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Introduction to NLP



What is natural language processing?

Difficult?
Where do we use natural language processing?

● Question answering

● Machine translation

● A lot More !

http://blog.webcertain.com/machine-translation-technology-the-
search-engine-takeover/18/02/2015/

https://sixcolors.com/post/2016/04/siri-tells-you-all-about-liam/

Introduction to NLP
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Introduction to NLP

So NLP is something that can help machines achieve these tasks, right?

We can define NLP as:

● A work which enables machines to “understand” human language 

and further performs useful tasks

● It needs knowledge from CS, AI, Linguistics

Difficult!



Introduction to NLP

Difficulties in NLP:

● We omit a lot of common knowledge, which we assume the reader 

possesses

● We keep a lot of ambiguities, which we assume the reader knows 

how to resolve

○ e.g. “The man saw a boy with a telescope.”

Who has a telescope? => Ambiguity is a killer



Introduction to NLP
Currently, what are the tools that are commonly used in 
NLP ?

● Part-Of-Speech tagging

● Entity Recognition

● Dependency Parsing

● etc

An interesting demo here: Stanford CoreNLP Demo

Due to the time 
limitation, we are 
gonna talk about 
some of these tools 
at the end.

http://nlp.stanford.edu:8080/corenlp/process


But why deep learning for NLP?

Most current NLP tasks work well because of human-designed features.
● Too specific and incomplete

● Require domain-specific knowledge 

=> Different domain needs different features

Introduction to NLP



Introduction to NLP

However, deep learning can alleviate these issues
● Features are learned automatically from examples

● The ability to capture the complicated relations

Furthermore
● Gigantic amount of data becomes available today

● Faster CPU/GPU enables us to do deep learning more efficiently



Sounds good, right?

But how do we feed the text data into deep learning models 
(e.g. the neural network) ?

This is the most basic and important step. How do we represent a word?

Introduction to NLP



Word Representation
Common/intuitive way to represent a word in computer => using a vector!

A traditional approach: discrete representation (one-hot representation)
● Each word is represented using a vector of dimension |V| -- size of vocabulary

● “1” in one spot and “0” in all other spots

Example:
Corpus: “I like deep learning.”, “I like neural networks.”, “I can do NLP.”
=> V = { “I”, “like”, “deep”, “learning”, “neural”, “networks”, “can”, “do”, “NLP” }

What is the one-hot representation for “like” ? (Using the above order)

=> ( 0, 1, 0, 0, 0, 0, 0, 0, 0)



Word Representation

Problems with one-hot representation
● Similar words cannot be represented in a similar way

e.g. We have corpus with only 2 words {“skillful”, “adept”}
vec(“skillful”) = (1,0), vec(“adept”) = (0,1)
=> The similarity is lost.

● The curse of dimensionality => computational complexity
● The vector is sparse

We need better 
representation !



Word Representation

Idea:
We can represent a word by utilizing the information from its other words
=> Distributional representation

A Question:
Use all other words in the corpus OR just a window of words?
Lead to different approaches:
● Full-window approach: e.g. Latent Semantic Analysis (LSA)
● Local-window approach: e.g. Word2Vec



Word Representation

e.g. Word2Vec
● There are 2 variants -- Continuous bag-of-words (CBOW), skip-gram

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient 
Estimation of Word Representations in Vector Space. ICLR, 2013.

https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781


Word Representation
e.g. Word2Vec with skip-gram

- WI: input projection matrix of size |V|*N
- WO: output projection matrix of size N*|V|

- Objective function: 
= the averaged (difference between predicted 
probabilistic distribution and all neighbors in the 
window)

An example to explain!

https://web.archive.org/web/20160311161826/http://cs224d.stanford.edu/lecture_notes/LectureNotes1.pdf

https://web.archive.org/web/20160311161826/http://cs224d.stanford.edu/lecture_notes/LectureNotes1.pdf
https://web.archive.org/web/20160311161826/http://cs224d.stanford.edu/lecture_notes/LectureNotes1.pdf


Word Representation
e.g. Word2Vec with skip-gram
Example:
Corpus:
“the dog saw a cat”,“the dog chased the cat”, “The cat climbed tree”
Choose N=3, then:
|V| = 8, WI is of size 8*3, WO is of size 3*8

The neighbors of “climbed” are: “cat”, “tree”
One-hot representation:
vec(“climbed”) = [0 0 0 1 0 0 0 0], vec(“cat”) = [0 1 0 0 0 0 0 0 0], vec(“tree”) = [0 0 0 0 0 0 0 1]

Goal… 

https://web.archive.org/web/20160311161826/http://cs224d.stanford.edu/lecture_notes/LectureNotes1.pdf

Target

https://web.archive.org/web/20160311161826/http://cs224d.stanford.edu/lecture_notes/LectureNotes1.pdf
https://web.archive.org/web/20160311161826/http://cs224d.stanford.edu/lecture_notes/LectureNotes1.pdf


Word Representation

e.g. Word2Vec

Good performance in analogy test both syntactically and semantically

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estimation of Word Representations in Vector Space. ICLR, 2013.

https://arxiv.org/abs/1301.3781


Word Representation

GloVe
Advantages:
● Leverage the global statistical information
● State-of-the-art performance on the analogy test as Word2Vec

More details at:
Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe: Global Vectors for Word Representation. EMNLP, 2014.

But there are problems...

It only uses the information of a window of size N.

https://nlp.stanford.edu/pubs/glove.pdf


Language Models

What are language models?

● Language models compute the probability of occurrence of a number of 
words in a particular sequence. E.g. P(w1, ..., wm)

Why do we care about language models?

● They are useful for lots of NLP applications like machine translation, text 
generation and speech recognition, etc.



Language Models

Machine Translation:
• P(strong tea) > P(powerful tea)

Speech Recognition:
• P(speech recognition) > P(speech wreck ignition)

Question Answering / Summarization:
• P(President X attended …) is higher for X = Trump

…



Language Models

Conventional language models apply a fixed window size of previous 
words to calculate probabilities. (count-based or NN models)

Most state-of-the-art models are based on Recurrent Neural Networks 
(RNN), which are capable of conditioning the model on all previous 
words in the corpus.

http://cs224d.stanford.edu/lecture_notes/notes4.pdf



RNN in Neural Language Model (NLM)

Three-time-step RNN 

Hidden state:

Output:

Loss function at t:

The cross entropy error 
over a corpus of size T:

A measure of confusion:

http://cs224d.stanford.edu/lecture_notes/notes4.pdf



Pointer Sentinel Mixture Models

Issues with RNN:
• RNNs for LM do best with large hidden states while hidden state is limited in capacity 

(parameters increase quadratically with the size of hidden state)
• Vanishing gradient still hinders learning (LSTMs capture long term dependencies … 

yet we only train BPTT for 35 timesteps)
• Encoding/decoding rare words is problematic

Thus, standard softmax RNNs struggle to predict rare 
or unseen words (OoV)!

https://arxiv.org/pdf/1609.07843.pdf



Pointer Sentinel Mixture Models

Good news:
• Pointer networks (Vinyals et al., 2015) may 

help solve our rare / OoV problem!

How?
• A pointer network uses attention to select an 

element from the input as output, which 
allows it to produce previously unseen input 
tokens.

However…
• The correct answer can only be in the input 

with a pointer network ☹
Pointer network

https://arxiv.org/pdf/1609.07843.pdf



Pointer Sentinel Mixture Models

• (Merity et al., 2016) introduces a model combining vocabulary softmax 
(RNN) and positional softmax (a pointer component). And the pointer 
itself can decide how to combine through a sentinel.

https://arxiv.org/pdf/1609.07843.pdf



Pointer Sentinel Mixture Models
Softmax-RNN component:

Pointer Network component:

Mixture Model:

Mixture gate:

https://arxiv.org/pdf/1609.07843.pdf
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Pointer Sentinel Mixture Models
Softmax-RNN component:

Pointer Network component:

Mixture Model:

Mixture gate:

https://arxiv.org/pdf/1609.07843.pdf



Datasets

https://arxiv.org/pdf/1609.07843.pdf



Experiment Results

Perplexity on Penn Treebank

Perplexity on WikiText-2

https://arxiv.org/pdf/1609.07843.pdf



Impact on Rare Words

https://arxiv.org/pdf/1609.07843.pdf



From RNN to CNN

Limitations of current RNN LM that can be alleviated by CNN:
• They are blind to sub-word information. (Morphologically rich 

languages)
• Solution: Character-Aware NLM (Kim et al., 2015)

• The computation of features or states for different parts of long 
sequences cannot occur in parallel 

• Solution: Quasi-RNN (Bradbury et al., 2017)



Character-Aware NLM

Highlights of the architecture:

• Instead of using word embeddings as input of 
RNN, (Kim et al., 2015) proposes to use the output 
of a character-level CNN as the input of RNN.

• The model has significantly fewer parameters as 
there is no word embedding involved.

• Highway network layer is added between CNN 
and RNN to boost performance.

• Recap of highway network: 

https://arxiv.org/pdf/1508.06615.pdf



Experiments

Perplexity of models with different middle layers 

Perplexity on Penn TreeBank (English)
Perplexity on 2013 ACL Workshop on MT dataset

https://arxiv.org/pdf/1508.06615.pdf



Quasi-RNN

An approach to neural sequence modeling that alternates CNN, which 
apply in parallel across timesteps and a minimalist recurrent pooling 
function that applies in parallel across channels (Bradbury et al., 2017)

https://arxiv.org/pdf/1611.01576.pdf



Experiments

https://arxiv.org/pdf/1611.01576.pdf



Application of Deep Learning in NLP

● Question Answering 
○ Dynamic Neural Networks
○ Improved Dynamic Neural Networks
○ Dynamic Co-attention Networks

● Coreference Resolution
○ Deep Reinforcement Learning for Mention- Ranking 

Coreference Models



Question Answering(QA) Example

http://web.stanford.edu/class/cs224n/lectures/cs224n-2017-lecture16-DMN-QA.pdf



Dynamic Memory Network

● Dynamic Memory Network(Kumar et al., 2015)
○ Has both a memory component and an attention mechanism

● General Architecture for Question Answering（DMN+, Xiong et al., 
2016）
○ Capable of tackling wide range of tasks and input formats
○ Can even been used for general NLP tasks (i.e. non QA)

(PoS, NER, sentiment, translation, ...)
● Composed of different modules focusing on sub-tasks

○ Allows independent analysis and improvements on modules
■ Input representations
■ Memory components
■ etc



Dynamic Memory Network(DMN/DMN+)

● Modules
○ Input Module
○ Question Module
○ Episodic Memory Module
○ Answer Module

Caiming Xiong, Stephen Merity, and Richard Socher. Dynamic Memory Networks for Visual and Textual Question Answering. 
arXiv preprint arXiv:1603.01417, 2016.

 

https://arxiv.org/pdf/1603.01417.pdf


DMN: Input Module

● Processes the input data (about which a question is being asked) 
into a set of vectors termed facts, represented as F = [f1, f2, …, fN]

● Gated Recurrent Unit(GRU) networks are used 

Caiming Xiong, Stephen Merity, and Richard Socher. Dynamic Memory Networks for Visual and Textual Question Answering. 
arXiv preprint arXiv:1603.01417, 2016.

 

https://arxiv.org/pdf/1603.01417.pdf


DMN: Modules

● Question Module: Maps question 
sentence to a vector representation 
(embedding) q 
○ uses GRU
○ get last recurrent state

Kumar, A., Irsoy, O., Su, J., Bradbury, J., English, R., Pierce, B., … Socher, R. (2015). Ask Me Anything: Dynamic Memory 
Networks for Natural Language Processing. arXiv, 1–10.



DMN: Modules
● Episodic Memory Module: Retrieve information 

from facts F to answer question q. 
○ May pass over input multiple times. Update 

memory vector m(t) after each pass. 
○ The initial memory vector is set the question 

vector m(0)=q

●Two components
○Attention update mechanisms

■Producing a contextual vector c(t)
■Summary of relevant input

○Memory update mechanisms
■Generating the episode memory
■Based upon c(t) and m(t-1)

Kumar, A., Irsoy, O., Su, J., Bradbury, J., English, R., Pierce, B., … Socher, R. (2015). Ask Me Anything: Dynamic Memory 
Networks for Natural Language Processing. arXiv, 1–10.



DMN: Modules

● Answer Module: receive both q and m(T) 
to generate the model’s predicted answer 
○ Simple one word answers: softmax 

output
○ Many words answers: RNN decoder 

to decode a = [q; m(T)]
● Training

○ Cross entropy error on the answers 
is used for training and 
backpropagate through the network 

Kumar, A., Irsoy, O., Su, J., Bradbury, J., English, R., Pierce, B., … Socher, R. (2015). Ask Me Anything: Dynamic Memory 
Networks for Natural Language Processing. arXiv, 1–10.



DMN Recap 

Kumar, A., Irsoy, O., Su, J., Bradbury, J., English, R., Pierce, B., … Socher, R. (2015). Ask Me Anything: Dynamic Memory 
Networks for Natural Language Processing. arXiv, 1–10.



DMN: Improvements
● While this worked well for bAbI-1k with 

supporting facts, it did not perform well on 
bAbI-10k without supporting facts
○ GRU only allows sentences to have 

context from sentences before them
○ Supporting sentences may be too far 

away from each other to allow for these 
distant sentences to interact through 
the word level GRU

● Improved Dynamic Memory Networks - 
DMN+(Xiong et al., 2016)
○ Input Fusion Layer
○ Updated episodic memory module

Caiming Xiong, Stephen Merity, and Richard Socher. Dynamic Memory Networks for Visual and Textual Question Answering. 
arXiv preprint arXiv:1603.01417, 2016.

 

https://arxiv.org/pdf/1603.01417.pdf


DMN+: Input Module

● Replace single GRU with two 
different components
○Sentence reader: positional 
encoder is now used
○Fusion layer: propagate 
information from future to 
generate facts 

Caiming Xiong, Stephen Merity, and Richard Socher. Dynamic Memory Networks for Visual and Textual Question Answering. 
arXiv preprint arXiv:1603.01417, 2016.

 

https://arxiv.org/pdf/1603.01417.pdf


DMN+: Episodic Memory Module 

● Episodic Memory Module: Retrieve information from input facts F 
by focusing attention on a subset of these facts 

● Compute scalar attention gate value gt
i with each fact f(i) during 

pass t.
○ Computation allows interactions between fact, question and 

episode memory state m(t-1)
● Gates g are activated if the sentence relevant to the question or 

memory

Caiming Xiong, Stephen Merity, and Richard Socher. Dynamic Memory Networks for Visual and Textual Question Answering. 
arXiv preprint arXiv:1603.01417, 2016.

 

https://arxiv.org/pdf/1603.01417.pdf


DMN+: Episodic Memory
● Now with each gating per fact g(i,t), we can get the contextual vector c(t) to 

update the memory m(t)
● Two options

○ Soft attention: apply the softmax weights directly over the facts
■ Advantages

● Easy to compute
● If the softmax activation is spiky, it can approximate a hard 

attention
■ Disadvantage

● summation loses positional and ordering information
○ Attention based GRU

■ More sensitive to both the position and ordering of the input facts F



DMN+: Episodic Memory
○ Attention based GRU: attention should be sensitive to position and ordering 

of input facts F
■ Update gates decides how much of each dimension of hidden states to 

retain and how much should be updated at every timestep
■ Replace update gate for the attention gate

Caiming Xiong, Stephen Merity, and Richard Socher. Dynamic Memory Networks for Visual and Textual Question Answering. 
arXiv preprint arXiv:1603.01417, 2016.

 

https://arxiv.org/pdf/1603.01417.pdf


DMN+: Experiments

● Dataset
○ Facebook bAbI-10k

● ODMN: original DMN
● DMN2: Input Fusion Layer
● DMN3: Attention based 

GRU
● DMN+: ReLU activation to 

compute memory update

Caiming Xiong, Stephen Merity, and Richard Socher. Dynamic Memory Networks for Visual and Textual Question Answering. 
arXiv preprint arXiv:1603.01417, 2016.

 

https://arxiv.org/pdf/1603.01417.pdf


Dynamic Coattention Networks(Xiong et 
al., 2017)
● Coattentive encoder that captures the interactions between the 

question and the document
○ Attend to the question and document simultaneously

● a dynamic pointing decoder that alternates between estimating the 
start and end of the answer span

Caiming Xiong , Victor Zhong, and Richard Socher. Dynamic Coattention Networks for Question Answering. ICLR 2017.
 

https://arxiv.org/pdf/1611.01604.pdf


QA Demo

https://arxiv.org/abs/1611.01603

http://35.165.153.16:1995
http://35.165.153.16:1995


Coreference Resolution

● What is Coreference Resolution ?
○ Identify all noun phrases(mentions) that refer

● Applications
○ Full text understanding
○ Machine translation
○ Text summarization
○ information extraction and question answering

Barack Obama nominated Hillary Rodham Clinton as 
his secretary of state on Monday. He chose her 
because she had foreign affairs experience as a 
former First Lady.



Coreference Resolution
● What is Coreference Resolution ?

○ Identify all noun phrases(mentions) that refer
○ Coreference resolution is a document-level structured prediction task

● Applications
○ Full text understanding
○ Machine translation
○ Text summarization
○ information extraction and question answering

Barack Obama nominated Hillary Rodham Clinton as 
his secretary of state on Monday. He chose her 
because she had foreign affairs experience as a 
former First Lady.



Coreference Models

● Mention Pair models
○ Treat coreference chains as a collection of pairwise links
○ Make independent pairwise decisions
○ Reconcile them in some deterministic way (e.g. transitivity)

● Mention-Ranking Models
● Dominant approach to coreference resolution in recent years
● Assign each mention its highest scoring candidate antecedent according to the 

model
● Infer global structure by making a sequence of local decisions

● Entity-Mention models
○ A cleaner, but less studied approach
○ Explicitly cluster mentions of the same discourse entity

http://web.stanford.edu/class/cs224n/lectures/cs224n-2017-lecture15.pdf



Neural Mention-Pair Model

http://cs.stanford.edu/people/kevclark//resources/clark-manning-emnlp2016-deep.pdf



Neural Mention-Pair Model

● Experiment
○ Dataset: English and Chinese Portions of the CoNLL 2012 

Shared Task dataset

http://cs.stanford.edu/people/kevclark//resources/clark-manning-emnlp2016-deep.pdf



Neural Mention-Pair Model

● Next Challenge: Some Local Decisions Matter More than others

http://web.stanford.edu/class/cs224n/lectures/cs224n-2017-lecture15.pdf



Prior work

● Heuristically defined the importance of a coreference decision
• Requires careful tuning with hyperparameters - Grid Search

http://web.stanford.edu/class/cs224n/lectures/cs224n-2017-lecture15.pdf



Coreference Resolution - RL

● Reinforcement Learning
● Clark & Manning(EMNLP 2016): use RL to learn which local 

decisions lead to a good clustering
○ No hyperparameter search
○ Small boost in accuracy

http://web.stanford.edu/class/cs224n/lectures/cs224n-2017-lecture15.pdf



Coreference Resolution - RL

● Training
○ After completing a sequence of actions, the model receives a 

reward 
○ Examining Reward-Based Costs

● Experiment
○ Dataset: English and Chinese Portions of the CoNLL 2012 

Shared Task dataset

http://cs.stanford.edu/people/kevclark//resources/clark-manning-emnlp2016-deep.pdf



Coreference Resolution - RL

● Error Breakdown
○ Reinforcement learning 

model actually makes more 
errors!

○ However, the errors are less 
severe

● Reward-Based Costs
○ High variance in costs for a 

given error type

http://cs.stanford.edu/people/kevclark//resources/clark-manning-emnlp2016-deep.pdf



Syntactic Parsing (Dependency & Constituency)



Parsing as Tools in NLP

● Resolve ambiguities in language: 
○ E.g. “I saw a girl with a telescope.”

● Provide more information as additional features in NLP tasks:
○ Entity Recognition
○ Relation Extraction
○ Word embedding learning
○ ...



Constituency Parsing 

Constituency Parsing (phrase structure parsing) is a way to break a 
piece of text (e.g. one sentence) into sub-phrases. One goal is to identify 
the constituents which would be useful when extracting information 
from text.

http://web.stanford.edu/class/cs224n/lecture_notes/cs224n-2017-notes7.pdf



Recursive Neural Networks

Recursive Neural Networks (Tree RNNs) are perfect for settings that 
have nested hierarchy and an intrinsic recursive structure.

http://web.stanford.edu/class/cs224n/lecture_notes/cs224n-2017-notes7.pdf



Tree RNNs for Structure Prediction
Structured margin loss :

Training Inputs

Regularized risk function to be minimized:

ground truth tree

the set of non-terminal nodes

all possible trees that can be constructed from an input x

http://ai.stanford.edu/~ang/papers/icml11-ParsingWithRecursiveNeuralNetworks.pdf



Tree RNNs for Structure Prediction

Greedy Structure Predicting RNNs (Socher et al., 2011)
• After computing the scores for all pairs of neighboring segments, the algorithm selects 

the pair which received the highest score.
• The process repeats (treating the new pi,j just like any other segment) until all pairs 

are merged and only one parent activation is left in the set C.

One recursive neural network 
which is replicated for each pair 
of possible input vectors

http://ai.stanford.edu/~ang/papers/icml11-ParsingWithRecursiveNeuralNetworks.pdf



Syntactically Untied Tree RNN (SU-RNN)

Using different W’s for different categories of inputs: “syntactically untie” 
the weights of these different tasks. (Socher et al., 2013a)

http://web.stanford.edu/class/cs224n/lecture_notes/cs224n-2017-notes7.pdf



Matrix-Vector Tree RNN (MV-RNN)

We now augment our word representation, to not only include a word 
vector, but also a word matrix (more expressive)! (Socher et al., 2012)

http://web.stanford.edu/class/cs224n/lecture_notes/cs224n-2017-notes7.pdf



Tree RNN for Classification

We can leverage the vector representation of each node by adding to 
each RNN parent node a simple softmax layer to predict class labels, 
such as visual or syntactic categories.

http://ai.stanford.edu/~ang/papers/icml11-ParsingWithRecursiveNeuralNetworks.pdf



Sentiment Classification with Tree RNN

(Socher et al., 2013b) applies Recursive Neural Tensor Network (RNTN) 
for the task of sentiment analysis (5 sentiment classes)

http://web.stanford.edu/class/cs224n/lecture_notes/cs224n-2017-notes7.pdf



Sentiment Classification with Tree RNN

One slice of a RNTN. There 
would be d of these slices.

(Socher et al., 2013b)

https://nlp.stanford.edu/~socherr/EMNLP2013_RNTN.pdf



Conclusion

● Summary
○Introduction to Natural Language Processing
○Word Representation
○Language Model
○Question Answering
○Coreference Resolution
○Dependency Parsing
○Constituency Parsing

● Limitation & Challenges
○ limited in their ability to “reason”: e.g. A dog is chasing the boy.
○ Need too much data (in a supervised fashion)
○ And more
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DMN+: Experiments

● Comparison with another state of the art question answering 
architectures 
○ End to end memory network(E2E) (Sukhbaatar et al., 2015)
○ Neural reasoner framework(NR) (Peng et al., 2015)

http://www.jmlr.org/proceedings/papers/v48/xiong16.pdf



DMN+: Episodic Memory

● After each pass through the attention mechanism, we update m(t)
○

● How to obtain context vector c(t) with attention GRU
○ Last recurrent state

● Changing to ReLU improves accuracy by another 0.5%
○


