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IntrOduCtion tO NLP “Tell me about Liam"”

What is natural language processing? Liam is the new recycling robot

at Apple. Because of him, I've

.. been having a lot more
Difficult? existential crises lately.

Where do we use natural language processing?

e Question answering

e Machine translation : I = staron il

e AlotMore!

http://blog.webcertain.com/machine-translation-technology-the-
search-engine-takeover/18/02/2015/

https://sixcolors.com/post/2016/04/siri-tells-you-all-about-liam/
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Introduction to NLP

So NLP is something that can help machines achieve these tasks, right?

We can define NLP as:
e A work which enables machines to “ ” human language
and further performs useful tasks

e Itneeds knowledge from CS, Al, Linguistics



Introduction to NLP

Difficulties in NLP:
e Weomita lotof , Which we assume the reader
possesses
e Wekeepalotof , which we assume the reader knows
how to resolve

o e.g.“The man saw a boy with a telescope.”

Who has a telescope? => Ambiguity is a killer



Introduction to NLP

Currently, what are
NLP ?

that are commonly used in

An interesting demo here: Stanford CoreNLP Demo

Part-Of-Speech tagging
Entity Recognition
Dependency Parsing

etc

Due to the time
limitation, we are
gonna talk about
some of these tools
at the end.


http://nlp.stanford.edu:8080/corenlp/process

Introduction to NLP

But deep learning for NLP?

Most current NLP tasks work well because of human-designed features.
e Too specific and incomplete

e Require domain-specific knowledge

=> Different domain needs different features



Introduction to NLP

However, deep learning can these issues
e Features arelearned automatically from examples

e The ability to capture the complicated relations

Furthermore
e Gigantic amount of data becomes available today

e Faster CPU/GPU enables us to do deep learning more efficiently



Introduction to NLP

Sounds good, right?

But how do we feed the text data into deep learning models
(e.g. the neural network) ?

This is the most basic and important step. How do we represent a word?



Word Representation

Common/intuitive way to represent a word in computer => using a vector!

A traditional approach: discrete representation ( representation)
e Each word is represented using a vector of dimension |V| -- size of vocabulary

e “1"inone spot and “0” in all other spots

Example:

Corpus: “Ilike deep learning.”, “I like neural networks.”, “I can do NLP.”
=>V={“l", “like”, “deep”, “learning”, “neural”, “networks”, “can”, “do”, “NLP" }

What is the one-hot representation for “like” ? (Using the above order)
=> ( 0' 1! OI OI OI 0' OI OI O)



Word Representation

Problems with one-hot representation

e Similar words cannot be represented in a similar way
e.g. We have corpus with only 2 words {“skillful”, “adept”}
vec(“skillful”) = (1,0), vec(“adept”) = (0,1)
=>The similarity is lost.

e The curse of dimensionality => computational complexity
e The vector is sparse

We need better
representation !



Word Representation

Idea:
We can represent a word by utilizing the information from its
=> Distributional representation

A Question:
Use in the corpus OR just of words?
Lead to different approaches:
e Full-window approach: e.g. Latent Semantic Analysis (LSA)
e Local-window approach: e.g. Word2Vec



Word Representation

e.g. Word2Vec
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Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
Estimation of Word Representations in Vector Space. ICLR, 2013.


https://arxiv.org/abs/1301.3781
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d Output layer
We must learn W and W’ =

y[

Word Representation

e.g. Word2Vec with skip-gram Input layer

- WI: input projection matrix of size [V|*N
- WO: output projection matrix of size N*|V]|

- Objective function: V-dim
= the averaged (difference between predicted

probabilistic distribution and all neighbors in the
window)

An example to explain!

https://web.archive.org/web/20160311161826/http://cs224d.stanford.edu/lecture_notes/LectureNotes1.pdf
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E Output layer

Word Representation ™

e.g. Word2Vec with skip-gram
Example: "
Corpus:
“the dog saw a cat”,“the dog chased the cat”, “The cat climbed tree”

Choose N=3, then:

IVl =8, Wl is of size 8*3, WO is of size 3*8 \

Target

The neighbors of “climbed” are: “cat”, “tree”
One-hot representation:
vec(“climbed”)=[00010000], vec(“cat”)=[010000000], vec(“tree”) =[00000001]

Goal...

https://web.archive.org/web/20160311161826/http://cs224d.stanford.edu/lecture_notes/LectureNotesl.pdf
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Word Representation
e.g. Word2Vec

Good performance in analogy test both and

Xcar a Xcars =X family — Xfamilies

Xshirt ~ Xclothing = Xchair ~ Xfurniture

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estimation of Word Representations in Vector Space. ICLR, 2013.


https://arxiv.org/abs/1301.3781

Word Representation

But there are
It uses the information of a window of size N.

GloVe
Advantages:
e Leverage the global statistical information
e State-of-the-art performance on the analogy test as Word2Vec

More details at:

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe: Global Vectors for Word Representation. EMNLP, 2014.



https://nlp.stanford.edu/pubs/glove.pdf

Language Models

What are language models?

e Language models compute occurrence of a number of
.E.g.P(w, .., w_)

Why do we care about language models?

e They are useful for lots of NLP applications like machine translation, text
generation and speech recognition, etc.



Language Models

Machine Translation:
« P(strong tea) > P(powerful tea)

Speech Recognition:

« P(speech recognition) > P(speech wreck ignition)
Question Answering / Summarization:

« P(President X attended ...) is higher for X = Trump



Language Models

language models apply of previous
words to calculate probabilities. (count-based or NN models)

i=m iI=m
P(’EU], S ’Eﬂm) = P(EUI'|E01, iy wi—l) ~ ]._.[ P(wﬂwf_(n_”, Er wi—l)
i=1 i=1
Most models are based on
(RNN), which are capable of conditioning the model on
in the corpus.

http://cs224d.stanford.edu/lecture_notes/notes4.pdf



RNN in Neural Language Model (NLM)

Hidden state:

Output:

Loss function at t:

The cross entropy error
over a corpus of size T:

A measure of confusion:

hy = J(Wthh}ht_1 + w(hx}x{t])
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Perplexity = 2/

http://cs224d.stanford.edu/lecture_notes/notes4.pdf



Pointer Sentinel Mixture Models

Issues with RNN:

« RNNs for LM do best with large hidden states while
(parameters increase quadratically with the size of hidden state)

still hinders learning (LSTMs capture long term dependencies ...
yet we only train BPTT for 35 timesteps)

is problematic

Thus, standard softmax RNNs struggle to predict rare
or unseen words (OoV)!

https://arxiv.org/pdf/1609.07843.pdf



Pointer Sentinel Mixture Models

Good news:
. (Vinyals et al., 2015) may v ¥ ¥ ¥V
help solve our rare / OoV problem! K ¥ v
How? LA T
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https://arxiv.org/pdf/1609.07843.pdf




Pointer Sentinel Mixture Models

« (Merity et al., 2016) introduces a model vocabulary softmax

(RNN) and positional softmax (a pointer component). And
through a sentinel.

Fed Chair Janet Yellen ... raised rates : Ms.
* A + i & [ & L3
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= : : : ! ! ' i —
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p(Yellen) = g pyocab(Yellen) + (1 — g) pper(Yellen)

https://arxiv.org/pdf/1609.07843.pdf



Pointer Sentinel Mixture Models

Output Distribution
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Pointer Network component:
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a = softmax(z)
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https://arxiv.org/pdf/1609.07843.pdf



Pointer Sentinel Mixture Models

Output Distribution Softmax-RNN component:

Pyocab (W) = softmax(Uhy 1),
plynlwr,. .. wy-1)
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Pointer Sentinel Mixture Models

Output Distribution Softmax-RNN component:

Poocap L) = softmax(Uhy ).
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Pointer Sentinel Mixture Models

Output Distribution Softmax-RNN component:

Poocap L) = softmax(Uhy ).
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Datasets

Penn Treebank WikiText-2
Train Walid Test Train Walid Test
Articles - - - 6N 60 60
Tokens 929590 73,76l 82431 | 2,088,628 217646 245,569
Vocab size 10,000 33278
oV rate 4.8% 2.6%
106 Zipf plot for Penn Treebank 303 Zipf plot for WikiText-2
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https://arxiv.org/pdf/1609.07843.pdf



Experiment Results

Model Parameters Validation Test
GGal {2015) - Varational LSTM (mz:d.iuin. untied) 20M 81.94+0.2 797401
GGal {2015) - Varational LSTM (medium, untied, MC) 20M1 - TE.A 0.1
Gal (2015) - Variational LSTM (large, untied) Ll TrO94+03 Th24+0.2
Gal (2015) - Varational LSTM (large, untied, MC) HiaM — Td.4 4+ 0.0
Kim et al. (2016) - CharCINMN 19M - TE.Q
Zilly et al. (2016) - Variational RHN 32M T2.8 T1.3
Foneout + Variational LSTM (medium) 206 24,4 B0.6
Pointer Sentinel-LSTM (medium) 2IM T2.4 70.9

Model Parameters Validation Test

Vaniational LSTM implementation from Gal (2015) 20M 101.7 6.3

Zoneout + Vanational LSTM 20M 108.7 100.9

Pomnter Sentimel-LSTM 2IM 8.8 80.8

Perplexity on Penn Treebank

Perplexity on WikiText-2

https://arxiv.org/pdf/1609.07843.pdf



Impact on Rare Words
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https://arxiv.org/pdf/1609.07843.pdf



From RNN to CNN

of current RNN LM that can be :
« They are blind to . (Morphologically rich
languages)
 Solution: Character-Aware NLM (Kim et al., 2015)

« The computation of features or states for different parts of long
sequences

 Solution: Quasi-RNN (Bradbury et al., 2017)



Character-Aware NLM

of the architecture;:

« Instead of using word embeddings as input of
RNN, (Kim et al., 2015) proposes to use the output

ofa as the input of RNN.

« The model has significantly as
there is no word embedding involved.

. is added between CNN

and RNN to boost performance.
« Recap of highway network:

z=t0g(Way+by)+(1-t)ay
t = o(Wry + by}

absurdity i5] recognized

=

! :
il | | —L
— o ok
-"'-F- i
moment the absurdity] 15 recognized

https://arxiv.org/pdf/1508.06615.pdf



Experiments

PPL Size Cs DeE Es Fr RuU
LSTM-Word-Small 976 5 M pep KN4 545 366 241 274 396
LSTM-CharCNN-Small 923 5M MLBL 465 206 200 225 304
LSTM-Word-Large 854 20M Word 503 305 212 220 352
LSTM-CharCNN-Large 789 19M Small Morph 414 278 197 216 290
Sum-Prod Net' (Cheng et al. 2014) 100.0 5™ Char: 20 2000 150 B S
LSTM-Medium! (Zaremba et al. 2014) 82.7 20 M Word 483 286 200 222 357
LSTM-Large' (Zaremba et al. 2014) T84 52mM Large Morph 398 263 177 196 271

Char 475 238 163 184 289

Perplexity on Penn TreeBank (English) .
Perplexity on 2013 ACL Workshop on MT dataset

small Large
No Highway Lavyers 100.3 B84.6
One Highway Layer 923 T9.97
Two Highway Layers  90.1 8.9
Multilayer Perceptron 111.2 926

Perplexity of models with different middle layers

https://arxiv.org/pdf/1508.06615.pdf



Quasi-RNN

An approach to neural sequence modeling that alternates CNN, which
apply in parallel across timesteps and
that applies in parallel across channels (Bradbury et al., 2017)

LSTM CNN QRNN

e St # SR #

LSTM/Linear Max-Pool fo-Pool = — — — — — >

Linear Convolution # Convolution #
LSTM/Linear 4~|;]~.‘|;|~.—|;i—> Max-Pool = fo-Pool im0 — == >
)

https://arxiv.org/pdf/1611.01576.pdf



Experiments

Model | Parameters  Validation  Test
LSTM (medium) (Zaremba et al., 2014) 20M 86.2 82.7
Variational LSTM (medium) (Gal & Ghahramani, 2016) 20M 81.9 79.7
LSTM with CharCNN embeddings (Kim et al., 2016) |19M - 78.9
Zoneout + Variational LSTM (medium) (Merity et al., 2016) 20M 84.4 80.6
Our models
LSTM (medium) 20M 85.7 82.0
QRNN (medium) 18M 82.9 79.9
QRNN + zoneout (p = 0.1) (medium) 18M 82.1 8.3
500
E RNN

= 400 . Softmax

% Optimization Overhead

=] 300

‘

; 200

£

= 100

LSTM LSTM (cuDNN) ORNN

=

https://arxiv.org/pdf/1611.01576.pdf



Application of Deep Learning in NLP

e Question Answering
o Dynamic Neural Networks
o Improved Dynamic Neural Networks
o Dynamic Co-attention Networks
e Coreference Resolution
o Deep Reinforcement Learning for Mention- Ranking
Coreference Models



Question Answering(QA) Example

I: Mary walked to the bathroom. I: Jane has a baby in Dresden.

I Sandra went to the garden. Q: What are the named entities?

I Daniel went back to the garden. A: Jane - person, Dresden - location
I: Sandra took the milk there. I: Jane has a baby in Dresden.

Q: Where is the milk? Q: What are the POS tags?

A: garden A: NNP VBZ DT NN IN NNP .

I: Everybody is happy. I: I think this model is incredible

Q: What’s the sentiment? Q: In French?

A: positive A: Je pense que ce modele est incroyable.

http://web.stanford.edu/class/cs224n/lectures/cs224n-2017-lecture16-DMN-QA.pdf



Dynamic Memory Network

e Dynamic Memory Network(Kumar et al., 2015)
o Hasboth and
e General Architecture for Question Answering (DMN+, Xiong et al.,
2016)
o Capable of tackling wide range of tasks and input formats
o Can even been used for (i.e.non QA)
(PoS, NER, sentiment, translation, ...)
e Composed of different modules focusing on sub-tasks
o Allows independent analysis and improvements on modules
m Inputrepresentations
m Memory components
m etc



Dynamic Memory Network(DMN/DMN+)

e Modules O C\'
Input Module Episodic Memory Episodic Memory

O
o Question Module | oot | phoswer]
. . Attention Memory Kitchen Attention Memory Palm
O EplSOdIC Memory MOdU,le Mechanism Update Mechanism Update
o Answer Module
A + A +
|I‘|§u‘f Mﬁdllle Question | | |I'lpllt MOdUIe Question
John moved to the garden. Where is the What kind of
apple? \ tree is in the
John got the apple there. background?
John moved to the kitchen.
Sandra got the milk there.
John dropped the apple.
John moved to the office.
(a) Text Question-Answering (b) Visual Question-Answering

Caiming Xiong, Stephen Merity, and Richard Socher. Dynamic Memory Networks for Visual and Textual Question Answering.
arXiv preprint arXiv:1603.01417, 2016.



https://arxiv.org/pdf/1603.01417.pdf

DMN: Input Module

° (about which a question is being asked)
into a set of vectors termed facts, represented as F = [f1, f2, ..., IN]
° networks are used
w = o (mei +UWh g + b(”)) (1)

Tu@' r o= o (W(T)xi F UM R, + b“”)) 2)
4@—7{ —{hil—IN R = tanh (Wa:i +rioUhsq + b<h>) 3)
1

“OUT h; = w;o iLz + (1 —u;) o hij_q 4)

Caiming Xiong, Stephen Merity, and Richard Socher. Dynamic Memory Networks for Visual and Textual Question Answering.
arXiv preprint arXiv:1603.01417, 2016.



https://arxiv.org/pdf/1603.01417.pdf

DMN: Modules

® Question Module:

representation Question Module ¢
i | i I
(embedding) q |
o uses GRU o
o
o getlastrecurrent state &
%/
&
N

Kumar, A., Irsoy, O., Su, J., Bradbury, J., English, R., Pierce, B., ... Socher, R. (2015). Ask Me Anything: Dynamic Memory
Networks for Natural Language Processing. arXiv, 1-10.



[ ]
DMN: Modules
: Retrieve information
Episodic Memorye, & 2 P & & & e
Module 00 o3 0.0 00 00 409 (00 00 _gm
4 I L
1 ﬁ 1 1 1 1 l 1 1 1 I
e, e, e e, e e e,
0.0 00 0.0 0.0 00 10 00 Im
A

[ ]

from facts F to answer question q.

o .Update
memory vector m(t) after each pass.
The initial memory vector is set the question Yo | g
&<
Input Module s, s, s, s, S5 \sﬁ \s, Ss
S & & & & & &
v}'\? ’ sz,*\?// 0'9\."’ e‘\%/ e@o ‘(\cz,o?k
. &“s/ &
P \ee, / 4 ‘)\b é@,ﬂa

@]
vector m(0)=q
eTwo components
oAttention update mechanisms W
& & &
4 & @%@“@ @"‘/w SR VA

mProducing a contextual vector c(t)
mSummary of relevant input

oMemory update mechanisms
mGenerating the episode memory

Kumar, A., Irsoy, O., Su, J., Bradbury, J., English, R., Pierce, B., ... Socher, R. (2015). Ask Me Anything: Dynamic Memory

Networks for Natural Language Processing. arXiv, 1-10.

mBased upon c(t) and m(t-1)



DMN: Modules

:receive both q and m(T)
to generate the model’s predicted answer

o Simple one word answers: softmax
output

o Many words answers: RNN decoder

to decode a = [q; m(T)]
e Training
O

on the answers
is used for training and

backpropagate through the network

Kumar, A., Irsoy, O., Su, J., Bradbury, J., English, R., Pierce, B., ...
Networks for Natural Language Processing. arXiv, 1-10.

0.0 m

Answer module

. 1l
P
[
N T
;&’b 0"‘) " 4
00 Am &
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Question Module g
| I
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w;
"
4
\0&'
e/
&
&

Socher, R. (2015). Ask Me Anything: Dynamic Memory




DMN Recap

Semantic Memory
Module

Episodic Memory , P 2 ; 2 Answer module
Modul e, e, e; e, e; €, e, e,
oduis 00 03 0.0 0.0 00 o9 0.0 00
U i -
A
1 1 1 1 1 1 1 1
e, e, e; e, e; €, e, €,
0.3 0.0 00 0.0 0.0 00 1.0 00
1 .

Input Module s,

EELELITEEETETT L 8
Q
e J 3
3
o

Kumar, A., Irsoy, O., Su, J., Bradbury, J., English, R., Pierce, B., ... Socher, R. (2015). Ask Me Anything: Dynamic Memory

Networks for Natural Language Processing. arXiv, 1-10.




DMN: Improvements

e While this worked well for with
supporting facts, it did not perform well on

o GRU only allows sentences to have
context from them
o Supporting sentences may be too far
away from each other to allow for these
distant sentences to interact through
the
e Improved Dynamic Memory Networks -
DMN+(Xiong et al., 2016)
o Input Fusion Layer
o Updated episodic memory module

Model ODMN
Input module GRU
Attention Z gi fq;
Mem update GRU
Mem Weights Tied
bAbI En;
QA2 36.0
QA3 42.2
QAS 0.1
QA6 35.7
QA7 8.0
QA8 1.6
QA9 33
QAIO0 0.6
QAl14 3.6
QAl6 55.1
QA17 39.6
QA18 9.3
QA20 1.9
Mean error

11.8

O~ O\ L WD

: 2 supporting facts

: 3 supporting facts

: 3 argument relations
: yes/no questions

: counting

: lists/sets

: simple negation

11:
14:
16:
17:
18:
19:

basic coreference
time reasoning
basic induction
positional reasoning
size reasoning

path finding

Caiming Xiong, Stephen Merity, and Richard Socher. Dynamic Memory Networks for Visual and Textual Question Answering.
arXiv preprint arXiv:1603.01417, 2016.



https://arxiv.org/pdf/1603.01417.pdf

DMN+: Input Module

e Replace single GRU with

oSentence reader: positional
encoder is now used

oFusion layer: propagate
information from future to

generate facts
— —
fi = GRUsyal fis Fi i)

Textual Input Module

Facts f4 f f3
[ceru |
Input fusion GRU IG&I GRU
layer I I
GRU | GRU | GRU

Caiming Xiong, Stephen Merity, and Richard Socher. Dynamic Memory Networks for Visual and Textual Question Answering.
arXiv preprint arXiv:1603.01417, 2016.


https://arxiv.org/pdf/1603.01417.pdf

DMN+: Episodic Memory Module

e Episodic Memory Module: Retrieve information from input facts F
by focusing attention on a subset of these facts
° with each fact f(i) during
passt.
o Computation allows interactions between fact, question and
episode memory state m(t-1)
e Gates g are activated if the sentence relevant to the question or

EOT A= oq; fi om! 5| —qli | i —mt|
Zi=w® tanh (WO £ +50) 45
(___ exp(Z))

2 k=1 exP(Z})

Caiming Xiong, Stephen Merity, and Richard Socher. Dynamic Memory Networks for Visual and Textual Question Answering.
arXiv preprint arXiv:1603.01417, 2016.
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DMN+: Episodic Memory

e Now with each gating per fact g(i,t), we can get the contextual vector c(t) to
update the memory m(t)
e Two options
o Soft attention: apply the softmax weights directly over the facts

m Advantages Z N 57
e Easytocompute i=19; J i
e If the softmax activation is spiky, it can approximate a hard
attention

m Disadvantage
e summation loses positional and ordering information
o Attention based GRU

m More sensitive to both the position and ordering of the input facts F



DMN+: Episodic Memory

o Attention based GRU: attention should be sensitive to position and ordering
of input facts F

m Update gates decides how much of each dimension of hidden states to
retain and how much should be updated at every timestep
m Replace update gate for the attention gate

-~

hi = wujoh;+(1—wu;)ohi— hi:g;ﬁOﬁi—i—(l—gg)Ohi_1
11’;
9;
T

> OuUT " OouT

Caiming Xiong, Stephen Merity, and Richard Socher. Dynamic Memory Networks for Visual and Textual Question Answering.
arXiv preprint arXiv:1603.01417, 2016.
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DMN+: Experiments

Dataset
o Facebook bAbI-10k

ODMN: original DMN
DMNZ2: Input Fusion Layer
DMN3: Attention based
GRU

DMN-+: ReLU activation to
compute memory update

Model ODMN DMN?2 DMN3 DMN+
Input module GRU  Fusion Fusion Fusion 2.2 Supporting facts
Attention Sgifi >.gifi AtnGRU  AttnGRU 3. 3 ine fact
Mem update GRU ~ GRU GRU  ReLly =i SUPPOIUNg 1Acy
Mem Weights Tied Tied Tied Untied 5: 3 argument relations

bADI English 10k dataset 6: yes/no questions
QA2 36.0 0.1 0.7 0.3 7. i
QA3 422 19.0 9.2 1.1 /+counting
QA5 0.1 0.5 0.8 0.5 8: lists/sets
QA6 35.7 0.0 0.6 0.0 s
QA7 20 e e v4 9: simple negation
QAS 16 0.1 0.2 00 11: basic coreference
QA9 3.3 0.0 0.0 0.0 14: time reasoning
QA10 0.6 0.0 0.2 0.0 . P .
QA14 3.6 0.7 0.0 02 L6 basllc.mduct]on '
QA6 55.1 45.7 479 453 17: positional reasoning
QA17 39.6 59 5.0 4.2 18: size reasoning
QAI8 93 3.8 0.1 2.1 19: b G
QA20 1.9 0.0 0.0 0.0 . path finding
Mean error 11.8 3.9 33 2.8

DAQUAR-ALL visual dataset

Accuracy 27.54 28.43 28.62 28.79

Caiming Xiong, Stephen Merity, and Richard Socher. Dynamic Memory Networks for Visual and Textual Question Answering.

arXiv preprint arXiv:1603.01417, 2016.
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Dynamic Coattention Networks(Xiong et
al., 2017)

e Coattentive encoder that captures the interactions between the
question and the document
o Attend to the question and document simultaneously

e adynamic pointing decoder that alternates between estimating the
start and end of the answer span

u: g
o | SR S B
Dynamic pointer ) |:| |:| H H H bi-Ls™ [ & bisTM [ biLsTm [ bi-Lsm [ ] biLs [
: decoder eoe XX
Coattention encoder > - e o
start index: 49 documen! A
end index: 51
A i
steam turbine plant: H H H H |:|
A? cP .
Document encoder Question encoder 3 & o o4 H H H |:| H
o Q
The weight of boilers and condensers generally § & g HHHHH 2
makes the power-to-weight ... However, most What plants create most Q: s Q
electric power is generated using steam turbine electric power?

c
Q
¢ RE
plants, so that indirectly the world's industry > 2
48 . e

n+1

Caiming Xiong , Victor Zhong, and Richard Socher. Dynamic Coattention Networks for Question Answering. ICLR 2017.
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QA Demo

Bi-directional Attention Flow Demo
for Stanford Question Answering Dataset (SQuAD)

Direction : Select a paragraph and write your own question. The answer is always a subphrase of the paragraph - remember it when you ask a question!

Select Paragraph
| [36] Yuan dynasty &
The Yuan dynasty (Chinese: FL8E; pinyin: Yudn Chéo), officially the Great Yuan When was Yuan Dynasty established?

"""""""""""" new guestion!

clan. Although the Mongoels had ruled territories including today's North China for -I
decades, it was not until 1271 that Kublai Khan officially proclaimed the dynasty in
the traditional Chinese style. His realm was, by this point, isolated from the other 1271

khanates and controlled most of present-day China and its surrounding areas,
including modern Mongolia and Korea. It was the first foreign dynasty to rule all of

Mongolian homeland and continued to rule the Northern Yuan dynasty. Some of the

Reference : Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, Hannaneh Hajishirzi. "Bidirectional Attention Flow for Machine Comprehension" [link]

Demo by : Sewon Min
https://arxiv.org/abs/1611.01603



http://35.165.153.16:1995
http://35.165.153.16:1995

Coreference Resolution

What is Coreference Resolution ?
o Identify all noun phrases(mentions) that

Barack Obama nominated Hillary Rodham Clinton as
his secretary of state on Monday. He chose her
because she had foreign affairs experience as a
former First Lady.

Applications
o Full text understanding
o Machine translation
o Text summarization
o information extraction and question answering




Coreference Resolution

e Whatis Coreference Resolution ?
o Identify all noun phrases(mentions) that refer
o Coreference resolution is a document-level structured prediction task

Barack Obama nominated as
his on Monday. He chose

because had foreign affairs experience as a
former

e Applications
o Full text understanding
o Machine translation
o Text summarization
o information extraction and question answering



Coreference Models

e Mention Pair models

o Treat coreference chains as a collection of pairwise links

o Make independent pairwise decisions

o Reconcile them in some deterministic way (e.g. transitivity)
e Mention-Ranking Models

e Dominant approach to coreference resolution in recent years

e Assign each mention its highest scoring candidate antecedent according to the

model

e Infer global structure by making a sequence of local decisions
e Entity-Mention models

o Acleaner, but less studied approach

o Explicitly cluster mentions of the same discourse entity

http://web.stanford.edu/class/cs224n/lectures/cs224n-2017-lecture15.pdf



Neural Mention-Pair Model

e Standard feed-forward neural network
* From (Clark and Manning, 2016); similar to Wiseman et al. (2015)
* |nput layer: word embeddings and a few categorical features

Score s

Hidden Layer hy ?W4h3 + by
OOOOOOOOOOOOOOO

Hidden Layer hy | ReLU(Wih, + by)
OOOOOOOOOOOOOOO

Hidden Layer h, | ReLU(W3h, + by)
OOOOOOOOOOOOOOO

Input Layer hg RGLU(WlhD + by)

[[OO —0O0)[0+0) [OO=00)[O=0) [OOJ]

Candidate Candidate =~ Mention Mention Additional

Antecedent  Antecedent Embeddings Features Features
Embeddings Features

http://cs.stanford.edu/people/kevclark//resources/clark-manning-emnlp2016-deep.pdf



Neural Mention-Pair Model

e Experiment
o Dataset: English and Chinese Portions of the CONLL 2012

Shared Task dataset
Model | ngish | Chinese
Chen & Ng (2012) 54,52 57.63 .
[CONLL 2012 Chinese winner] Example Wins
Fernandes (2012) 60.65 5146
[CoNLL 2012 English winner] the country’s leftist rebels the guerillas
Bjorkelund & Kuhn. (2014) 61.63 60.06 the company the New York firm
Best previous Chinese system] 216 sailors from the “"USS cole” the crew
Wiseman et al. (2016) 64.21 — the gun the rifle
[Best previous English system]
Clark & Manning (ACL 2016) 65.29 63.66

http://cs.stanford.edu/people/kevclark//resources/clark-manning-emnlp2016-deep.pdf



Neural Mention-Pair Model

e Next Challenge: Some Local Decisions than others

[Bill Ciinton} [ he ] [Clinton} [Clinton} [ Hillary her
g o o g Wy

7
\\ o

—

Severe error

“it was raining, but the car stayed dry because it was under cover”

mcIEs

~ 5

‘"'-._..—-/

Minor error

http://web.stanford.edu/class/cs224n/lectures/cs224n-2017-lecture15.pdf



Prior work

e Heuristically defined the importance of a coreference decision
« Requires careful - Grid Search

False New

O (me) (=) 0w ) (o)
\/\—/Wongunk

[NEWJ[IJ[Nader][he] my}[she]
\_/\_/ http://web.stanford.edu/class/cs224n/lectures/cs224n-2017-lecture15.pdf




Coreference Resolution - RL

e Reinforcement Learning
e Clark & Manning(EMNLP 2016): use RL to learn which local
decisions lead to a good clustering
o No hyperparameter search
o Small boost in accuracy

candidates for a4

— — — —
—
—
—

—
—
i —_—

T T ™ =
/,/ //,- //‘__,- H:'&-
el o A il \""\
[ NEW [ I [Nader [ he ] [ my ] [ she ]
aq as

http://web.stanford.edu/class/cs224n/lectures/cs224n-2017-lecture15.pdf



Coreference Resolution - RL

e Training
o After completing a sequence of actions, the model receives a
reward
o Examining Reward-Based Costs
e Experiment
o Dataset: English and Chinese Portions of the CONLL 2012

Shared Task dataset
(Model | English | Chinese |
Heuristic Loss 65.36 63.54
REINFORCE 65.41 63.64

Reward Rescaling 65.73 63.88

http://cs.stanford.edu/people/kevclark//resources/clark-manning-emnlp2016-deep.pdf



Coreference Resolution - RL

False New Costs

e Error Breakdown 3.0 S IS E—
o Reinforcement learning 55 .,
model actually makes more - ;' s
errors! 2 r &
o However, theerrorsareless 2 '5 H =
severe 10 & kS
e Reward-Based Costs 6.5l b 1
o High variance in costs for a ool o’ Rk T .
glven error tgpe 0.2 0.4 COS:).SA 0.8 1.0 1.2
s s e o ""
Heuristic Loss 1956 1719 1258
Reward Rescaling 1994 1725 1247

http://cs.stanford.edu/people/kevclark//resources/clark-manning-emnlp2016-deep.pdf



Syntactic Parsing (Dependency & Constituency)

are
We : trying
: I I to
understand
g_-‘-‘-_-"-'-—.___
: difference

the

We are trying to understand the difference.

Dependency

HFE trying
: to understand
understand difference

th_c diﬁ'c_rence:

We are trying to understand the difference.

Constituency (BPS)



Parsing as Tools in NLP

e Resolve in language:
o E.g."“Isaw a girl with a telescope.”
° as additional features in NLP tasks:
Entity Recognition

Relation Extraction
Word embedding learning

O O O O



Constituency Parsing

Constituency Parsing (phrase structure parsing) is a way to break a
piece of text (e.g. one sentence) into . One goal is to identify
the constituents which would be useful when extracting information

from text.

S

P VP
Pl S s

A A M W Adv

I 1

Colorless green ideas sleep furiously.

http://web.stanford.edu/class/cs224n/lecture_notes/cs224n-2017-notes7.pdf



Recursive Neural Networks

Recursive Neural Networks (Tree RNNs) are perfect for settings that
have nested hierarchy and an intrinsic

(7 h = anh(w® | Let | 4 p0)
}.i'.iight

http://web.stanford.edu/class/cs224n/lecture_notes/cs224n-2017-notes7.pdf



Tree RNNSs for Structure Prediction

Image Al Text
Structured margin loss : Input The house has
ground truth tree e e r oz 3
a window
Alz,,§) =x " 1{subTree(d) ¢ ¥ (z,0)}, b, 2
dENLH) Adjacency 12345 ! 12345
Makrix 3
3
the set of non-terminal nodes :
Regularized risk function to be minimized: Set of
1 X A Correct Tree ]
P e Z1gn? Structures s
N ;r‘ + 3118l -4 %
Training Inputs
ri(@) = Eﬁx {SIZH"'-.?".{E T4 §)) +ﬂ|:m1.,i,,y:|}
i ]  » .
< all ible tr h n nstr from an input x
_ mex J[.-;[HNN{ﬂhz,hy,}jj possible trees that can be constructed from an input
!l'lE {IE-=

http://ai.stanford.edu/~ang/papers/icml11-ParsingWithRecursiveNeuralNetworks.pdf



Tree RNNSs for Structure Prediction

Structure Predicting RNNs (Socher et al., 2011)
 After computing the scores for all pairs of neighboring segments, the algorithm

« The process repeats (treating the new pi,j just like any other segment) until all pairs
are merged and only one parent activation is left in the set C.

| wgggreI 5 .- g - WSCGT‘EP

(eesese) p

W __ p = f(Wlei;e2] +b)
(essese) (esssee)
o] C> 2
One recursive neural network s(RNN(0, z;, 7)) = ZdEN(ﬁj Sd

which is replicated for each pair

of pOSSIble Input vectors http://ai.stanford.edu/~ang/papers/icml11-ParsingWithRecursiveNeuralNetworks.pdf



Syntactically Untied Tree RNN (SU-RNN)

Using

: “syntactically untie”

the weights of these different tasks. (Socher et al., 2013a)

Syntactically Untied Recursive Neural Network

() (2 =a
P, p=@8%

‘ plt) il §9 = f- W)

(A,a=@®) (B,b=@®) (C, c=@&9)

==

| (AP @ |
f w 1_pm|

_c_ |

http://web.stanford.edu/class/cs224n/lecture_notes/cs224n-2017-notes7.pdf



Matrix-Vector Tree RNN (MV-RNN)

We now augment our word representation, to not only include a word
vector, but also a (more expressive)! (Socher et al., 2012)

Recursive Matrix-Vector Model

R - wector
f(Ba, Ah} % Y g
d ooy ¥ - matrix
Ba= =% .ﬁ.l:r" . o

F i o

|

1 l : Hx

very good movie

L0 (b,B) (e, C]

http://web.stanford.edu/class/cs224n/lecture_notes/cs224n-2017-notes7.pdf



Tree RNN for Classification

We can leverage the vector representation of each node by adding to
each RNN parent node to predict class labels,
such as visual or syntactic categories.

label, = softmazx(W'ep)

http://ai.stanford.edu/~ang/papers/icml11-ParsingWithRecursiveNeuralNetworks.pdf



Sentiment Classification with Tree RNN

(Socher et al., 2013b) applies (RNTN)
for the task of sentiment analysis (5 sentiment classes)

Y = tanh(x"Vx + Wx)  Vis a 3rd order tensor in € R24x2dxd

xTV[i]x Vi € [1,2,..d] slices of the tensor outputting a vector € R“

http://web.stanford.edu/class/cs224n/lecture_notes/cs224n-2017-notes7.pdf



Sentiment Classification with Tree RNN

Neural Tensor Layer

Slices of Standard
Tensor Layer Layer

\

One slice of a RNTN. There
would be d of these slices.

) (Socher et al., 2013b)

https://nip.stanford.edu/~socherr/EMNLP2013_RNTN.pdf



Conclusion

e Summary
oIntroduction to Natural Language Processing
oWord Representation
oLanguage Model
oQuestion Answering
oCoreference Resolution
oDependency Parsing
oConstituency Parsing

e Limitation & Challenges
o limited in their ability to “reason”: e.g. A dog is chasing the bouy.
o Need too much data (in a supervised fashion)
o Andmore
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DMN+: Experiments _ DMN+ E2E NR

2: 2 supporting facts 0.3 03 -
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14: time reasoning 0.2 0.1 -
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18: size reasoning 2.1 5.3 -

19: path finding 00 23 1.6

Mean error (%) 2.8 4.2 -

Failed tasks (err >5%) 1 3 -
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DMN+: Episodic Memory

e After each pass through the attention mechanism, we update m(t)
om! = GRU(c*,m'™1)

e How to obtain context vector c(t) with attention GRU
o Lastrecurrent state

e Changing to ReLU improves accuracy by another 0.5%

O
m' = ReLU (Wt[mt_l; ¢’ q] + b)



