
Neural	Architectures	with	Memory

Nitish	Gupta,	Shreya	Rajpal
25th April,	2017

1



Story	Comprehension

2

Joe went to the kitchen. Fred went to the kitchen. Joe 
picked up the milk. Joe travelled to his office. Joe left the 
milk. Joe went to the bathroom. 

Q1 : Where is Joe? 

Q2 : Where is the milk now?

Q3 : Where was Joe before the office?

Questions from 
Joe’s angry mother: 



Dialogue	System

3

Hello! What can I do for you today?

I’d like to reserve a table for 6.

Sure! When would you like that reservation?

At 7 PM, please.

Okay. What cuisine would you like?

Actually make that 7:30 PM

Updated! What cuisine?

Is there anything better than a medium rare steak?

Nothing at all! Blackdog has a 4.7 on Yelp. 

Sounds perfect! Also, add one more person.

Reservation done for 7, 7:30pm at Blackdog. Enjoy!

M
ac

hin
e

Hum
an



ML	models	need	memory!

Deeper	AI	tasks	require	explicit	memory	and	
multi-hop	reasoning	over	it

•RNNs	have	short	memory
•Cannot	increase	memory	without	increasing	number	
of	parameters
•Need	for	compartmentalized	memory
•Read/Write	should	be	asynchronous

4



Memory	Networks	(MemNN)

5

• Class	of	Models	with	memory	𝑚 - Array	of	objects	𝑚"

Four	Components	:	
I		- Input	Feature	Map	:	Input	manipulation
G	- Generalization	:	Memory	Manipulation
O	- Output	Feature	Map	:	Output	representation	generator
R	- Response	:	Response	Generator

Memory	Networks,	Weston	et.	al.,	ICLR	2015

mi

Each	memory	
here	is	a	
dense	vector



MemNN

6

1. Input	Feature	Map
• Imagine	input	as	a	sequence	of	sentences	𝑥"

2. Update	Memories

Memory	Networks,	Weston	et.	al.,	ICLR	2015

xi Input Feature Map I(xi)

I(xi)

Generalization



MemNN

7

3. Output	Representation
• Say	if	𝑞 is	a	question,	compute	output	representation

4. Generate	Answer	Response

Memory	Networks,	Weston	et.	al.,	ICLR	2015

Output Feature Map o

Response

o r

I(q)



Simple	MemNN	for	Text

8

1. Input	Feature	Map - Bag-of-Words	 representation

Memory	Networks,	Weston	et.	al.,	ICLR	2015

xi

Sentence

Bag-of-Words

𝐼(𝑥")



Simple	MemNN	for	Text

9

2. Generalization	:	Store	input	in	new	memory

Memory	Networks,	Weston	et.	al.,	ICLR	2015

mi = I(xi)

Memories		
till	now	(i=4) 𝐼(𝑥()

Memories	
after	5	inputs

m m



Simple	MemNN	for	Text

10

3. Output: Using	𝑘 = 2memory	hops	with	query	𝑥

4. Response - Single	Word	Answer

Memory	Networks,	Weston	et.	al.,	ICLR	2015

Score	all	memories	
against	input	1st Max	scoring	

memory	index

Score	all	words	
against	query	and	
2	supporting	
memories

Max	scoring	
word

i = 1, . . . , N

o1 = O1(x,m) = argmax sO(I(x),mi)

i = 1, . . . , N

o2 = O2(x,m) = argmax sO([I(x),mo1 ],mi)

r = argmax

w2W

s

R

([I(x),m
o1 ,mo2 ], w)

Score	all	memories	
against	input	&	𝑜-

2nd Max	scoring	
memory	index



Scoring	Function

• Scoring	Function	is	an	embedding	model

11

s(x, y) = x

T
U

T
Uy

• What	is	𝑈𝑦 ?

Word Embedding Matrix

Sum of Word Embeddings

=

Uy = Uy

Scoring	Function	is	just	dot-product	between	sum	of	word	embeddings!!!

Memory	Networks,	Weston	et.	al.,	ICLR	2015



12

Memory	Networks,	Weston	et.	al.,	ICLR	2015

Joe went to the kitchen.
Fred went to the kitchen.
Joe picked up the milk.
Joe travelled to his office.
Joe left the milk. Joe went to the bathroom. 

Input	Sentences Memories

Where is the milk now?

Question 1st supporting	
memory

Where is the milk now?

Question 2nd supporting	
memory	

Where is the milk now?

Question

Office

Response



Training	Objective

13

X

f̄ 6=m
o1

max(0, � � sO(x,mo1) + sO(x, f̄)) +

Score	for	true	
1st memory

Score	for	a	
negative	memory

Memory	Networks,	Weston	et.	al.,	ICLR	2015



Training	Objective

14

X

f̄ 6=m
o1

max(0, � � sO(x,mo1) + sO(x, f̄)) +

X

f̄ 0 6=m
o2

max(0, � � sO([x,mo1 ],mo2) + sO([x,mo1 ], f̄
0)) +

Score	for	true	
2nd memory

Score	for	a	
negative	memory

Memory	Networks,	Weston	et.	al.,	ICLR	2015



Training	Objective

15

X

f̄ 6=m
o1

max(0, � � sO(x,mo1) + sO(x, f̄)) +

X

f̄ 0 6=m
o2

max(0, � � sO([x,mo1 ],mo2) + sO([x,mo1 ], f̄
0)) +

Score	for	true	
response

Score	for	a	
negative	response

X

r̄ 6=r

max(0, � � s

R

([x,m
o1 ,mo2 ], r) + s

R

([x,m
o1 ,mo2 ], r̄))

Memory	Networks,	Weston	et.	al.,	ICLR	2015



Experiment

16

• Large	– Scale	QA
• 14M	Statements	– (subject,	relation,	object)	
•Memory	Hops;	𝑘 = 1
• Only	re-ranked	candidates	from	other	system

Method F1

Fader	et.	al.	2013 0.54

Bordes	et.	al. 2014b 0.73

Memory	Networks (This	work) 0.72

Why	does	Memory	Network	perform	exactly	as	previous	model?

Memory	Networks,	Weston	et.	al.,	ICLR	2015

Stored	as	
memories

Output	is	highest	
scoring	memory



Experiment

17

• Large	– Scale	QA
• 14M	Statements	– (subject,	relation,	object)	
•Memory	Hops;	𝑘 = 1
• Only	re-ranked	candidates	from	other	system

Method F1

Fader	et.	al.	2013 0.54

Bordes	et.	al. 2014b 0.73

Memory	Networks (This	work) 0.72

Why	does	Memory	Networks	not	perform	as	well?



Useful	Experiment

18

• Simulated	World	QA
• 4	characters,	3	objects,	5	rooms
• 7k	statements,	3k	questions	for	training	and	same	for	testing
• Difficulty	1	(5)	– Entity	in	question	is	mentioned	in	last	1	(5)	sentences
• For	𝑘 = 2,	annotation	has	intermediate		best	memories	as	well

Memory	Networks,	Weston	et.	al.,	ICLR	2015



Limitations

19

• Simple	BOW	representation

• Simulated	Question	Answering	dataset	is	too	trivial

• Strong	supervision	i.e.	for	intermediate	memories	is	
needed

Memory	Networks,	Weston	et.	al.,	ICLR	2015



End-to-End	Memory	Networks	(MemN2N)

20

•What	if	the	annotation	is:
• Input	sentences	𝑥-, 𝑥2,… , 𝑥4
• Query	𝑞
• Answer	𝑎

•Model	performs	by:
• Generating	memories	from	inputs
• Transforming	query	into	suitable	representation
• Process	query	and	memories	jointly	using	multiple	hops	to	
produce	the	answer
• Backpropagate	through	the	whole	procedure

End-To-End	Memory	Networks,	Sukhbaatar	et.	al.,	NIPS	2015

Joe went to the kitchen. Fred went to the kitchen. 
Joe picked up the milk. Joe travelled to his office. 
Joe left the milk. Joe went to the bathroom. 

Where is the milk now?

Office



MemN2N

21

1. Convert	input	to	memories	𝑥" → 𝑚"

End-To-End	Memory	Networks,	Sukhbaatar	et.	al.,	NIPS	2015

mi = Axi BOW	input

Word-Embedding	
Matrix

Sum	of	word-
embeddings

2. Transform	query	𝑞 into	same	representation	space

u = Bq

3. Output	Vectors	𝑥" → 𝑐"
ci = Cxi



MemN2N

22

3. Scoring	memories	against	query

End-To-End	Memory	Networks,	Sukhbaatar	et.	al.,	NIPS	2015

Memories

Query	(transformed)

Score	for	
input/memory

4. Generate	output

pi = Softmax(uTmi)

o =
X

i

pici

Weighted	average	of	all	
inputs	(transformed)



MemN2N

23

5. Generating	Response

End-To-End	Memory	Networks,	Sukhbaatar	et.	al.,	NIPS	2015

â = Softmax(W (u+ o))

Training	Objective	– Maximum	Likelihood	/	Cross	Entropy

Distribution	over	
response	words

Averaged-outputQuery

ˆ

⇥ = argmax

NX

s=1

logP (âs)



24
End-To-End	Memory	Networks,	Sukhbaatar	et.	al.,	NIPS	2015

Generate	
memories

Transform
Query

Generate	
outputs

Score	
memories

Make	
averaged	
output

Response



25
End-To-End	Memory	Networks,	Sukhbaatar	et.	al.,	NIPS	2015

Multi-hop	MemN2N

u

k+1 = u

k + o

k

Hop	1

Hop	2

Hop	3

Different	
Memories	and	
Outputs	for	
each	Hop



Experiments

26
End-To-End	Memory	Networks,	Sukhbaatar	et.	al.,	NIPS	2015

• Simulated	World	QA

• 20	Tasks	from	bAbI	dataset	- 1K	and	10K	instances	per	task

• Vocabulary	=	177	words	only!!!!!

• 60	epochs

• Learning	Rate	annealing

• Linear	Start	with	different	learning	rate

• “Model	diverged	very	often,	hence	trained	multiple	models”



27
End-To-End	Memory	Networks,	Sukhbaatar	et.	al.,	NIPS	2015

MemNN MemN2N

Error	%	(1k) 6.7 12.4

Error	%	(10k) 3.2 7.5



Movie	Trivia	Time!

28

• Which	was	Stanley	Kubricks’s	first	
movie?

• When	did	2001:A	Space	Odyssey
release?

• After	The	Shining,	which	
movie	did	its	director	direct?

Fear	and	Desire

1968

Full	Metal	Jacket

(2001:a_space_odyssey,	directed_by,	stanley_kubrick)
(fear_and_dark,	 directed_by,	stanley_kubrick)

…
(fear_and_dark,	 released_in,	1953)

(full_metal_jacket,	 released_in,	 1987)

…
(2001:a_space_odyssey,	 released_in,	1968)

…
(the_shining,	 directed_by,	stanley_kubrick)

…
(AI:artificial_intelligence,	written_by,	stanley_kubrick)

Subject Relation Object

Knowledge	Base



Knowledge	Base?

29

Incomplete! Too	Challenging!

Combine	using	Memory	Networks?

Textual	Knowledge?
(2001:a_space_odyssey,	directed_by,	stanley_kubrick)

(fear_and_dark,	 directed_by,	stanley_kubrick)

…
(fear_and_dark,	 released_in,	1953)

(full_metal_jacket,	 released_in,	 1987)

…
(2001:a_space_odyssey,	 released_in,	1968)

…
(the_shining,	 directed_by,	stanley_kubrick)

…
(AI:artificial_intelligence,	written_by,	stanley_kubrick)



Key-Value	MemNNs for	Reading	Documents

30

• Structured	Memories	as	Key-Value	Pairs
• Regular	MemNNs have	single	vector	for	each	memory
• Key	more	related	to	question	and	values	to	answer

Key-Value	Memory	Networks	for	Directly	Reading	Documents,	Miller	et.	al.,	EMNLP	2016

Memories = (k1, v1), (k2, v2), . . . , (kN , vN )

Keys	and	Values	can	be	Words,	Sentences,	Vectors	etc.

(𝑘:	Kubrick’s	first	movie	was,	𝑣: Fear	and	Dark)



KV-MemNN

31
Key-Value	Memory	Networks	for	Directly	Reading	Documents,	Miller	et.	al.,	EMNLP	2016

1. Retrieve	relevant	memories	using	Hashing	Techniques	

q

(k1, v1)

(k2, v2)

(kN , vN )
. . .

(kh1 , vh1)

(kh2 , vh2)

(khN , vhN )
. . .

Use	inverted	index,	locality	sensitive	hashing,	 something	sensible

All	Memories
Retrieved	Relevant		Memories



KV-MemNN

32
Key-Value	Memory	Networks	for	Directly	Reading	Documents,	Miller	et.	al.,	EMNLP	2016

2. Score	Memory-Keys

phi = Softmax(A�Q(q) ·A�K(khi))

Key
BOWSum	of	

Embeddings

Dot-Prod
Distribution	over	
Memory-Keys

3. Generate	Output

o =
X

i

phiA�V (vhi)
Weighted	average	of	
Memory-values

pi = Softmax(uTmi)

o =
X

i

pici



KV-MemNN	- Multiple	Hops

33
Key-Value	Memory	Networks	for	Directly	Reading	Documents,	Miller	et.	al.,	EMNLP	2016

In	the	𝑗<= hop:

Query	representation	:	

Key	Addressing

qj = Rj(A�Q(qj�1) + o)

Generate	Response

phi = Softmax(A�Q(qj) ·A�K(khi))

Final	Hop

â = Softmax(A�Q(qH+1) ·B�Y (yi))



KV-MemNN	– What	to	store	in	memories?

34
Key-Value	Memory	Networks	for	Directly	Reading	Documents,	Miller	et.	al.,	EMNLP	2016

1. KB	Based	:

Key:	(subject,	relation);	Value:	Object
K:	(2001:a_space_odyssey,	directed_by);	V:	stanley_kubrick

2. Document	Based

For	each	entity	in	document,	extract	5-word	window	
around	it

Key:	window;	Value:	Entity

K:	screenplay	written	by	and;	V:	Hampton



KV-MemNN	– Experiments

35
Key-Value	Memory	Networks	for	Directly	Reading	Documents,	Miller	et.	al.,	EMNLP	2016

• WikiMovies Benchmark
• Total	100K	QA-pairs
• 10%	for	testing

Method KB Doc

E2E	Memory
Network 78.5 69.9

Key-Value	
Memory	Network 93.9 76.2



KV-MemNN

36
Key-Value	Memory	Networks	for	Directly	Reading	Documents,	Miller	et.	al.,	EMNLP	2016

Retrieve	
relevant	
Memories

Score	relevant	
Memory-Keys

Generate	Output	using	
Averaged	Memory-Values

Generate	Response



KV-MemNN

37
Key-Value	Memory	Networks	for	Directly	Reading	Documents,	Miller	et.	al.,	EMNLP	2016

⌘



CNN	:	Computer	Vision ::	________	:	NLP

38
Key-Value	Memory	Networks	for	Directly	Reading	Documents,	Miller	et.	al.,	EMNLP	2016

RNN



Dynamic	Memory	Networks	– The	Beast

39
Ask	Me	Anything:	Dynamic	Memory	Networks	for	Natural	Language	Processing,	Kumar	et.	al.	ICML	2016

Use	RNNs,	specifically	GRUs	for	every	module



DMN

40
Ask	Me	Anything:	Dynamic	Memory	Networks	for	Natural	Language	Processing,	Kumar	et.	al.	ICML	2016

ct = GRU(wi
t, c

i�1
t )Final	GRU	Output	

for	𝑡<= sentence



DMN

41
Ask	Me	Anything:	Dynamic	Memory	Networks	for	Natural	Language	Processing,	Kumar	et.	al.	ICML	2016

q = GRU(qiw, q
i�1)



DMN

42
Ask	Me	Anything:	Dynamic	Memory	Networks	for	Natural	Language	Processing,	Kumar	et.	al.	ICML	2016

ei = hi
TC

𝑖	 = 	1

hi
t = gitGRU(ct, h

i
t�1) + (1� git)h

i
t�1𝐻𝑜𝑝 = 	𝑖



DMN

43
Ask	Me	Anything:	Dynamic	Memory	Networks	for	Natural	Language	Processing,	Kumar	et.	al.	ICML	2016

ei = hi
TC

hi
t = gitGRU(ct, h

i
t�1) + (1� git)h

i
t�1

𝑖	 = 2

𝐻𝑜𝑝 = 	𝑖



DMN

44
Ask	Me	Anything:	Dynamic	Memory	Networks	for	Natural	Language	Processing,	Kumar	et.	al.	ICML	2016

mi = GRU(ei,mi�1)



DMN

45
Ask	Me	Anything:	Dynamic	Memory	Networks	for	Natural	Language	Processing,	Kumar	et.	al.	ICML	2016

yt = Softmax(W (a)↵t)

↵t = GRU([yt�1, q],↵t�1)

↵0 = mTm



DMN

46
Ask	Me	Anything:	Dynamic	Memory	Networks	for	Natural	Language	Processing,	Kumar	et.	al.	ICML	2016

How	many	GRUs	were	used	with	2	hops?



DMN	– Qualitative	Results

47
Ask	Me	Anything:	Dynamic	Memory	Networks	for	Natural	Language	Processing,	Kumar	et.	al.	ICML	2016



48

Algorithm	Learning



Neural	Turing	Machine

Copy	Task:	Implement	the	Algorithm

Given	a	list	of	numbers	at	input,	reproduce	the	list	at	output

Neural	Turing	Machine	Learns:
1. What	to	write	to	memory
2. When	to	write	to	memory
3. When	to	stop	writing
4. Which	memory	cell	to	read	from
5. How	to	convert	result	of	read	into	final	output

49



Neural	Turing	Machines

50

Controller

External	Input External	Output

Read	Heads

Memory

Neural	Turing	Machines,	Graves	et.	al.,	arXiv:1410.5401			

‘Blurry’

Write	Heads



Neural	Turing	Machines

‘Blurry’	Memory	Addressing
(at	time	instant	‘t’)

51

N

M

Mt

wt

Neural	Turing	Machines,	Graves	et.	al.,	arXiv:1410.5401			

Soft	Attention	(Lectures	2,	3,	20,	24)

wt(0)	=	0.1 wt(1)	=	0.2 wt(2)	=	0.5 wt(3)	=	0.1 wt(4)	=	0.1



Neural	Turing	Machines

More	formally,

Blurry	Read	Operation

Given:	Mt	(memory	matrix)	of	size	NxM
wt (weight	vector)	of	length	N
t	(time	index)

52Neural	Turing	Machines,	Graves	et.	al.,	arXiv:1410.5401			



Neural	Turing	Machines:	Blurry	Writes

Blurry	Write	Operation
Decomposed	into	blurry	erase +	blurry	add

Given:	Mt	(memory	matrix)	of	size	NxM
wt (weight	vector)	of	length	N
t	(time	index)
et	(erase	vector)	of	length	M
at	(add	vector)	of	length	M

53

Erase	Component Add	Component
Neural	Turing	Machines,	Graves	et.	al.,	arXiv:1410.5401			



Neural	Turing	Machines:	Erase

54

5 7 9 2 12

11 6 3 1 2

3 7 3 10 6

4 2 5 9 9

3 5 12 8 4

M0

w1(0)	=	0.1 w1(1)	=	0.2 w1(2)	=	0.5 w1(3)	=	0.1 w1(4)	=	0.1

1.0

0.7

0.2

0.5

0.0

e1

Neural	Turing	Machines,	Graves	et.	al.,	arXiv:1410.5401			

1xN Mx1



Neural	Turing	Machines:	Erase

55

4.5 5.6 4.5 1.8 10.8

10.23 5.16 1.95 0.93 1.86

2.94 6.72 2.7 9.8 5.88

3.8 1.8 3.75 8.55 8.55

3 5 12 8 4

w1(0)	=	0.1 w1(1)	=	0.2 w1(2)	=	0.5 w1(3)	=	0.1 w1(4)	=	0.1

Neural	Turing	Machines,	Graves	et.	al.,	arXiv:1410.5401			



Neural	Turing	Machines:	Addition

56

4.5 5.6 4.5 1.8 10.8

10.23 5.16 1.95 0.93 1.86

2.94 6.72 2.7 9.8 5.88

3.8 1.8 3.75 8.55 8.55

3 5 12 8 4

w1(0)	=	0.1 w1(1)	=	0.2 w1(2)	=	0.5 w1(3)	=	0.1 w1(4)	=	0.1

3

4

-2

0

2

a1

Neural	Turing	Machines,	Graves	et.	al.,	arXiv:1410.5401			



Neural	Turing	Machines:	Blurry	Writes

57

4.8 6.2 6 2.1 11.1

10.63 5.96 3.95 1.33 2.26

2.74 6.32 1.7 9.6 5.68

3.8 1.8 3.75 8.55 8.55

3.2 5.4 13 8.2 4.2

M1

Neural	Turing	Machines,	Graves	et.	al.,	arXiv:1410.5401			



Neural	Turing	Machines:	Demo	

58

Demonstration:	Training	on	Copy	Task

Figure	from	Snips	AI's	Medium	Post

Neural	Turing	Machines,	Graves	et.	al.,	arXiv:1410.5401			



Neural	Turing	Machines:	Attention	Model

59Neural	Turing	Machines,	Graves	et.	al.,	arXiv:1410.5401			

Generating	wt

Content	Based

Example:	QA	Task

- Score	sentences	by	
similarity	with	Question

- Weights	as	softmax of	
similarity	scores

Location	Based

Example:	Copy	Task

- Move	to	address	(i+1)	
after	writing	to	index	(i)

- Weights	≈	Transition	
probabilities



Neural	Turing	Machine:	Attention	Model

60

CA

Steps	for	generating	wt
1. Content	Addressing
2. Peaking
3. Interpolation
4. Convolutional	Shift	(Location	

Addressing)
5. Sharpening

I

CS

S

Prev.	State

Controller
Outputs

Neural	Turing	Machines,	Graves	et.	al.,	arXiv:1410.5401			



Neural	Turing	Machine:	Attention	Model

Prev.	State

Controller
Outputs

61

:Vector	(length	M)	produced	by	Controller

Neural	Turing	Machines,	Graves	et.	al.,	arXiv:1410.5401			



Neural	Turing	Machine:	Attention	Model

62

CA

Step	1:	Content	Addressing	(CA)

Neural	Turing	Machines,	Graves	et.	al.,	arXiv:1410.5401			

Prev.	State

Controller
Outputs



Neural	Turing	Machine:	Attention	Model

63

CA

Step	2:	PeakingPrev.	State

Controller
Outputs

Neural	Turing	Machines,	Graves	et.	al.,	arXiv:1410.5401			



Neural	Turing	Machine:	Attention	Model

64

CA

Step	3:	Interpolation	(I)

I

Prev.	State

Controller
Outputs

Neural	Turing	Machines,	Graves	et.	al.,	arXiv:1410.5401			



Neural	Turing	Machine:	Attention	Model

65

CA

Step	4:	Convolutional	Shift	(CS)
• Controller	outputs							,	a	normalized	

distribution	over	all	N	possible	shifts
• Rotation-shifted	weights	computed	as:

I

CS

Prev.	State

Controller
Outputs

Neural	Turing	Machines,	Graves	et.	al.,	arXiv:1410.5401			



Neural	Turing	Machine:	Attention	Model

66

CA

Step	5:	Sharpening	(S)
• Uses							to	sharpen	as:	

I

CS

S

Prev.	State

Controller
Outputs

Neural	Turing	Machines,	Graves	et.	al.,	arXiv:1410.5401			



Neural	Turing	Machine:	Controller	Design

67

• Feed-forward:	faster,	more	transparency&	
interpretability	about	function	learnt

• LSTM:	more	expressive	power,	doesn’t	limit	the	
number	of	computations	per	time	step

Both	are	end-to-end	differentiable!
1. Reading/Writing	->	Convex	Sums
2. wt generation	->	Smooth
3. Controller	Networks

Neural	Turing	Machines,	Graves	et.	al.,	arXiv:1410.5401			



Neural	Turing	Machine:	Network	Overview

68

Unrolled	Feed-forward	Controller

Neural	Turing	Machines,	Graves	et.	al.,	arXiv:1410.5401			

Figure	from	Snips	AI's	Medium	Post



Neural	Turing	Machines	vs.	MemNNs

MemNNs
•Memory	is	static,	with	focus	on	retrieving	(reading)	information	
from	memory

NTMs
•Memory	is	continuously	written	to	and	read	from,	with	network	
learning	when	to	perform	memory	read	and	write

69



Neural	Turing	Machines:	Experiments

Task
Network	Size Number	of	Parameters

NTM	w/	LSTM* LSTM NTM	w/	LSTM LSTM

Copy 3	x	100 3	x	256 67K 1.3M

Repeat	Copy 3	x	100 3	x	512 66K 5.3M

Associative 3	x	100 3	x	256 70K 1.3M

N-grams 3	x	100 3	x	128 61K 330K

Priority	Sort 2	x	100 3	x	128 269K 385K

70Neural	Turing	Machines,	Graves	et.	al.,	arXiv:1410.5401			



Neural	Turing	Machines:	‘Copy’	Learning	Curve

Trained	on	8-bit	sequences,	1<=	sequence	length	<=	20

71Neural	Turing	Machines,	Graves	et.	al.,	arXiv:1410.5401			



Neural	Turing	Machines:	‘Copy’	Performance

72

LS
TM

NT
M

Neural	Turing	Machines,	Graves	et.	al.,	arXiv:1410.5401			



Neural	Turing	Machines	triggered	
an	outbreak	of	Memory	

Architectures!

73



Stack	Augmented	Recurrent	Networks

Learn	algorithms	based	on	stack	implementations	(e.g.	
learning	fixed	sequence	generators)

Uses	a	stack	data	structure	to	store	memory	(as	
opposed	to	a	memory	matrix)

74Inferring	Algorithmic	Patterns	with	Stack-Augmented	Recurrent	Nets,	Joulin et.	al.,	arXiv:1503.01007	



Dynamic	Neural	Turing	Machines

Experimented	with	addressing	schemes
• Dynamic	Addresses:	Addresses	of	memory	locations	learnt	in	training	– allows	non-linear	
location-based	addressing

• Least	recently	used	weighting:	Prefer	least	recently	used	memory	locations	+	interpolate	
with	content-based	addressing

• Discrete	Addressing:	Sample	the	memory	location	from	the	content-based	distribution	to	
obtain	a	one-hot	address

• Multi-step	Addressing:	Allows	multiple	hops	over	memory

Results:	bAbI QA	Task

75Dynamic	Neural	Turing	Machine	with	Soft	and	Hard	Addressing	Schemes,	Gulchere et.	al.,	arXiv:1607.00036

Location NTM Content NTM Soft DNTM Discrete	DNTM

1-step 31.4% 33.6% 29.5% 27.9%

3-step 32.8% 32.7% 24.2% 21.7%



Stack	Augmented	Recurrent	Networks

•Blurry	‘push’	and	‘pop’	on	stack.	E.g.:

• Some	results:

76Inferring	Algorithmic	Patterns	with	Stack-Augmented	Recurrent	Nets,	Joulin et.	al.,	arXiv:1503.01007	



Differentiable	Neural	Computers

Advanced	addressing	mechanisms:

• Content	Based	Addressing

• Temporal	Addressing
• Maintains	notion	of	sequence	in	addressing
• Temporal	Link	Matrix	L	(size	NxN),	L[i,j]	=	degree	to	which	
location	 I	was	written	to	after	location	 j.	

• Usage	Based	Addressing

77Hybrid	computing	using	a	neural	network	with	dynamic	external	memory,	Graves	et.	al.,	Nature	vol.	538	



DNC:	Usage	Based	Addressing

•Writing	increases	usage	of	cell,	reading	decreases	
usage	of	cell

• Least	used	location	has	highest	usage-based	weighting

• Interpolate	b/w	usage	&	content	based	weights	for	
final	write	weights

78Hybrid	computing	using	a	neural	network	with	dynamic	external	memory,	Graves	et.	al.,	Nature	vol.	538	



DNC:	Example

79Hybrid	computing	using	a	neural	network	with	dynamic	external	memory,	Graves	et.	al.,	Nature	vol.	538	



DNC:	Improvements	over	NTMs

NTM

• Large	contiguous	blocks	of	
memory	needed

• No	way	to	free	up	memory	
cells	after	writing

DNC

•Memory	locations	non-
contiguous,	usage-based

• Regular	de-allotment	based	on	
usage-tracking

80Hybrid	computing	using	a	neural	network	with	dynamic	external	memory,	Graves	et.	al.,	Nature	vol.	538	



DNC:	Experiments

Graph	Tasks

Graph	Representation:	(source,	edge,	destination)	tuples

Types	of	tasks:

- Traversal:	Perform	walk	on	graph	given	source,	list	of	edges

- Shortest	Path:	Given	source,	destination

- Inference:	Given	source,	relation	over	edges;	find	destination

81Hybrid	computing	using	a	neural	network	with	dynamic	external	memory,	Graves	et.	al.,	Nature	vol.	538	



DNC:	Experiments

Graph	Tasks

Training	over	3	phases:

• Graph	description	phase:	(source,	edge,	destination)	tuples	fed	into	the	
graph

• Query	phase:	Shortest	path	(source,	____,	destination),	Inference	
(source,	hybrid	relation,	___),	Traversal	(source,	relation,	relation	…,	___)

• Answer	phase:	Target	responses	provided	at	output

Trained	on	random	graphs	of	maximum	size	1000

82Hybrid	computing	using	a	neural	network	with	dynamic	external	memory,	Graves	et.	al.,	Nature	vol.	538	



DNC:	Experiments

Graph	Tasks:	London	Underground

83Hybrid	computing	using	a	neural	network	with	dynamic	external	memory,	Graves	et.	al.,	Nature	vol.	538	



DNC:	Experiments

Graph	Tasks:	London	Underground

84Hybrid	computing	using	a	neural	network	with	dynamic	external	memory,	Graves	et.	al.,	Nature	vol.	538	

Input	Phase



DNC:	Experiments

Graph	Tasks:	London	Underground

85Hybrid	computing	using	a	neural	network	with	dynamic	external	memory,	Graves	et.	al.,	Nature	vol.	538	

Traversal	Task

Query	Phase Answer	Phase



DNC:	Experiments

Graph	Tasks:	London	Underground

86Hybrid	computing	using	a	neural	network	with	dynamic	external	memory,	Graves	et.	al.,	Nature	vol.	538	

Shortest	Path	Task

Query	Phase Answer	Phase



DNC:	Experiments

87Hybrid	computing	using	a	neural	network	with	dynamic	external	memory,	Graves	et.	al.,	Nature	vol.	538	

Graph	Tasks:	Freya’s	Family	Tree



Conclusion

•Machine	Learning	models	require	memory	and	multi-hop	
reasoning	to	perform	AI	tasks	better

•Memory	Networks	for	Text	are	an	interesting	direction	but	very	
simple

• Generic	architectures	with	memory,	such	as	Neural	Turing	
Machine,	limited	applications	 shown

• Future	directions	should	be	focusing	on	applying	generic	neural	
models	with	memory	to	more	AI	Tasks.

88Hybrid	computing	using	a	neural	network	with	dynamic	external	memory,	Graves	et.	al.,	Nature	vol.	538	



Reading	List

• Karol	Kurach,	Marcin	Andrychowicz &	Ilya	Sutskever Neural	Random-Access	
Machines,	ICLR,	2016

• Emilio	Parisotto &	Ruslan Salakhutdinov Neural	Map:	Structured	Memory	for	
Deep	Reinforcement	Learning,	ArXiv,	2017

• Pritzel et.	al. Neural	Episodic	Control,	ArXiv,	2017
• Oriol	Vinyals,Meire Fortunato, Navdeep Jaitly Pointer	Networks,	ArXiv,	2017

• Jack	W	Rae	et	al.,	Scaling	Memory-Augmented	Neural	Networks	with	Sparse	
Reads	and	Writes,	ArXiv 2016

• Antoine	Bordes, Y-Lan	Boureau, Jason	Weston,	Learning	End-to-End	Goal-
Oriented	Dialog,	ICLR	2017

• Junhyuk	Oh, Valliappa	Chockalingam, Satinder	Singh, Honglak	Lee,	Control	of	
Memory,	Active	Perception,	and	Action	in	Minecraft,	ICML	2016

• Wojciech	Zaremba, Ilya	Sutskever,	Reinforcement	Learning	Neural	Turing	
Machines,	ArXiv 2016

89


