tool : LSTMVis

Hendrick et al, “Visual Analysis of Hidden State Dynamics in Recurrent Neural 
Networks”



Visualizing Hidden State Dynamics

Hendrick et al, “Visual Analysis of Hidden State Dynamics in Recurrent Neural 
Networks”



Visualizing Hidden State Dynamics

Hendrick et al, “Visual Analysis of Hidden State Dynamics in Recurrent Neural 
Networks”



Key Takeaways
• Deeper RNNs are more expressive

• Feedforward depth

• Recurrent depth

• Long term dependencies are a major problem in RNNs. Solutions:

• Intelligent weight initialization

• LSTMs / GRUs

• Regularization helps

• Batch Norm: faster convergence

• Dropout: better generalization

• Visualization helps

• Analyze finer details of features produced by RNNs
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Appendix



Why go deep?



Another Perspective of the RNN

● Affine transformation + element-wise non-linearity

● It is equivalent to one fully connected layer feedforward NN

● Shallow transformation



Visualizing Shallow Transformations

Linear separability is achieved!

Source: http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

The Fully Connected Layer does 2 things:

1: Stretch / Rotate (affine)

2: Distort (non-linearity)



Shallow isn’t always enough

Linear Separability may not be achieved for 

more complex datasets using just one layer

⇒ NN isn’t expressive enough!

Need more layers.



Visualizing Deep Transformations

4 layers, tanh 
activation

Linear 
separability!

Deeper networks utilize high 
level features ⇒more expressive!

Can you tell apart the effect of each layer?

Source: http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/



Which is more expressive?

Recurrent depth = 1
Feedforward depth = 4

Recurrent depth = 3
Feedforward depth = 4

Higher level features 

passed on ⇒ win!



Gershgorin Circle Theorem  (GCT)



Gershgorin Circle Theorem (GCT)

A =

For any square matrix: The set of all eigenvalues 

is the union of of circles whose centers are aii

and the radii are ∑i≠j |aij|

Zilly, Julian Georg, et al. "Recurrent highway networks." arXiv preprint arXiv:1607.03474 (2016).



Implications of GCT

Zilly, Julian Georg, et al. "Recurrent highway networks." arXiv preprint arXiv:1607.03474 (2016).
Source: https://i.stack.imgur.com/9inAk.png

Nearly diagonal matrix

Diffused matrix 

(strong off-diagonal 

terms), mean of all 

terms = 0

Source: https://de.mathworks.com/products/demos/machine-

learning/handwriting_recognition/handwriting_recognition.html



More Weight Initialization Methods



Weight Initialization Trick #2: np-RNN
.

● Activation Function: ReLU

● R: standard normal matrix, 
values drawn from a Gaussian 
distribution with mean zero 
and unit variance

● N: size of R
● <,> dot product
● e: Maximum eigenvalue  of 

(A+I)

Geoffrey et al, “Improving Perfomance of Recurrent Neural Network with ReLU nonlinearity”” 

● Wh  positive semi-definite (+ve real eigenvalues) 

● At least one eigenvalue is 1, others all less than equal to one



Weight Initialization Trick #3:  Unitary Matrix
Unitary Matrix: WhWh

* = I (note: weight matrix is now complex!)

(Wh
* is the complex conjugate matrix of Wh)

All eigenvalues of Wh have absolute value 1 

Arjovsky, Martin, Amar Shah, and Yoshua Bengio. "Unitary evolution recurrent neural networks." 
2015).



Challenge: Keeping a Matrix Unitary over time
Efficient Solution: Parametrize the matrix

Arjovsky, Martin, Amar Shah, and Yoshua Bengio. "Unitary evolution recurrent neural networks." 
2015).

Rank 1 Matrices derived from vectors

● Storage and updates: O(n): efficient!



Results for the Copying Memory Problem

Cross entropy for the copying memory problem

uRNNs: Perfect!

● Input: 

a1 a2 …… a10 0 0 0 0 0 0…  

0 10 symbols T zeros

Arjovsky, Martin, Amar Shah, and Yoshua Bengio. "Unitary evolution recurrent neural networks." 
2015).

● Output: a1 … a10

● Challenge:  Remembering 
symbols over an arbitrarily large
time gap



Summary
Model I-RNN np-RNN Unitary-RNN

Activation Function ReLu ReLu ReLu

Initialization Identity Matrix Positive Semi-definite

(normalized eigenvalues)

Unitary Matrix

Performance 
compared to LSTM

Less than or equal Equal Greater

Benchmark
Tasks

Action Recognition, 

Addition, MNIST

Action Recognition, 

Addition MNIST

Copying Problem,

Adding Problem

Sensitivity to
hyper-parameters

High Low Low



Dropout



Model Moon (2015)  
Able to learn long term dependencies, not capable of exploiting them during 

test phase

Test time equations for GRU,

Moon (2015)

● P is the probability to not 

drop a neuron

● For large t, hidden state 

contribution is close to zero 

during test



Model Barth (2016)
Drop differences that are added to the network, not the actual values

Allows to use per-step dropout

Test time equation after recursion,

Barth (2016)

● P is the probability to not 

drop a neuron

● For large t, hidden state 

contribution is retained as at 

train time



Visualization



Visualize gradients: Saliency maps
Categorize phrase/sentence into (v.positive, positive, neutral, negative, 

v.negative)

How much each unit contributes to the decision ?

Magnitude of derivative if the loss with respect to each dimension of all word inputs

“Jiwei LI  et al, “Visualizing and Understanding Neural Models in NLP”



Visualize gradients: Saliency maps

“Jiwei LI  et al, “Visualizing and Understanding Neural Models in NLP”



Error Analysis 

N-gram Errors

Dynamic n-long memory Errors

Rare word Errors

Word model Errors

Punctuation Errors

Boost Errors

“Karpathy et al, Visualizing and Understanding Recurrent Networks”



50K -> 500K parameter model

Reduced  Total Errors 44K
(184K-140K)

N-gram Error 81%  (36K/44K)

Dynamic n-long memory 
Errors

1.7% (0.75K/44k)

Rare words Error 1,7% (0.75K/44K)

Word model Error 1.7% (0.75K/44k)

Punctuation Error 1,7% (0.75K/44K)

Boost Error 11.36%  (5K/44K)



Error Analysis: Conclusions

● N-gram Errors

○ Scale model

● Dynamic n-long memory

○ Memory Networks

● Rare words

○ Increase training size

● Word Level Predictions/ Punctuations: 

○ Hierarchical context models 

■ Stacked Models

■ GF RNN, CW RNN

“Karpathy et al, Visualizing and Understanding Recurrent Networks”



Recurrent Highway Networks



Understanding Long Term Dependencies from 
Jacobian

Learning long term dependencies is a challenge because:

If the Jacobian has a spectral radius (absolute largest eigenvalue) < 1 ,the 

network faces vanishing gradients. Here it happens if γσmax < 1

Hence, ReLU’s are an attractive option! They have σmax= 1 (given at least one positive 

element)

If the Jacobian has a spectral radius > 1 ,the network faces exploding 

gradients



Recurrent Highway Networks (RHN)

Zilly, Julian Georg, et al. "Recurrent highway networks." arXiv preprint arXiv:1607.03474 (2016).

LSTM! Recurrence



RHN Equations
RHN: 

Recurrent depth

Feedforward depth (not shown)

Input transformations:

T, C: Transform, Carry operators

RHN Output: 

State update equation for RHN with recurrence depth L:

Zilly, Julian Georg, et al. "Recurrent highway networks." arXiv preprint arXiv:1607.03474 (2016).

Indicator function

Note: h is transformed input, y is state

Recurrence layer Index



Gradient Equations in RHN 

For an RHN with recurrence depth 1, RHN Output is:   

Jacobian is simple:

But the gradient of A is not:

where:

Using the above and GCT, the centers of the circles are:

The radii are:     

The eigenvalues lie within these circles



Analysis

Centers:                                                   , radii:     

If we wish to completely remember the previous state: c = 1, t = 0

Saturation⇒ T’ = C’ = 0nxn

Thus, centers (λ) are 1, radii are 0

If we wish to completely forget the previous state: c = 0, t = 1

Eigenvalues are those of H’

Possible to span the spectrum between these two cases by adjusting the Jacobian A

(*) Increasing depth improves expressivity



Results

BPC on Penn Treebank

BPC on enwiki8 (Hutter Prize) BPC on text8 (Hutter Prize)



LSTMs for Language Models



LSTMs are Very Effective!

Application: Language Model

Task: Predicting the next character 

given the current character



Train Input: Wikipedia Data

Hutter Prize 100 MB Dataset of raw wikipedia, 96 MB for training

Trained overnight on a LSTM



Generated Text:

● Remembers to 

close a bracket

● Capitalize nouns

● 404 Page Not 

Found! :P  The 

LSTM hallucinates 

it.



Train Input: 
16MB of Latex source of algebraic stacks/geometry 

Trained on Multi-Layer LSTM

Test Output
Generated Latex files “almost” compile, the authors had to fix some issues 

manually

We will look at some of these errors



Generated Latex Source Code

● Begins with a proof but 

ends with a lemma

● Begins enumerate but does 

not end it

● Likely because of the long 

term dependency.

● Can be reduced with 

larger/better  models



Compiled Latex Files: Hallucinated Algebra

● Generates Lemmas and 

their proofs

● Equations with correct latex 

structure

● No, they dont mean anything 

yet !



Compiled Latex Files: Hallucinated AlgebraNice try on the 

diagrams !


