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Section 1: Introduction




Applications of RNNs

VIOLA:

Why, Salisbury must find his flesh and thought

That which | am not aps, not a man and in fire,

To show the reining of the raven and the wars

To grace my hand reproach within, and not a fair are hand,
That Caesar and my goodly father's world;

A person riding a
motorcycle on a dirt road.

Write like Shakespeare [reference]

4 Inreply to Thomas Paine

___ | DeepDrumpf @DeepDrumpf - Mar 20
There will be no amnesty. It is going to pass because the people are

going to be gone. I'm giving a mandate. #ComeyHearing
@Thomas1774Paine

Image Captioning [reference]
- 1 L3 12 V¥ 17

... and more! ..and Trump [reference]



https://arxiv.org/pdf/1411.4555.pdf
https://twitter.com/deepdrumpf?lang=en
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Applications of RNNs

Technically, an RNN models sequences
Time series

Natural Language, Speech

We can even convert non-sequences to sequences, eg: feed an
image as a sequence of pixels!



Applications of RNNs

RNN Generated TED Talks

YouTube Link

RNN Generated Eminem rapper

RNN Shady

RNN Generated Music

Music Link


https://youtu.be/-OodHtJ1saY?t=31s
https://soundcloud.com/mrchrisjohnson/recurrent-neural-shady
http://www.hexahedria.com/2015/08/03/composing-music-with-recurrent-neural-networks/

Why RNNSs?

Can model sequences having variable length
Efficient: Weights shared across time-steps

They work!

SOTA in several speech, NLP tasks



The Recurrent Neuron
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Source: Slides by Arun



http://slazebni.cs.illinois.edu/spring17/lec02_rnn.pdf

Unfolding an RNN
1 K - he = f(Whhi—1 + Wyay)
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Source: Slides by Arun



http://slazebni.cs.illinois.edu/spring17/lec02_rnn.pdf

Making Feedforward Neural Networks Deep
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Source: http://www.opennn.net/images/deep_neural_network.png




Option 1: Feedforward Depth (d.)

Notation: N, ; = time step 0, neuron #1 A

High level feature!

Feedforward depth: longest path

between an input and output at the

same timestep

Feedforward depth =4




Option 2: Recurrent Depth (d )

e Recurrent depth: Longest path

between same hidden state in

successive timesteps

Recurrent depth = 3




Backpropagation Through Time (BPTT)

w
Vg GJ‘G

Objective is to update the weight
matrix:

OL
W ->W-—-—a_——
— « W

Issue: W occurs each timestep

Every path from W to L is one
dependency

FitRefe AR PR SHRSFAPYAY g YW for brevity)



Systematically Finding All Paths

()
How many paths exist from W to
L through L,?
TR e 6 ®
e 0 e e @ Just 1. Originating at h,,.
D OO OXEXIO
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Systematically Finding All Paths
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Systematically Finding All Paths
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And 3 in this case.

Origin of path = basis for

oL
OW

The gradient has two
summations:

1: Over L

2: Over h

To skip proof, click here.




Backpropagation as two summations




Backpropagation as two summations

Lg L4 Lz @

e Second summation over h:
Each L; depends on the weight

matrices before it

Ohy,

OL;  N|OL;
—_Zahk

/

oW

before it.

L; depends on all h




Backpropagation as two summations
OL; _
ow

e Use chainrule

OL. <&
W = 2
k=1

e No explicit of L on hy

Zj: OL; |0

Ohy |OW

k=1

to fill missing steps

:

3Lj 8yj 8h3

Ohy,

Gyj Ghj 8hk

oW




Backpropagation as two summations

e No explicit of L, on hy

OL; _ Z”: OL; |0l
8W L—1 6hk |8W
/_

e Use chain rule to fill missing steps

Oh, Ohy,

oL; Zj: dL;|0y;
—1 Gyj Ghj

Ohy, OW




The Jacobian

Indirect dependency. One final use of
the chain rule gives:

“The Jacobian”



The Final Backpropagation Equation

L OL; dy; Ohm '\ Ohi
awh Z«L Oy; Oh, (m L Oh, )awh

7=0 k=1



Backpropagation as two summations

_zzc&fg( [ 2 ) ohy
= Dy;|0h; |\ 24 | Ohm1 ) [OWn

Often, to reduce memory requirement,

we truncate the network

Inner summation runs from j-p toj for

some p ==>truncated BPTT




Expanding the Jacobian

L Z”':aLj oui I r  Ohm )| Ohu
oW B ) 6yj 8h3 8hm_1 oW

Oh,
ahm—l

= W/ diag (f'(Whhpm—1 + Woz,,))




The Issue with the Jacobian

h; -
Oh; H Wildiag (f' (Whhm—1+ Wax,,))

Weight Matrix Derivative of activation function

Repeated matrix multiplications leads to vanishing and exploding gradients.

How? Let's take a slight detour.




Eigenvalues and Stability

Q matrix composed of
Consider identity activation function

eigenvectors of W,

If Recurrent Matrix Wy, is a diagonalizable;

Wi = Q_l * A x Q) A is a diagonal matrix with
eigenvalues placed on the
Computing powers of W,, is simple: diagonals

WP =Q ' xA"xQ

Bengio et al, "On the difficulty of training recurrent neural networks." (2012)




Eigenvalues and stability

A

Vanishing gradients

0

—0.6180 0 Alﬂ_[ 0.0081
0 1.6180 0

WPr=Q ' xA"*Q

122.9919

—— |

/

Exploding gradients




Al Eigenvalues < 1 Eigenvalues > 1



2. Learning Long Term Dependencies




Outline

Vanishing/Exploding Gradients in RNN
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Outline

Vanishing/Exploding Gradients in RNN
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Weight Initialization Methods

Oh; !
— = W Ldi "Wihpm_1+ Wz,
Ohy ml;[ﬂ pdiag (f'(Wp 1+ Tm))

Activation function ;: ReLU

Oh;

T\n —1 i
D = (W) x* A" % Q)

Bengio et al,. "On the difficulty of training recurrent neural networks." (2012)




Weight Initialization Methods

Random W, initialization of RNN has no constraint on eigenvalues

= vanishing or exploding gradients in the initial epoch



Weight Initialization Methods

Careful initialization of W, with suitable eigenvalues
= allows the RNN to learn in the initial epochs

= hence can generalize well for further iterations



Weight Initialization Trick #1: IRNN

e W, initialized to Identity

e Activation function; ReLU

Geoffrey et al, “A Simple Way to Initialize Recurrent Networks of Rectified Linear Units”



Weight Initialization Trick #2: np-RNN

e W, positive definite (+ve real eigenvalues)
e At least one eigenvalue is 1, others all less than equal to one

e Activation function; ReLU

Geoffrey et al, “Improving Performance of Recurrent Neural Network with ReLU nonlinearity™



np-RNN vs IRNN

Sequence Classification Task

RNN Type Accuracy Test Parameter Sensitivity to
Complexity parameters
Compared to RNN

IRNN 67 % x1 high
np-RNN 715.2% x1 low
LSTM 78.5 % x4 low

s

Geoffrey et al, “Improving Perfomance of Recurrent Neural Network with ReLU nonlinearity
S



Summary

* np-RNNs work as well as LSTMs utilizing 4 times less parameters
than a LSTM



Outline

Vanishing/Exploding Gradients in RNN
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The LSTM Network
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Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/




The LSTM Cell

Candidate state(g)

Forget gate(f)

e 0(): sigmoid non-linearity

o (¥): element-wise multiplication

Input gate(i)

Output gate(g)




The LSTM Cell :

J(ft) @ cCi1H J(it) ® tﬂﬂh(gmt

h, 79{7@1 tanh(cy), /

Forget old state

Remember new state




Long Term Dependencies with LSTM

Sentiment Analysis Saliency Heatmap
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Recent words more salient

Many-one network

LSTM captures long term dependencies

“Jiwei LI et al, “Visualizing and Understanding Neural Models in NLP”




Long Term Dependencies with LSTM

Sentiment Analysis Saliency Heatmap
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Many-one network

‘ LSTM captures long term dependencies

“Jiwei LI et al, “Visualizing and Understanding Neural Models in NLP”
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Gated Recurrent Unit

e Replace forget (f) and input (i) gates

with an update gate (z)

e Introduce areset gate (r) that

modifies h,_,

e Eliminate internal memory c,

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/




Comparing GRU and LSTM

- Both GRU and LSTM better than RNN with tanh on music and speech

modeling
* GRU performs comparably to LSTM

 No clear consensus between GRU and LSTM

Source: Empirical evaluation of GRUs on sequence modeling, 2014



5. Reqularization in RNNs




Outline

Batch Normalization

Dropout



Recurrent Batch Normalization




Internal Covariate Shift

If these weights are updated... the distributions change in layers above!

Source: https://i.stack.imgur.com/1bCQl.png

The model needs to learn
parameters while adapting to
the changing input
distribution
= slower model convergence!




Solution: Batch Normalization

Batch Normalization Equation: Hidden state, h
—_ . hidden layer 1 hidden layer 2 hidden layer 3
BN(hin. f) = f 44 & 1 Eh] e
\/ Var[h] + ¢ : output Layer
‘
. o
Bias, Std Dev: To be

learned

Cooijmans, Tim, et al. "Recurrent batch normalization."(2016).
S



Extension of BN to RNNs: Trivial?

 RNNs deepest along temporal dimension

« Must be careful: repeated scaling could cause exploding gradients



The method that’s effective

ft ft
(i)t = Wihi_1 +Wox, +b S| = BN(Wahe iy, B) + BN(Woxii 0, B2) + b
1 ~
g, 8t
¢, = o(fy) ©c 1+ o(iy) ©tanh(g;)

c = o(ft)GCtA-I-U(it)Gtaﬂh(gt)

ht - U(at) 0 tanh(ct), h, = O(at) © tanh(BN(ct; Yes Bc))

Original LSTM Equations Batch Normalized LSTM

Cooijmans, Tim, et al. "Recurrent batch normalization."(2016).
S



Observations

e X, h., normalized separately \b
e ¢, not normalized i B

BN(W ,hy_1: 9, Br) |+ BN(WoXs: Vo, B2)

+ b

(doing so may disrupt
gradient flow) How?

ct = U(ft) OX i -|'(T(lt) ® tanh(g

tanh(BN(c;; 7., Bc))

e New state (h,) normalized /@%

Cooijmans, Tim, et al. "Recurrent batch normalization."(2016).

t)




Additional Guidelines
BN(W,h; 159, Br)

e |Initialize B to 0, y to a small value such as ~0.1. Else vanishing
gradients (think of the tanh plot!)

« Learn statistics for each time step independently till some time

step T. Beyond T, use statistics for T

Cooijmans, Tim, et al. "Recurrent batch normalization."(2016).
S



Results

A: Faster convergence due to Batch Norm

B: Performance as good as (if not better than) unnormalized LSTM

Pixel-by-Pixel MNIST (Validation Set)

L0 Bits per character for Penn Treebank
24 T T T T T T
— LST™
0.8} — BN-LSTM
2.2+
0.6 c
> b L
E E 2.0
3 o
g £
P C
0.4 g
218
Q
0.2 16
= Istm
= bn_Istm
005 20000 20000 60000 80000 100000 4 2000 4000 6000 8000 10000 12000 14000 16000

- ) t t
Training Iteration raining steps

Cooijmans, Tim, et al. "Recurrent batch normalization."(2016).




Dropout In RNN




Dropout In Neural Networks

Recap

ORI

U mv\\.._ Yo
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(b) After applying dropout.

(a) Standard Neural Net

Srivastava et al. 2014. “Dropout: a simple way to prevent neural networks from overfitting”



Recap: Dropout In Neural Networks

w pw
Present with Always
probability p present
(a) At training time (b) At test time

Srivastava et al. 2014. “Dropout: a simple way to prevent neural networks from overfitting”
S e



Dropout

To prevent over confident models

High Level Intuition: Ensemble of thinned networks sampled through
dropout

Interested in a theoretical proof ?

A Probabilistic Theory of Deep Learning, Ankit B. Patel, Tan Nguyen, Richard G. Baraniuk

Skip Proof Slides



https://arxiv.org/find/stat/1/au:+Patel_A/0/1/0/all/0/1
https://arxiv.org/find/stat/1/au:+Baraniuk_R/0/1/0/all/0/1

RNN Feedforward Dropout

Beneficial to use it once in correct spot rather than put it everywhere

Each color repres
Yi—1 Yt Yt+1

I —— Dropout hidden to output

————— »------->------->d-----
Per-step mask sampling
————— >[(]------=[]------=->[]-----
N S

T —— Dropout input to hidden

Te_1 Lt Ti41

Zaremba et al. 2014. “Recurrent neural network regularization”
S



RNN Recurrent Dropout

f ; '
& T &

MEMORY LOSS !
Only tends to retain short term dependencies




RNN Recurrent+Feedforward Dropout

Yt—1 Yt Yt+1 Per-sequence mask
sampling
T T T Drop the time dependency
) [ e—— [ ——— ] — of an entire feature
—)T )T )T—)
Tt—1 XLt Tt41

Gal 2015. “A theoretically grounded application of dropout in recurrent neural networks”
S



Dropout in LSTMs

Dropout on cell state (c,)

Inefficient ;t:t
;}Z = Wphy 1 +W_x;+b
gt
Dropout on cell state update . = o(f;)®ci1+0(i;) O tanh(g,)
(tanh(g),) or (h,.,) hy = 0(6:) © tanh(cy),
Optimal

Skip to Visualization

Barth (2016) : “Semenuita et al. 2016. “Recurrent dropout without memory loss”




Some Results: Language Modelling Task

Model Perplexity Scores
Original 125.2
Forward Dropout + Drop (tanh(g,)) 87 (-37)
Forward Dropout + Drop (h,) 88.4 (-36)
Forward Dropout 89.5 (-35)
Forward Dropout + Drop (c,) 99.9 (-25)

Lower perplexity score is better !



Section 4: Visualizing and Understanding Recurrent

Networks




Visualization outline

Observe evolution of features during training

Visualize output predictions

Visualize neuron activations

Character Level Language

[ Modelling task



Character Level Language Modelling

target chars: ‘e’ K i ‘0"

1.0 05 0.1 0.2

2.2 0.3 05 15

o output layer 1.0 19 0.1

Task: Predicting the next character 4.1 1.2 1.4 22
given the current character T T T Iw_hy

0.3 1.0 0.1 -0.3

hidden layer | -0.1 » 03 > 0.5 Ve o 0.9

0.9 0.1 0.3 0.7
I R T

1 0 0 0

- 0 1 0 0

input layer 0 0 1 1

0 0 0 0

input chars:  “h” “e” i “”

Andrej Karpathy, Blog on “Unreasonable Effectiveness of Recurrent Neural Networks”
S



Generated Text:

Maturalism and decision for the majority
by the Irish language by [[John Clair]]¢ [[An Imperial Japanese Revolt]]) associated
with Guangzham's sowversignty. His genera re the powerful ruler e Portugal
in the [[Protestant Immineners]], which could be said to be directly in Cantonese
Communication, which followed a ceremony and set inspired prison, training. The
emperor travelled back to [[Antioch, Perth, October 25|21]] to note, the Kingdom

of Costa Rica, unsuccessful fashioned the [[Thrales]], [[Cynth's Dajoard]], known

in western [[5cotland]], near Italy to the conquest of India with the conflict.
Copyright was the succession of independence in the slop of Syrian influence that

countries’ cap was grounded

e Remembers to
close a bracket
Capitalize nouns

was a tamous German movement based on a more popular servicious, non-doctrinal
and sexual power post. Many governments recognize the military housing of the o 404 Page Not
[[Civil Liberalization and Infantry Resolution 265 MNational Party in Hungary]], Found! :P The
that is sympathetic to ba to t Punjab Resolution]] LSTM hallucinates
[http:/ www.humah.yahoo.com/guardian. it.

ctm/ 7754888
was swear to advance to the resources for those Socialism's rule,

icial economics Adjoint for the Mazism, Montgomery

was starting to signing a major tripad of aid exile.]]

Andrej Karpathy, Blog on “Unreasonable Effectiveness of Recurrent Neural Networks”
S
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l train more
Aftair fall unsuch that the hall for Prince Velzonski's that me of
. 700 Fh her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort
Iteration how, and Gogition is so overelical and ofter.
l train more
2000 th "Why do what that day," replied Natasha, and wishing to himself the fact the
iteration princess, Princess Mary was easier, fed in had oftened him.

Pierre aking his soul came to the packs and drove up his father-in-law women.

Andrej Karpathy, Blog on “Unreasonable Effectiveness of Recurrent Neural Networks”



Visualizing Predictions and Neuron “firings”

1|/ w | c /] -
blalclalhlet - X I ali|r
d :|x|nje|. |wlale|a]. w ola|. s &initli |lalc slajr |dlefe|l |h| |o|a|n t|bli|s
miw|- [2|®pli i |i |s|lolels|s]|i |s]. er cl]|(|diclele|n plels alali kji i lele/l le|d h|,
dir|. [<|: |lalh|b|- [n|p|t |w|t |. |x glh al) |Tfvidir|y|z|i clojule|d]|l u/: |t lhja|- |o]|o
sit|pl|, |t|clola|2|d|r |ull |w|o|c nis pl. |1 {I |[vialo|d], elyltic|-[n| |dim|- |oli |bju|vis]]
B Likely prediction [ ] Excited neuron in url
[] Nota likely prediction Il Not excited neuron outside

url

Andrej Karpathy, Blog on “Unreasonable Effectiveness of Recurrent Neural Networks”




Features RNN Captures in Common Lanquage ?

"Why do what that day," replied Natasha, and wishing to himself the fact the
princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.



Cell Sensitive to Position in Line

e (Can be interpreted as tracking the line length

the Berezina lies in the fact

~the fallacy of all the plans for
soundness of the only possible
\nd general mass of the army
w the enemy up. The French crowd f
ed and all its energy was direct
it was imp

Andrej Karpathy, Blog on “Unreasonable Effectiveness of Recurrent Neural Networks”
S e



Cell That Turns On Inside Quotes

Andrej Karpathy, Blog on “Unreasonable Effectiveness of Recurrent Neural Networks”
S



Features RNN Captures in C Language?

for (i = 0; i < 16; i++) {
if (k & (1 << 1))
pipe = (in_use & UMXTHREAD_ UNCCA) +
((count & O0x00000000£f£f£f£f£ff8) & 0x000000f) << B;
if (count == ()
sub(pid, ppc_md.kexec_handle, 0x20000000);
pipe_set bytes(i, 0);
}

/* Free our user pages pointer to place camera if all dash */



Cell That Activates Inside IF Statements

“pm‘m@

IF_SIGPENDING);

Andrej Karpathy, Blog on “Unreasonable Effectiveness of Recurrent Neural Networks”




Cell That Is Sensitive To Indentation

e (Can beinterpreted as tracking indentation of code.

e Increasing strength as indentation increases

#ifdef CONFIG_AUDITSYSCALL
static inline intHalUdIt R tehEcTasabl s NENcIas s S22 Raskn

or 0; < AUDIT BITHNASKISTIZERIAET)

b

Andrej Karpathy, Blog on “Unreasonable Effectiveness of Recurrent Neural Networks”




Non-Interpretable Cells

e Only 5% of the cells show such interesting properties
e Large portion of the cells are not interpretable by themselves

Andrej Karpathy, Blog on “Unreasonable Effectiveness of Recurrent Neural Networks”




Visualizing Hidden State Dynamics

Observe changes in hidden state representation overtime

Tool ;: LSTMVis

Hendrick et al, “Visual Analysis of Hidden State Dynamics in Recurrent Neural

_M—



Visualizing Hidden State Dynamics

FPPPPPPLPLPLPLLLSL

Krenz % ) ]

mearwhile , has invited Mr.  Krenz to
however , has n't been bad enough
) K has used his position to
all ; --_for the
said has n't yet &tmined what
Commission , has  promised Poland and  Hungary
however, -_-&w securities
central bank |has alloweda  key interest
Inc. has failed to  make about

Life has agreednot to  make
Sen regime |has  sent ‘thusandsof  <unk>
resigned , has  helped renew calls for

has only one poduced picture

Hendrick et al, “Visual Analysis of Hidden State Dynamics in Recurrent Neural

Networks”




Visualizing Hidden State Dynamics

(1,::_ L 2 motherof  |a little prince . </s>
0.6- 3 mother of  |a little prince . </s>
044 =% wife in  |a little hut which
0.2 presence- a little old woman.
00 lived in  |a little cottage with her
zzi: her in |a great nobleman ; and
0.6 - F in |a white coat and a
0.8 - not in  |a good temper,

hare in  |a fishingnet and fastened

1.0 -

Hendrick et al, “Visual Analysis of Hidden State Dynamics in Recurrent Neural
Networks”




Key Takeaways

+ Deeper RNNs are more expressive
«  Feedforward depth
*  Recurrent depth
* Long term dependencies are a major problem in RNNs. Solutions:
* Intelligent weight initialization
«  LSTMs/GRUs
* Regularization helps
«  Batch Norm: faster convergence
«  Dropout: better generalization
* Visualization helps

* Analyze finer details of features produced by RNNs
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Appendix




Why go deep?




Another Perspective of the RNN

-

hey —

—> hy

hy = f(Whhi—1 + Wyay)

e Affine transformation + element-wise non-linearity

e |Itis equivalent to one fully connected layer feedforward NN

e Shallow transformation



Visualizing Shallow Transformations

Linear separability is achieved!

The Fully Connected Layer does 2 things:
1: Stretch / Rotate (affine)

2: Distort (non-linearity)

Source: http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/




Shallow isn’t always enough

Linear Separability may not be achieved for
more complex datasets using just one layer
= NN isn't expressive enough!

Need more layers.

/’

i~




Visualizing Deep Transformations

\ \
// N // N
l/ //
, 7 |4 layers, tanh , 7
[ /,/ activation [ /,/
/ /
N / L N\ /
\ N A ] inear osf I\ N -
\ separability! \

Deeper networks utilize high Can you tell apart the effect of each layer?
level features = more expressive!

Source: http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
e



Which is more expressive?

Recurrent depth =1
Feedforward depth =4

Higher level features
passed on = win!

Recurrent depth =3
Feedforward depth =4



Gershgorin Circle Theorem (GCT)




Gershgorin Circle Theorem (GCT)

ATm[A]
ay|fPiz @3- - - 4y ﬁ
Qy Ax Q3
a4 4y, a
A = 31 €3 U3 ‘
N @i
. - - 'I a’?:i Re[A]
- - - : ] )‘
(Gm1 - - 0 e Oy, . \ Z |aij| \L |aij|
. | i ;G
For any square matrix: The set of all eigenvalues " (1) ()
is the union of of circles whose centers are a; ‘
and the radii are 4 |3 ‘




Implications of GCT

Nearly diagonal matrix

s @ = o =
- 8 om e oW oa
w e W = m e e oM

W @ N m W N = O

1
1
0
0
1
1
1
0
1

ole o & o m o m &8 & o

B
3
1
3
1
4
2
2

Blt®m & w owow

0
1
5
1
3

ote w o

7 8 39

Source: https://de.mathworks.com/products/demos/machine-
learning/handwriting_recognition/handwriting_recognition.html

Diffused matrix
(strong off-diagonal
terms), mean of all
terms =0

o0 ELEP R W e o
10 20 30 40 50 60 70 80 90 100

Source: https://i.stack.imgur.com/9inAk.png




More Weight Initialization Methods




Weight Initialization Trick #2: np-RNN

e W, positive semi-definite (+ve real eigenvalues)

e Atleast one eigenvalue is 1, others all less than equal to one
e Activation Function: ReLU

A L 1 RT R e R:standard normal matrix,
- ﬁ < ) > values drawn from a Gaussian
distribution with mean zero
_ and unit variance
c = Hla.X(/\(A + I)) e N:sizeof R
e <>dot product
W — ! + A e e: Maximum eigenvalue of
hh e (A+I)

Geoffrey et al, “Improving Perfomance of Recurrent Neural Network with ReLU nonlinearity™




Weight Initialization Trick #3: Unitary Matrix

Unitary Matrix: W,W,* =1 (note: weight matrix is now complex!)
(W, " is the complex conjugate matrix of W,)

All eigenvalues of W, have absolute value 1

Arjovsky, Martin, Amar Shah, and Yoshua Bengio. "Unitary evolution recurrent neural networks."

o 2015).



Challenge: Keeping a Matrix Unitary over time

Efficient Solution: Parametrize the matrix

W = D3R, F 'D,IIR,FD;.

/'

Rank 1 Matrices derived from vectors

e Storage and updates: O(n): efficient!

Arjovsky, Martin, Amar Shah, and Yoshua Bengio. "Unitary evolution recurrent neural networks."




Results for the Copying Memory Problem

0.30

Time lag = 100

0.25

0.20

Cross entropy

----- Baseline

——  URNN

— LSTM

— RNN with tanh

0.15

0.10

0.00 {

URNNSs: Perfect!
s /

0 200 400 600

800 1000

Training examples (thousands)

Cross entropy for the copying memory problem

Input:

a;a,..../la;p 000000...

10 symbols T zeros

Output: a, ... a5

Challenge: Remembering
symbols over an arbitrarily large
time gap

Arjovsky, Martin, Amar Shah, and Yoshua Bengio. "Unitary evolution recurrent neural networks."




Summary

Model I-RNN np-RNN Unitary-RNN
Activation Function ReLu ReLu ReLu
Initialization |dentity Matrix Positive Semi-definite Unitary Matrix

(normalized eigenvalues)

Performance Less than or equal Equal Greater
compared to LSTM

Benchmark Action Recognition, | Action Recognition, Copying Problem,
Tasks Addition, MNIST Addition MNIST Adding Problem
Sensitivity to High Low Low

hyper-pa rameters
B | N I



Dropout




[ e, =d(fy xc;_y +1; +g) j

Model Moon (2015) Noon (2015

Able to learn long term dependencies, not capable of exploiting them during
test phase

Test time equations for GRU,
h; = (h;_ 1 +g)p

h; = ((hy—2 + gt—1)p + &¢)p

e P isthe probability to not
. t " drop a neuron
h, = »ttlh E t—1+1 e For large t, hidden state
¢ p 0 T p Si contribution is close to zero
1=0 during test




Model Barth (2016) GRS

) Barth (2016)
Drop differences that are added to the network, not the actual values

Allows to use per-step dropout

Test time equation after recursion, e P is the probability to not
drop a neuron

t t
_ o . e For large t, hidden state
h; = phg + ZP 8i = ph{] + PZ 8i contribution is retained as at

1=0 1=0 train time




Visualization




Visualize gradients: Saliency maps

Categorize phrase/sentence into (v.positive, positive, neutral, negative,
v.negative)

How much each unit contributes to the decision ?

I M gnltudeo tivelf the loss with respect tole Hdiménsion of all word inputs e

e || T I s L IO R el N NAR [ 8

we | || m ]| o -

movie *“ movie “*“ movie aoe
Recurrent LSTM Bi - Directional LSTM

“Jiwei LI et al, “Visualizing and Understanding Neural Models in NLP”



Visualize gradlents Saliency maps

| 1 |
a6 0.2¢ 064
il " “““\’I \I! “ JI w il I‘II 1 ’ L
ﬂ‘e 0.07 the the[l
W - 018 o ovie 048
though| | | | "* " mougn[| Il | | %% though 0%
the :: the ‘ 0.12 the 032
P")t s plot 10.00 plot | I I | 024
is l - is = is 0.16
interesting ‘ omintemting . oianteresting [I l I ” I 008
0 '° 30 40 5!’ I T o 10 20 38 4 50 . 0 10 20 30 40 50 —.
Recurrent LSTM Bi - Directional LSTM

“Jiwei LI et al, “Visualizing and Understanding Neural Models in NLP”
S



Error Analysis

N-gram Errors

Dynamic n-long memory Errors
Rare word Errors

Word model Errors
Punctuation Errors

Boost Errors

“Karpathy et al, Visualizing and Understanding Recurrent Networks”
S



50K -> 500K parameter model
Reduced Total Errors 44K
(184K-140K)
N-gram Error 81% (36K/44K)
Dynamic n-long memory 1.7% (0.75K/44Kk)
Errors

Rare words Error 1,7% (0.75K/44K)
Word model Error 1.7% (0.75K/44k)
Punctuation Error 1,7% (0.75K/44K)
Boost Error 11.36% (5K/44K)

I ——————————————




Error Analysis: Conclusions

e N-gram Errors
o Scale model
e Dynamic n-long memory
o Memory Networks
e Rare words
o Increase training size
e Word Level Predictions/ Punctuations:
o Hierarchical context models
m Stacked Models
m  GFRNN, CW RNN

“Karpathy et al, Visualizing and Understanding Recurrent Networks”
S e e



Recurrent Highway Networks




Understanding Long Term Dependencies from
Jacobian

Learning long term dependencies is a challenge because:

If the Jacobian has a spectral radius (absolute largest eigenvalue) < 1 ,the
network faces vanishing gradients. Here it happens if yo,,,, < 1

Hence, ReLU's are an attractive option! They have G ,,,,= 1 (given at least one positive
element)

If the Jacobian has a spectral radius > 1 ,the network faces exploding
gradients



Recurrent nghway Networks (RHN)




RHN Equations

RHN: o
h=H(x,Wg)
Recurrent depth t="T(x,Wr)

c=C(z,W¢)

—p
Feedforward depth (not shown)

=h-t+x-c | Note: his transf dinput, y is stat
Input transformauot io. gle N is TAansOmet MpUL ¥ s stale

t t t t t
T, C: Transform, Carr syl =h) -t 451, )

hg] = tanh(WHx[t]IM:l} + RHeSLtll +bu,),

RHN Output: tfl = o(WrxUT ey + Rysl) | + by),

CL:] = o(WexT ey + chsy]_l + be,),

State update equaticmopR—HN’With recurrencc%)th L:

Indicator function

Recurrence layer Index



Gradient Equations in RHN

yll = nll gl yl=1] .l
For an RHN with recurrence depth 1, RHN Output is:

JaCOblan < simple: Ao (9y /@y A — dlag(c[t])JrH’dlag( [t])+Cfdlag( [t— 1])+T’d1ag( [])
H' = R} diag [tanh/ (Rpy!~ 1])]7
But tr T’ = RJ.diag [O‘I(RTy[t_l])}:

CI _ RTd ! R [t—l]
where. cdiag|o’(Roy 1)), ol 1) 4 oyl ol

g 1,?,'1, "

The eigenvalues lie within these circles

Z |H'Z;, +C'y ygt ! + T hgt] ’

Using the above and GCT, the centers of the circles are:

The radii are;




Analysis

cgt] +H M+ Cly

11 1

_ - ] [t—1] 1]
R o Z?é [H'ijt" + Clyy; — + T'hy|
J=1 g

Centers: , radii.
If we wish to completely remember the previous state:c=1,t=0
Saturation=T=C"=0,,,
Thus, centers (A) are 1, radii are 0
If we wish to completely forget the previous state: ¢=0,t =1
Eigenvalues are those of H’

Possible to span the spectrum between these two cases by adjusting the Jacobian A



Results

Model Size Best Val. Test

RNN-LDA + KN-5 + cache (]Mikolov & Zweig, |2012) 9M - 92.0

Conv. + Highway + LSTM | dropout (Kim et all,|2015) 19M - 78.9

LSTM | dropout (Zaremba et all, [2014) 66 M 82.2 78.4

Variational LSTM (Gal, [2015) 66 M 77.3 75.0

Variational LSTM + WT (Press & Woll, 201(1) 51M 75.8 73.2

Pointer Sentinel- LSTM (Merity et all,[2016 21 M 72.4 70.9

Variational LSTM + WT + augmented loss (Inan et all, 2016) 51M 71.1 68.5 BPC on Penn Treebank

Variational RHN 32M 71.2 68.5

Neural Architecture Search with base 8 (Zoph & Ld, [2016) 32M — 67.9

Variational RHN 4+ WT 23 M 67.9 65.4

Neural Architecture Search with base 8 + WT (Zoph & Le, |2016) 25 M — 64.0

Neural Architecture Search with base 8 + W'T (Zoph & Le,|2016) 54M — 62.4

Model BPC Size Model BPC Size

Grid-LSTM (Kalchbrenner et al., 2015) 147  17TM MI-LSTM (Wu ct all,[2016) 144 17TM

MI-LSTM_(Wu et al), 2016) 144 17TM mLSTM (Krausc ct all,[2016) 1.40  10M

mLSTM (Krause ct al, 2016 142 21M BN LSTM (Cooijmans ot al,, 2016)  1.36  16M

LN HyperNetworks (Ha ct all,|2016) 1.34 2TM

[N Hyper ot GCTQ_HHW(% HM-LSTM (Chung et all,[2016) 132 35M
- ung et al., 201 1.32 36 M -

RHN - Rec. depth 10 130 21M RHN - Rec. depth 10 1.29 20M

Large RHN - Rec. depth 10 1.27 46M Large RHN - Rec. depth 10 1.27 45M

BPC on enwiki8 (Hutter Prize) BPC on texts SHutter prizez



LSTMs for Language Models




LSTMs are Very Effective!

target chars: ‘e’ s g i ‘0"
1.0 0.5 0.1 0.2
2.2 0.3 0.5 -1.5
o outputiayer 1.0 19 0.1
Application: Language Model 4.1 1.2 14 2.2
I R N
Task: Predicting the next character
. 0.3 1.0 0.1 -0.3
given the current character hidden layer |04 |—! 0.3 |—! .05 V=" 0.9
0.9 0.1 -0.3 0.7
L Jw
1 0 0 0
; 0 1 0 0
input layer 0 0 1 1
0 0 0 0
input chars:  “h” “e” i “I"



Train Input: Wikipedia Data

Hutter Prize 100 MB Dataset of raw wikipedia, 96 MB for training

Trained overnight on a LSTM



Generated Text:

Maturalism and decision for the majority
by the Irish language by [[John Clair]]¢ [[An Imperial Japanese Revolt]]) associated
with Guangzham's sowversignty. His genera re the powerful ruler e Portugal
in the [[Protestant Immineners]], which could be said to be directly in Cantonese
Communication, which followed a ceremony and set inspired prison, training. The
emperor travelled back to [[Antioch, Perth, October 25|21]] to note, the Kingdom

of Costa Rica, unsuccessful fashioned the [[Thrales]], [[Cynth's Dajoard]], known

in western [[5cotland]], near Italy to the conquest of India with the conflict.
Copyright was the succession of independence in the slop of Syrian influence that

countries’ cap was grounded

was a tamous German movement based on a more popular servicious, non-doctrinal
and sexual power post. Many governments recognize the military housing of the
[[Civil Liberalization and Infantry Resolution 265 National Party in Hungary]].
that is sympathetic to bhe +o + Punjab Resolution]]

[http:/ www.humah.yahoo.com/guardian.
ctm/ 7754888
was swear to advance to the resources for those Socialism's rule,

icial economics Adjoint for the Mazism, Montgomery

was starting to signing a major tripad of aid exile.]]

Remembers to
close a bracket
Capitalize nouns
404 Page Not
Found! :P The
LSTM hallucinates
it.



Train Input:

16MB of Latex source of algebraic stacks/geometry

Trained on Multi-Layer LSTM

Test Qutput

Generated Latex files “almost” compile, the authors had to fix some issues
manually

We will look at some of these errors



Generated Latex Source Code

\begin{proof}

We may assume that $\mathcal{I}% is an abelian sheaf on $\mathcal{C}%.
‘item Given a morphism $‘\Delta : ‘mathcal{F} ‘to ‘\mathcal{I}%

is an injective and let $'\mathfrak g% be an abelian sheaf on $X§.

Let $\mathcal{F}% be a fibered complex. Let %$‘\mathcal{F}% be a category.
begin{enumerate

\item wnyperret | setain-construction-phantom]{Lemma}
‘label{lemma-characterize-quasi-finite}

Let $\mathcal{F}% be an abelian gquasi-coherent sheaf on $\mathcal{C}%.
Let $\mathcal{F}% be a coherent $\mathcal{0} X%-module. Then

$vmathcal{F}% is an abelian catenary over $\mathcal{C}%.

“item The following are equivalent

‘\begin{enumerate}

‘Vitem $imathcal{F}$% is an $'\mathcal{0} X%-module.

‘end{lemma}

Begins with a proof but
ends with a lemma

Begins enumerate but does
not end it

Likely because of the long
term dependency.

Can be reduced with
larger/better models




Compiled Latex Files: Hallucinated Algebra

For @0y . Where £,,, = 0, hence we can find a closed subset # in H and
any sets F on X, U is a closed immersion of S, then U — T is a separated algebraic
space.

Proof. Proof of (1). It also start we get

S=Spec(R)=Uxx U xxy U
and the comparicoly in the fibre product covering we have to prove the lemma
generated by [|Z xp U — V. Consider the maps M along the set of points
Schyppy and U — U is the fibre category of S in U in Section, ?? and the fact that
any U affine, see Morphisms, Lemma ??. Hence we obtain a scheme S and any
open subset W C U in Sh(G) such that Spec(R') — S is smooth or an

U=|JUixs U

which has a nonzero morphism we may assume that f; is of finite presentation over
S. We claim that Oy, is a scheme where x, ', 5" € ' such that Ox .+ — O, . is
separated. By Algebra, Lemma ?7 we can define a map of complexes GLg:(x/5”)
and we win. o

To prove study we see that F|i; is a covering of A", and 7; is an object of Fx/s for
i > 0 and F, exists and let F; be a pmheaf of Ox-modules on C as a F-module.
In pan.xcular F=U/F we P

M =T Bspec(h) Osa —ix' F)
is a unique morphism of alPweagie stacks. Note that
Arrows = (Srh/?) ops (SChS) tppg

and

V =TI(S.0) — (U,Spec(A))
is an open subset of X. Thus U is affine. This is a continuous map of X is the
inverse, the groupoid scheme S,

Proof. See discussion of sheaves of sets. o
The result for prove any open covering follows from the less of Example ?7. It may
replace S by X paces.étate Which gives an open subspace of X and T equal to Sz,

see Descent, Lemma ?7. Namely, by Lemma ?7 we see that R is geometrically
regular over S.

Lemma 0.1. JAssume (3) and (3) by the construction in the description.,

= lim | X| (by the formal open covering X and a single map Proj, (A) =

Spec(B) over U compatible with the complex
Set(A) =T(X.0x 0,)-

When in this case of to show that Q —» Czyx is stable under the following result
in the second conditions of (1), and (3). This finishes the proof. By Definition 7?7
(without element is when the closed subschemes are catenary. If T is surjective we
may assume that T is connected with residue fields of S. Morcover there exists a
closed subspace Z € X of X where U in X' is proper (some defining as a elosed
subset of the uniqueness it suffices to check the fact that the following theorem

1s locally of finite type. Since S = Spec(R) and Y = Spec(R).

Proof. This}is form all sheaves of sheaves on X. But given a scheme U and a
____ Ui be the scheme X over
o schemes X; < X and U = lim; X,. o

The following lemma surjective restrocomposes of this implies that F, = F, =

Lemma 0.2. Let X be a locally Noetherian scheme over S, E = Fy;s. SetT =
Ji CI.,. Since I™ C I are nonzero over iy < p is a subset of T 0o Az works.

Lemma 0.3. In Situation 7?. Hence we may assume q' = 0.

Proof. We will use the property we sce that p is the mext functor (2?). On the
other hand, by Lemma 77 we see that

D(Ox:) = 0
where K is an F-algebra where 8, is a -ethctl elr .{)I‘OOfS a

structure

gnerates Lemmas and
e Equations with correc

e No, they dont mean a

t latex

nything

vet |
J



Complled | atex Files: Hallucmated Algebnjg

e try on the
rams !

< Proof. Omitted. s O

Lemma 0.1. Let C be a set of the construction.
Let C be a gerber covering. Let F be a quasi-coherent sheaves of O-modules. We
have to show that
Op, = 0x(£)

Proof. This is an algebraic space with the composition of sheaves F on Xg 0, we
have

Ox(F) = {morphy xo. (G.F)}
where G defines an isomorphism F — F of O-modules. O

Le
Proof. See Spaces, Lemma 27,

a scheme and X is an affine open
covering, Let UCX bea camm:cal and locally of fimte type. Let X be a scheme.
Let X be a scheme which is equal to the formal complex.

The following to the construction of the lemnma follows.
Let X be a scheme. Let X be a scheme covering. Let

b: XY S3Y aaY Y xxY > X.
be a morphism of algebraic spaces over S and Y.

Proof. Let X be a nonzero scheme of X. Let X be an algebraic space, Let F be a
quasi-coherent sheaf of Ox-modules. The following are equivalent

(1) F is an algebraic space over S.
(2) If X is an affine open covering.

Consider a common structure on X and X the functor Ox(U) which is locally of
finite type. a

Spec{Ky)
is o limit. Then €@ s o finite type and assume S is o flat and F and § & a fnite
type fo. This is of fnite type diagrums, and

o the composition of § i3 a regular sequence,
o Oy is a sheal of rings.

Morse, 4O, .. 0)

o

Proof. We have soe that X = Spec{R) and F is a finite type representable by
algebraic space. The property F is a fnite morphism of algebraic stacks. Then the
cobomology of X i an open neighbourbood of U o

Proof., This is clear that G is a finite presentation, see Lewumas 77,
A reduced gbove we conchade that U is an open covering of C. The functor F is a
“field

Ox = Fr ‘l(oh‘mul = o;:ov\a(o"(,,’
i= an isomorphisin of covering of Oy, I F is the unique element of F such that X
i an somorphisn.
The property F is a disjoint union of Propogition 77 and we can filtered set of
presentations of a sclwme O x-algebra with F are opens of finite type over S.
If F is a scheme theoretic image points. o

If F is & finite direct sum Ox, is & closed immersion, see Leouna 72, This is a

sequence of F is a similar morphism,




