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Motivation
Text-to-Speech

◦ Accessibility features for people with little to no vision, or people in situations where they cannot 
look at a screen or other textual source

◦ Natural language interfaces for a more fluid and natural way to interact with computers

◦ Voice Assistants (Siri, etc.), GPS, Screen Readers, Automated telephony systems

Automatic Speech Recognition
◦ Again, natural language interfaces

◦ Alternative input medium for accessibility purposes

◦ Voice Assistants (Siri, etc.), Automated telephony systems, Hands-free phone control in the car

Music Generation
◦ Mostly for fun

◦ Possible applications in music production software



Outline
Automatic Speech Recognition (ASR)

◦ Deep models with HMMs

◦ Connectionist Temporal Classification (CTC)

◦ Attention based models

Text to Speech (TTS)
◦ WaveNet

◦ DeepVoice

◦ Tacotron

Bonus: Music Generation





Automatic Speech 
Recognition (ASR)



Outline
History of Automatic Speech Recognition

Hidden Markov Model (HMM) based Automatic Speech Recognition
◦ Gaussian mixture models with HMMs

◦ Deep models with HMMs

End-to-End Deep Models based Automatic Speech Recognition
◦ Connectionist Temporal Classification (CTC)

◦ Attention based models



History of Automatic Speech Recognition
Early 1970s: Dynamic Time Warping (DTW) to handle time variability

◦ Distance measure for spectral variability

http://publications.csail.mit.edu/abstracts/abstracts06/malex/seg_dtw.jpg



History of Automatic Speech Recognition
Mid-Late 1970s: Hidden Markov Models (HMMs) – statistical models of spectral variations, for 
discrete speech.

Mid 1980s: HMMs become the dominant technique for all ASR
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http://hts.sp.nitech.ac.jp/archives/2.3/HTS_Slides.zip



History of Automatic Speech Recognition
1990s: Large vocabulary continuous dictation

2000s: Discriminative training (minimize word/phone 
error rate)

2010s: Deep learning significantly reduce error rate

George E. Dahl, et al. Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech Recognition. IEEE Trans. Audio, Speech & Language Processing, 2012.



Aim of Automatic Speech Recognition
Find the most likely sentence (word sequence) 𝑾, which transcribes the speech audio 𝑨:

𝑾 = argmax
𝑾

𝑃 𝑾 𝑨 = argmax
𝑾

𝑃 𝑨 𝑾 𝑃(𝑾)

◦ Acoustic model 𝑃 𝑨 𝑾

◦ Language model 𝑃(𝑾)

Training: find parameters for acoustic and language model separately
◦ Speech Corpus: speech waveform and human-annotated transcriptions

◦ Language model: with extra data (prefer daily expressions corpus for spontaneous speech)



Language model
Language model is a probabilistic model used to

◦ Guide the search algorithm (predict next word given history)

◦ Disambiguate between phrases which are acoustically similar
◦ Great wine vs Grey twine

It assigns probability to a sequence of tokens to be finally 
recognized

N-gram model 𝑃 𝑤𝑁 𝑤1, 𝑤2, ⋯ , 𝑤𝑁−1

Recurrent neural network

http://torch.ch/blog/2016/07/25/nce.html

Recurrent neural network based Language model



Architecture of Speech Recognition
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Decoding in Speech Recognition
Find most likely word sequence of audio input

Without language models With language models

https://www.inf.ed.ac.uk/teaching/courses/asr/2011-12/asr-search-nup4.pdf



Architecture of Speech Recognition
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Architecture of Speech Recognition
𝑾 = argmax
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Feature Extraction
Raw waveforms are transformed into a sequence of feature vectors using signal 
processing approaches

Time domain to frequency domain

Feature extraction is a deterministic process
𝑃 𝑨 𝑶 = 𝛿(𝐴, መ𝐴(𝑂))

Reduce information rate but keep useful information
◦ Remove noise and other irrelevant information

Extracted in 25ms windows and shifted with 10ms

Still useful for deep models

http://www2.cmpe.boun.edu.tr/courses/cmpe362/spring2014/files/projects/MFCC%20Feature%20Extraction.pdf



Different Level Features

http://music.ece.drexel.edu/research/voiceID/researchday2007

Better for shallow models

Better for deep models



Architecture of Speech Recognition
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Lexical model
Lexical modelling forms the bridge between the acoustic and language models

Prior knowledge of language

Mapping between words and the acoustic units (phoneme is most common)
Deterministic                                               Probabilistic

Word Pronunciation

TOMATO
t ah m aa t ow

t ah m ey t ow

COVERAGE
k ah v er ah jh

k ah v r ah jh

Word Pronunciation Probability

TOMATO
t ah m aa t ow 0.45

t ah m ey t ow 0.55

COVERAGE
k ah v er ah jh 0.65

k ah v r ah jh 0.35



GMM-HMM in Speech Recognition
GMMs: Gaussian Mixture Models

HMMs: Hidden Markov Models
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GMM-HMM in Speech Recognition
GMMs: Gaussian Mixture Models

HMMs: Hidden Markov Models
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Hidden Markov Models
The Markov chain whose state sequence is unknown
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http://hts.sp.nitech.ac.jp/archives/2.3/HTS_Slides.zip



Context Dependent Model
We were away with William in Sea World

Realization of w varies but similar patterns occur in the similar context



Context Dependent Model
In English

#Monophone : 46

#Biphone: 2116

#Triphone: 97336

s a cl p a r i w a k a r a n a i
Phoneme

sequence

s-a-cl p-a-r n-a-i



Context-dependent HMMs

http://hts.sp.nitech.ac.jp/archives/2.3/HTS_Slides.zip



Decision Tree-based State Clustering
Each state separated automatically by the optimum question

k-a+b

t-a+h
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R=silence?

L=“gy”?

L=voice?
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R=silence?
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C=vowel?
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R=“cl”?
L=“gy”?
L=voice?… Sharing the parameter of HMMs in same leaf node

s-i+n

http://hts.sp.nitech.ac.jp/archives/2.3/HTS_Slides.zip



GMM-HMM in Speech Recognition
GMMs: Gaussian Mixture Models

HMMs: Hidden Markov Models
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Gaussian Mixture Models
Output probability is modeled by Gaussian 
mixture models

𝑏𝒒 𝒐𝑡 = 𝑏 𝒐𝑡 𝒒𝑡
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GMM-HMM in Speech Recognition
GMMs: Gaussian Mixture Models

HMMs: Hidden Markov Models
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DNN-HMM in Speech Recognition
DNN: Deep Neural Networks

HMMs: Hidden Markov Models
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Ingredients for Deep Learning
Acoustic features

◦ Frequency domain features extracted from waveform

◦ 10ms interval between frames

◦ ~40 dimensions for each frame

State alignments
◦ Tied-state of context-dependent HMMs

◦ Mapping between acoustic features and states



DNN-HMM in Speech Recognition
DNN: Deep Neural Networks

HMMs: Hidden Markov Models
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Deep Models in HMM-based ASR
Classify acoustic features for state labels

Take softmax output as a posterior 𝑃 𝑠𝑡𝑎𝑡𝑒 𝒐𝑡 = 𝑃 𝒒𝑡 𝒐𝑡

Work as output probability in HMM

𝑏𝒒 𝒐𝑡 = 𝑏 𝒐𝑡 𝒒𝑡 =
𝑃 𝒒𝑡 𝒐𝑡 𝑃(𝒐𝑡)

𝑃(𝒒𝑡)

where 𝑃(𝒒𝑡) is the prior probability for states



Fully Connected Networks
Features including 2 X 5 neighboring frames

◦ 1D convolution with kernel size 11

Classify 9,304 tied states

7 hidden layers X 2048 units with sigmoid activation

G. Hinton, et al. Deep Neural Networks for Acoustic Modeling in Speech Recognition. Signal Processing Magazine (2012). 



Fully Connected Networks
Pre-training

◦ Unsupervised: stacked restricted Boltzmann machine (RBM)

◦ Supervised: iteratively adding layers from shallow model

Training
◦ Maximum cross entropy for frames

Fine-tuning
◦ Maximum mutual information for sequences

G. Hinton, et al. Deep Neural Networks for Acoustic Modeling in Speech Recognition. Signal Processing Magazine (2012). 



Fully Connected Networks
Comparison on different large datasets

G. Hinton, et al. Deep Neural Networks for Acoustic Modeling in Speech Recognition. Signal Processing Magazine (2012). 



DNN-HMM vs. GMM-HMM
Deep models are more powerful

◦ GMM assumes data is generated from single component of mixture model

◦ GMM with diagonal variance matrix ignores correlation between dimensions

Deep models take data more efficiently
◦ GMM consists with many components and each learns from a small fraction of data

Deep models can be further improved by recent advances in deep learning



Recurrent Networks
Long Short Term Memory networks

http://colah.github.io/posts/2015-08-Understanding-LSTMs/



Recurrent Networks

H. Sak, A. Senior, and F. Beaufays. Long Short-Term Memory Recurrent Neural Network Architectures for Large Scale Acoustic Modeling. arXiv preprint arXiv:1402.1128v1 (2014). 



Very Deep Networks

W. Xiong, et al. Achieving Human Parity in Conversational Speech Recognition. arXiv preprint arXiv:1610.05256 (2016). 

LACE



Very Deep Networks
Speaker adaptive training

◦ Addition speaker id embedded vector as input

Language model with LSTM

System combination
◦ Greedy-searched weight to combine multiple model system

Reuslts on the test set: CH and SWB                      Exceed human accuracy 

Word error rates CH SWB 

ResNet 14.8 8.6 

VGG 15.7 9.1 

LACE 15.0 8.4 



Limitations of DNN-HMM
Markov models only depend one previous states

History is discretely represented by 10k states

Decoding is slow to keep all 10k state in dynamic programing

Decoding with dynamic programing



DNN-HMM in Speech Recognition
DNN: Deep Neural Networks

HMMs: Hidden Markov Models
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End-to-End Deep Models based 
Automatic Speech Recognition
Connectionist Temporal Classification (CTC) based models

◦ LSTM CTC models

◦ Deep speech 2

Attention based models



CTC in Speech Recognition
RNN: Recurrent Neural Networks

CTC: Connectionist Temporal Classification 
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Connectionist Temporal Classification 
(CTC)

https://gab41.lab41.org/speech-recognition-you-down-with-ctc-8d3b558943f0, ftp://ftp.idsia.ch/pub/juergen/icml2006.pdf

Method for labeling unsegmented data sequences
◦ Raw waveforms and text transcription

Differentiable objective function
◦ Gradient based training

◦ 𝑂𝑀𝐿 𝑆,𝒩𝑤 = −σ 𝑥,𝑧 ∈𝑆 ln 𝑝 𝑧 𝑥

Used in various ASR and TTS architectures
◦ DeepSpeech (ASR)

◦ DeepVoice(TTS)



CTC Problem
Training examples 𝑆 = 𝑥1, 𝑧1 , … 𝑥𝑁, 𝑧𝑁 ∈ 𝒟𝒳×𝒵

◦ 𝑥 ∈ 𝒳 are waveforms

◦ 𝑧 ∈ 𝒵 are text transcripts

Goal: train temporal classifier ℎ ∶ 𝒳 → 𝒵

Architecture
◦ Input layer accepts audio frame

◦ Some network (usually CNN or RNN)

◦ Softmax output over phones

https://gab41.lab41.org/speech-recognition-you-down-with-ctc-8d3b558943f0, ftp://ftp.idsia.ch/pub/juergen/icml2006.pdf



CTC Description
Let 𝒩𝑤 𝑥 = {𝑦𝑘

𝑡} be NN with a softmax output
◦ 𝑦𝑘

𝑡 is activation of output unit 𝑘 at time frame 𝑡

◦ Activations over time define distribution over 𝐿𝑇

Sequences over 𝐿𝑇 ≜ 𝜋 = {𝜋1, … , 𝜋𝑇} are paths

Optimize for best path: 

P 𝜋 𝑥 = ෑ

𝑡=1

𝑇

𝑦𝜋𝑡
𝑡 , ∀𝜋 ∈ 𝐿𝑇
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https://gab41.lab41.org/speech-recognition-you-down-with-ctc-8d3b558943f0, ftp://ftp.idsia.ch/pub/juergen/icml2006.pdf



CTC Objective
Paths are not equivalent to the label, 𝜋 ≠ 𝑙

Optimize for best label:

𝑃 𝑙 𝑥 =

𝜋

𝑃 𝑙 𝜋 𝑃 𝜋 𝑥

Solve objective above with dynamic time warping
◦ Forward-backward algorithm

◦ Forward variables 𝛼

◦ Backward variables 𝛽

𝑃 𝑙 𝑥 =

𝑠=1

|𝑙|
𝛼𝑡 𝑠 𝛽𝑡 𝑠

𝑦𝑙𝑠
𝑡

◦ Maps and searches only paths that correspond to target label

𝑙 = {𝑎} 𝑙 = {𝑏𝑒𝑒}

https://github.com/yiwangbaidu/notes/blob/master/CTC/CTC.pdf, ftp://ftp.idsia.ch/pub/juergen/icml2006.pdf



CTC Objective and Gradient
Objective function:

𝑂𝑀𝐿 𝑆,𝒩𝑤 = − 

𝑥,𝑧 ∈𝑆

ln 𝑝 𝑧 𝑥

Gradient:
𝜕𝑂𝑀𝐿 { 𝑥, 𝑧 },𝒩𝑤

𝜕𝑢𝑘
𝑡 = 𝑦𝑘

𝑡 −
1

𝑦𝑘
𝑡𝑍𝑡



𝑠∈𝑙𝑎𝑏 𝑧,𝑘

ො𝛼𝑡 𝑠 መ𝛽𝑡 𝑠

where 𝑍𝑡 ≜

𝑠=1

|𝑙′|
𝛼𝑡 𝑠 𝛽𝑡 𝑠

𝑦
𝑙𝑠
′
𝑡

ftp://ftp.idsia.ch/pub/juergen/icml2006.pdf



LSTM CTC Models
Word error rate compared with HMM based models

Bi-direction LSTM is more essential for CTC

Context Error Rate (%)

LSTM-HMM Uni 8.9

Bi 9.1

LSTM-CTC Uni 9.4

Bi 8.5

Sak, Haşim, et al. "Learning acoustic frame labeling for speech recognition with recurrent neural networks." ICASSP, 2015.



CTC vs HMM
Output probability of LSTM

HMM                                                              CTC

CTC embeds history in continuous hidden space, more capable than HMM

CTC has spiky predictions, more discriminable between states than HMM

CTC with less states (40) is significantly faster for decoding than HMM (10k states)

Sak, Haşim, et al. "Learning acoustic frame labeling for speech recognition with recurrent neural networks." ICASSP, 2015.



Deep Speech 2
3 layers of 2D-invariant convolution

7 layers of bidirectional simple recurrence

100M parameters

Word error rates

Test set Deep speech 2 Human

WSJ eval’92 3.60 5.03 

WSJ eval’93 4.98 8.08  

LibriSpeech test-
clean

5.33 5.83 

LibriSpeech test-
other

13.25 12.69 

Amodei, Dario, et al. "Deep speech 2: End-to-end speech recognition in english and mandarin." arXiv preprint arXiv:1512.02595 (2015).



CTC in Speech Recognition
RNN: Recurrent Neural Networks

CTC: Connectionist Temporal Classification 
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Attention in Speech Recognition
Predict character sequence directly
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Attention based Models 
Recall previous lecture

◦ Image generation

◦ Image text embedding

◦ Question answering 

◦ Machine translation

Weighted sum of previous history

𝛼𝑡𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑒𝑡𝑗 =
exp(𝑒𝑡𝑗)

σ𝑘=1
𝑇 exp(𝑒𝑡𝑘)

Essential for modeling long sequences like speech



Attention based Models 
Word error rate w/o language models
on Wall Street Journal test eval92

Zhang, Yu, William Chan, and Navdeep Jaitly. "Very deep convolutional networks for end-to-end speech recognition." arXiv preprint arXiv:1610.03022 (2016).

WER 

CTC 30.1 

Proposed 10.53 

Encoder Network



Deep learning in Speech Recognition
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Deep learning in Speech Recognition
Top systems on dataset Switchboard 

HMM based system still performs 
better than End-to-End system on large 
scale dataset

https://github.com/syhw/wer_are_we



Text to Speech (TTS)



Outline
Automatic Speech Recognition (ASR)

◦ Deep models with HMMs

◦ Connectionist Temporal Classification (CTC)

◦ Attention based models

Text to Speech (TTS)

◦ WaveNet

◦ DeepVoice

◦ Tacotron

Bonus: Music Generation



Traditional Methods
Concatenative approaches vs. Statistical Parametric approach

◦ Concatenative: More natural sounding, Less flexible, Take up more space

◦ Statistical Parametric: Muffled, more flexible, Smaller models

Traditionally, two stages: frontend and backend

◦ Frontend analyzes text and determines phonemes, stresses, pitch, etc.

◦ Backend generates the audio

Moving towards models which can convert directly from text to audio, with the model itself 
learning any intermediate representations necessary



WaveNet: A Generative 
Model for Raw Audio (2016)
Operates on Raw Waveform and generates a raw waveform (audio samples)

Each audio sample’s predictive distribution conditioned on all previous ones

Problems to overcome:

◦ Tons of samples: 16kHz = 16,000 samples per second

◦ Correlations in both small time scales and large time scales

◦ 16 bit audio means 65,536 probabilities per time step



Problem: Too many samples, and 
different time scales of correlation
Solution: Causal Convolutions

https://arxiv.org/pdf/1609.03499.pdf



Causal Convolutions
Prediction of an audio sample can only depend on timestamps before it (nothing from the 
future)

No recurrent connections (Not an RNN) => Faster to train than RNN’s

◦ Especially with very long sequences

Glaring problem: Requires many layers to increase the receptive field

https://arxiv.org/pdf/1609.03499.pdf



Dilated Causal Convolutions

https://arxiv.org/pdf/1609.03499.pdf



Dilated Causal Convolutions
Filter is applied to area much larger than its length by skipping inputs at each layer: Large 
receptive field

Allows information to be gleaned from both temporally close and far samples

https://arxiv.org/pdf/1609.03499.pdf



Skip connections are used throughout the 
network

Speeds up convergence

Enables training of deeper models

https://arxiv.org/pdf/1609.03499.pdf



Where are we now?
No input => Generic framework

https://deepmind.com/blog/wavenet-generative-model-raw-audio/

https://deepmind.com/blog/wavenet-generative-model-raw-audio/


Add in other input
Generic enough to allow for both universal and local input

◦ Universal: Speaker Identity

◦ Local: Phonemes, inflection, stress



Results
https://deepmind.com/blog/wavenet-generative-model-raw-audio/

https://deepmind.com/blog/wavenet-generative-model-raw-audio/


SampleRNN
How to deal with different time scales? Modularize.

Use different modules operating at different clock rates to deal with varying levels of abstraction

Sample-Level Modules and Frame-Level Modules



https://arxiv.org/abs/1612.07837



Frame-Level Modules
“Each frame-level module is a deep RNN which summarizes the history of its inputs into a 
conditioning vector for the next module downward.”

Each module takes as input its corresponding frame, as well as the conditioning vector of the 
layer above it.



Sample Level Modules
Conditioned on the conditioning vector from the frame above it, and on some number of 
preceding samples.

Since this number is generally small, they use a multilayer perceptron here instead of an RNN, to 
speed up training

“When processing an audio sequence, the MLP is convolved over the sequence, processing each 
window of samples and predicting the next sample.”

“At generation time, the MLP is run repeatedly to generate one sample at a time.”



Other aspects of SampleRNN
Linear Quantization with q=256

RNN’s (not used in WaveNet) are powerful if they can be trained efficiently

Truncated Back Propagation Through Time (BPTT)

◦ Split sequence into subsequences and only propagate gradient to beginning of subsequence

◦ Interestingly, able to train well on subsequences of only 32ms



Results
https://soundcloud.com/samplernn

https://soundcloud.com/samplernn


DeepVoice: Real-time Neural TTS
Composed end-to-end TTS pipeline by Baidu

◦ Composed of five individual components
◦ Segmentation model 

◦ Grapheme-to-phone conversion model

◦ Phoneme duration prediction model

◦ Fundamental frequency prediction model

◦ Audio synthesis model

◦ Few hours of manual effort minus training time

◦ Real-time audio synthesis

https://arxiv.org/abs/1702.07825



DeepVoice Grapheme-to-Phoneme 
Model
Encoder-decoder architecture from “Sequence-
to-Sequence Neural Net Models for Grapheme-
to-Phoneme Conversion”

Architecture
◦ Trained with teacher forcing

◦ Decode phonemes with beam search of width 5
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DeepVoice Segmentation Model
Convolutional recurrent neural network 
architecture from “DeepSpeech 2: End-
to-End Speech Recognition in English 
and Mandarin”

Architecture
◦ 2D convolutions in time and frequency

◦ Softmax layer uses CTC to predict 
phoneme pairs
◦ Output spikes from CTC close to phoneme 

boundaries

◦ Decode phoneme boundaries with beam 
search of width 50

Bidirectional 
RNN layers
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DeepVoice Phoneme Duration and 
Fundamental Frequency Model
Outputs

◦ Phoneme duration

◦ Probability phoneme is voiced (has F0)

◦ 20 time-dependent F0 values

Loss

𝐿𝑛 = Ƹ𝑡𝑛 − 𝑡𝑛 + 𝜆1CE ො𝑝𝑛, 𝑝𝑛 + 𝜆2

𝑡=0

𝑇−1

𝐹0𝑛,𝑡 − 𝐹0𝑛,𝑡

+𝜆3 

𝑡=0

𝑇−2

|𝐹0𝑛,𝑡+1 − 𝐹0𝑛,𝑡|

◦ 𝜆𝑖 are tradeoff constants

◦ Ƹ𝑡𝑛, 𝑡𝑛 are durations of 𝑛𝑡ℎ phoneme

◦ ො𝑝𝑛, 𝑝𝑛 are probabilities 𝑛𝑡ℎ phoneme is voiced

◦ 𝐹0𝑛,𝑡, 𝐹0𝑛,𝑡 are fundamental frequency of 𝑛𝑡ℎ phoneme
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DeepVoice Audio Synthesis Model
Architecture

◦ Red WaveNet
◦ Same structure, different 𝑙, 𝑟, 𝑠 values

◦ Blue Conditioning network
◦ Two bidirectional QRNN layers

◦ Interleave channels

◦ Upsample to 16kHZ

https://arxiv.org/abs/1702.07825



DeepVoice Training

Grapheme-to-Phoneme model used as backup to phoneme dictionary (CMUdict)

https://arxiv.org/abs/1702.07825



DeepVoice Inference

Segmentation model only annotates data in training and not used in inference

https://arxiv.org/abs/1702.07825



DeepVoice Results
Audio Synthesis Results

Inference Results

Type Model Size MOS ± CI

Ground Truth (48 kHz) None 4.75 ± 0.12

Ground Truth (16 kHz) None 4.45 ± 0.16

Synthesized (Audio only) 𝑙 = 40, 𝑟 = 64, 𝑠 = 256 3.94 ± 0.26

Synthesized (Synthesized Duration & F0) 𝑙 = 40, 𝑟 = 64, 𝑠 = 256 2.00 ± 0.23

Synthesized (2x real-time inference, audio only) 𝑙 = 20, 𝑟 = 32, 𝑠 = 128 2.74 ± 0.32

Synthesized (1x real-time inference, audio only) 𝑙 = 20, 𝑟 = 64, 𝑠 = 128 3.35 ± 0.31

Model Platform Data Type # of Threads Speed-up Over Real Time

𝑙 = 20, 𝑟 = 32, 𝑠 = 128 CPU Float32 6 2.7

𝑙 = 40, 𝑟 = 64, 𝑠 = 128 CPU Float32 6 1.11

𝑙 = 20, 𝑟 = 32, 𝑠 = 128 GPU Float32 N/A 0.39

https://arxiv.org/abs/1702.07825



DeepVoice Implementation Details
CPU implementation

◦ Parallelizing work via multithreading

◦ Pinning threads to physical cores (or disabling hyperthreading)

◦ Replacing nonlinearities with high-accuracy approximations (only during inference)

tanh 𝑥 ≈ sign 𝑥
ǁ𝑒 𝑥 −

1
ǁ𝑒 𝑥

ǁ𝑒 𝑥 +
1
ǁ𝑒 𝑥

and 𝜎 𝑥 ≈

ǁ𝑒 𝑥

1 + ǁ𝑒 𝑥
𝑥 ≥ 0

1

1 + ǁ𝑒 𝑥
𝑥 ≤ 0

where 𝑒 𝑥 ≈ ǁ𝑒 𝑥 = 1 + 𝑥 + 0.5658𝑥2 + 0.143𝑥4

◦ Weight matrices quantized to int16

◦ Custom AVX assembly kernels for matrix-vector multiplication

GPU implementation
◦ Persistant RNNs to generate all samples in one kernel launch

◦ Split model across register file of SMs

◦ Round robin execution of kernels

https://arxiv.org/abs/1702.07825



Tacotron: Towards End-to-End Speech 
Synthesis
Truly end-to-end TTS pipeline by Google

◦ Reduces feature engineering

◦ Allows conditioning on various attributes

Architecture
◦ One network based on the sequence-to-

sequence with attention paradigm

◦ Red Encoder

◦ Blue Decoder

◦ Green Post-processing net

https://arxiv.org/abs/1703.10135



Tacotron CBHG Module
1D Convolutional Bank + highway network + bidirectional 
GRU (CBHG) 

◦ Module for extracting representations from sequences

◦ Inspired by work from “Fully Character-Level Neural Machine 
Translation without Explicit Segmentation”

Architecture
◦ Bank of 1D convolutional filters

◦ Highway networks
◦ Gating unit learn to regulate flow of information through network

◦ Bidirectional GRU RNN

https://arxiv.org/abs/1703.10135



Tacotron Encoder
Extracts robust sequential 
representation of text

Architecture
◦ Input: one-hot vector of characters 

embedded into a continuous 
sequence

◦ Pre-Net, a set of on non-linear 
transformations

◦ CBHG module

https://arxiv.org/abs/1703.10135



Tacotron Decoder
Target is 80-band mel-scale spectrogram 
rather than raw waveform

◦ Waveform is highly redundant 
representation

Architecture
◦ Attention RNN: 1 layer 256 GRU cells

◦ Decoder RNN: 2 layer residual 256 GRU cells

◦ Fully connected output layer  

https://arxiv.org/abs/1703.10135



Tacotron Post-Processing Network
Convert sequence-to-sequence target to waveform 
though can be used to predict alternative targets

Architecture
◦ CBHG 

◦ Griffin-Lim algorithm
◦ Estimates waveform from spectrogram

◦ Uses an iterative algorithm to decrease MSE

◦ Used for simplicity

https://arxiv.org/abs/1703.10135



Tacotron Results
Tacotron results

DeepVoice results
Type Model Size MOS ± CI

Ground Truth (48 kHz) None 4.75 ± 0.12

Ground Truth (16 kHz) None 4.45 ± 0.16

Synthesized (Audio only) 𝑙 = 40, 𝑟 = 64, 𝑠 = 256 3.94 ± 0.26

Synthesized (Synthesized Duration & F0) 𝑙 = 40, 𝑟 = 64, 𝑠 = 256 2.00 ± 0.23

Synthesized (2x real-time inference, audio only) 𝑙 = 20, 𝑟 = 32, 𝑠 = 128 2.74 ± 0.32

Synthesized (1x real-time inference, audio only) 𝑙 = 20, 𝑟 = 64, 𝑠 = 128 3.35 ± 0.31

Model MOS ± CI

Tacotron 3.82 ± 0.085 

Parametric 3.69 ± 0.109

Concatenative 4.09 ± 0.119

The quick brown fox jumps over the lazy dog

Generative adversarial network or variational autoencoder

Either way you should shoot 
very slowly

She set out to change the world 
and to change us

She set out to change the world 
and to change us

3)

3)

2)

2)

1)

1)

https://arxiv.org/abs/1702.0782, https://arxiv.org/abs/1703.10135



Summary
Automatic Speech Recognition (ASR)

◦ Deep models with HMMs

◦ Connectionist Temporal Classification (CTC)
◦ Method for labeling unsegmented data

◦ Attention based models

Text to Speech (TTS)
◦ WaveNet

◦ Audio synthesis network with intermediate representation

◦ DeepVoice
◦ Composed end-to-end learning

◦ Tacotron
◦ Truly end-to-end learning



Thank you! 
Questions?



Bonus: Music 
Generation



WaveNet, revisited
Train on 60 hours of Solo YouTube Piano music in one experiment

Train on MagnaTagATune dataset: 29 second clips, 188 tags. No published results unfortunately.

https://deepmind.com/blog/wavenet-generative-model-raw-audio/

https://deepmind.com/blog/wavenet-generative-model-raw-audio/


“Deep Learning for Music"
Aims to create pleasant music with deep neural nets alone

Questions:

◦ “Is there a meaningful way to represent notes in music as a vector?” (like word2vec)

◦ “Can we build interesting generative neural network architectures that effectively express the

◦ notions of harmony and melody?”

Input

◦ Midi Data

◦ Piano Roll data (which notes are on?)



The Network
2 Layer LSTM

Map tokens (either MIDI messages or note combinations) to a learned vector respresentation

Feed output into softmax layer

Allows user to adjust hyperparamters including number of layers, hidden unit size, sequence 
length, batch size, and learning rate.

Input a “seed” sequence

Two approaches to generation:

◦ Choose maximum from softmax

◦ Choose anything from the softmax distribution



Results
Music trained solely on Bach was better than a mix of classical pianists

Music trained using the Piano Roll format was better than that of the MIDI messages

No published audio, unfortunately
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