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Story Comprehension

loe went to the kitchen.| Fred went to the kitchen. loe

picked up the milk.|loe travelled to his officeIJoe left the

milk,|Joe went to the bathroom.

Questions from
loe’s angry mother: Q1 : Where is Joe?

W2 : Where is the milk now?

@3 : Where was Joe before the office?



Dialogue System

Hello! What can | do for you today?

Id like to reserve a table for 6.

C

Actually make that 7:30 PM

Surel When would you like that reservation?
At 7 PM, please.

Okay. What cuisine would you like?

Machine

Updated! What cuisine?

s there anything better than a medium rare steak?

Nothing at all! Blackdog has a AN/ on Yelp.

Sounds perfect! Also, add one more person.

Reservation done for 7, 7:30pm at Blackdog. Enjoy!

uewnH



ML models need memory!

Deeper Al tasks require explicit memory and
multi-hop reasoning over it

* RNNs have short memory

* Cannotincrease memory without increasing number
of parameters

* Need for compartmentalized memory

* Read/Write should be asynchronous



Memory Networks (MemNN)

* Class of Models with memory m - Array of objects m;

Four Components :
| - Input Feature Map : Input manipulation
G - Generalization : Memory Manipulation
O - Output Feature Map : Output representation generator
R - Response : Response Generator

Memory Networks, Weston et. al., ICLR 2015

—_————————— —
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Each memory
: here is a
: dense vector



MemNN

1. Input Feature Map

* Imagine input as a sequence of sentences x;

2. Update Memories

Input Feature Map

— I(z;)

Generalization

Memory Networks, Weston et. al., ICLR 2015




MemNN

3. Output Representation

* Sayif g isa question, compute output representation

v

Output Feature Map

4. Generate Answer Response

v

QS

Response

Memory Networks, Weston et. al., ICLR 2015



Simple MemNN for Text

1. Input Feature Map - Bag-of-Words representation

v

Lj

I(x;)

Sentence

Bag-of-Words

Memory Networks, Weston et. al., ICLR 2015



Simple MemNN for Text

2. Generalization: Store input in new memory

m; = I(a:z)
]
N
N
/ L]
emores | ™ ]
| till now (i=4) J: | I(x5)|

Memory Networks, Weston et. al., ICLR 2015




Simple MemNN for Text

3. Output: Using k = 2 memory hops with query x

e —— — — — — — — — —

e e e e o — ——————

——————————— 0o = Oz(x,m) = argmax so(|I(x),m
'2”0' Max scoring :A/ 2 2( ) = z:gl o(LT(x), .,
| | memory index |

.....

— T = argma’waW SR([I( )7m017m02]7w)

———— — — — — — —

Memory Networks, Weston et. al., ICLR 2015

m;)

|
| Score all memories |
|
| against input & 04 |
Jd

' Score all words

\J against query and

: 2 supporting
: memaories



Scoring Function

e Scoring Functionis an embedding model
s(xz,y) =2 U Uy

* WhatisUy ?

/

Sum of Word Embeddings Word Embeddmg Matrix

B

Scoring Functionis just dot-product between sum of word embeddings!!!
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________________________________________

' Joe went to the kitchen.
' Fred went to the kitchen.
' Joe picked up the milk,

' Joe travelled to his office. ”
' Joe left the milk. Joe went to the bathroom.
Input Sentences Memories

— HEE EEE BN EE

: Where is the milk now? : ﬁ:
Question

15t supporting
memory
' Where is the milk now? ! Eﬁﬂt
R Qt """"" | — HE EE EEN BN
uestion 4 :
(T T T T TT7 2" Supportlng
memory
ettt NN N NN SN ity
\ Where is the milk now? — : Office |
_____ Questlon N NN EEE N Response
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Training Objective

- Score for true

:15t memory
=71 i~
Z max O,’y—lso(x mol)|-|—|80($ )+
_____ I
f?émol

Memory Networks, Weston et. al., ICLR 2015

+ Score for a !
' negative memory !
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Training Objective

———————————————————————————————————————

' Score for true ! ' Score for a
' 2nd memory ! ' negative memory !

Z mCLCC(O,’)/—SO(ZU,mol)+SO($7f)) +

Fmmo,

————t———n = ————n
Z maaj(077_|SO([x7m01]7m02):+|80([x7m01]7f,)) +
7' #m., N L

Memory Networks, Weston et. al., ICLR 2015
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Training Objective

_______________________________________

Score for true ! Score for a
response negatlve response !

15
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Experiment

' Stored as

e Large — Scale QA , memories !

* 14M Statements — (subject, relation, object)
. L ) + Output is highest !

Memory Hops; k = 1 o | scoring memory !
* Only re-ranked candidates from other system

Method F1
Fader et. al. 2013 0.54
Bordes et. al. 2014b 0.73
Memory Networks (This work) 0.72

Why does Memory Network perform exactly as previous model?

Memory Networks, Weston et. al., ICLR 2015



Experiment

e Large — Scale QA S«
e 14M Statements — (subject, relation, objegt) %
* Memory Hops; k =1 \
* Only re-ranked candidates fro&@s

I\/Iethod
Fader e 0.54
Bord@@ﬂb 0.73
orks (This work) 0.72

\3

Why does Memory Networks not perform as well?

17



Useful Experiment

e Simulated World QA

* 4 characters, 3 objects, 5 rooms

e 7k statements, 3k questions for training and same for testing

e Difficulty 1 (5) — Entity in question is mentioned in last 1 (5) sentences
* For k = 2, annotation hasintermediate bestmemories as well

Joe went to the garden then Fred picked up the milk; Joe moved to the bathroom and Fred dropped the
milk, and then Dan moved to the living_room.

Where is Dan? A: living room I believe

Where is Joe? A: the bathroom

Fred moved to the bedroom and Joe went to the kitchen then Joe took the milk there and Dan journeyed
to the bedroom; Joe discarded the milk.

Where is the milk now ? A: the milk is in the kitchen

Where 1s Dan now? A: I think he is in the bedroom

Joe took the milk there, after that Mike travelled to the office, then Joe went to the living_room, next Dan
went back to the kitchen and Joe travelled to the office.

Where is Joe now? A: I think Joe is in the office

18
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Limitations

* Simple BOW representation
e Simulated Question Answering dataset is too trivial

e Strong supervisioni.e. for intermediate memories is
needed

Memory Networks, Weston et. al., ICLR 2015



End-to-End Memory Networks (MemN2N)

* What if the annotationis: oe went to the Kitchen. Fred went fo the kitchen.
| Joe picked up the milk. Joe travelled to his office. |
* Input sentences X1, X3, ..., Xy, 1]oe left the milk. Joe went to the bathroom. |

* Query q ] | Where is the milk now? |

—— — — —

* Answer a I Office |

———— —

* Model performs by:
* Generating memories from inputs
* Transforming query into suitable representation

* Process query and memories jointly using multiple hops to
produce the answer

* Backpropagate through the whole procedure

End-To-End Memory Networks, Sukhbaatar et. al., NIPS 2015



MemN2N

1. Convert inputto memories x; = m;

presc N T

embeddings Word-Embedding
"""""""" + Matrix

2. Transform query g into same representation space

u = Bq

3. Output Vectors x; = ¢;

C;, — CQ?Z

End-To-End Memory Networks, Sukhbaatar et. al., NIPS 2015



MemN2N

3. Scoring memories against query

.................. p; = Softmax(u’ m;) «—— Memories

' Score for / \ """""""

' input/memory !

' Query (transformed) !

4. Generate output

/ 0= Zpici
. Weighted average of all '
' inputs (transformed)

End-To-End Memory Networks, Sukhbaatar et. al., NIPS 2015



MemN2N

5. Generating Response

Distribution over \
| response words

_____________________________

_______________________________

Training Objective — Maximum Likelihood / Cross Entropy

A

N
© = argmax Z log P(as)

s=1

End-To-End Memory Networks, Sukhbaatar et. al., NIPS 2015



FoTTTTTTTs ! \ Make : ' Response |
. Score | ! ! ]
! o , averaged |
| memories | : !
 output |
' Generate | . R @ . ;redicted /
! ! nswer
| outputs | . €1l a _ 7
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eighted Sum A u x
Embedding C o |
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Multi-hop MemN2N - }Ha

C3
_________ | 4—
' Hop 2 !

S

c2

ol
Cl
Al

Predicted
Answer

vl

' Different _ \ ____________
Memories and Sentences WL — k1 oF
' Qutputs for & T~—ku0 | ot Tttt
 each Hop /
Hop 1 <—
N
B
Question g H
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Experiments

e Simulated World QA

» 20 Tasks from bAbl dataset - 1K and 10K instances per task

* 60 epochs
* Learning Rate annealing
* Linear Start with different learning rate

* “Model diverged very often, hence trained multiple models”

End-To-End Memory Networks, Sukhbaatar et. al., NIPS 2015



Story (1: 1 supporting fact) Support| Hop1 | Hop 2 | Hop 3
Daniel went to the bathroom. 0.00 0.00 0.03
Mary travelled to the hallway. 0.00 0.00 0.00
John went to the bedroom. 0.37 0.02 0.00
John travelled to the bathroom. yes 0.60 0.98 0.96
Mary went to the office. 0.01 0.00 0.00
Where is John? Answer: bathroom Prediction: bathroom
Story (16: basic induction) Support| Hop1 | Hop 2 | Hop 3
Brian is a frog. yes 0.00 0.98 0.00
Lily is gray. 0.07 0.00 0.00
Brian is yellow. yes 0.07 0.00 1.00
Julius is green. 0.06 0.00 0.00
Greq is a frog. yes 0.76 0.02 0.00
What color is Greg? Answer: yellow Prediction: yellow

MemNN MemN2N
Error % (1k) 12.4
Error % (10k) 7.5

End-To-End Memory Networks, Sukhbaatar et. al., NIPS 2015
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Movie Trivia Time!

* Which was Stanley Kubricks's first /_ ________ l _________
movie?

Fear and Desire

(fear_and_dark, released in, 1953)
(full _metal jacket, released in, 1987)

* When did 2001:A Space Odyssey
release?

(2001:a_space_odyssey, released in, 1968)

e After The Shining, which (the_shining, directed by, stanley_kubrick)

movie did its director direct?

|
|
|
|
|
|
|
|
|
|
|
|
|
|
1968 :
|
|
|
|
|
|
|
|
|
|
|
|

Full Metal Jacket
Knowledge Base

28



Knowledge Base? Textual Knowledge?

(fear_and_dark, released in, 1953)
(full_metal jacket, released in, 1987)

(2001:a_space_odyssey, released in, 1968)

(the_shining, directed by, stanley kubrick) WIKIPEDIA
(Al:artificial_intelligence, written by, stanley_kubrick)
Incomplete! Too Challenging!

Combine using Memory Networks?

29



Key-Value MemNNs for Reading Documents

e Structured Memories as Key-Value Pairs
e Regular MemNNs have single vector for each memory
* Key more related to question and values to answer

Memories = (k1,v1), (k2,v2), ..., (kn,VUN)

(k: Kubrick’s first movie was, v: Fear and Dark)

Keys and Values can be Words, Sentences, Vectors etc.

Key-Value Memory Networksfor Directly Reading Documents, Miller et.al., EMNLP 2016



KV-MemNN

1. Retrieve relevant memories using Hashing Technigques

 Umon) |
. : i (kQ, UZ) i o i(khzavhz) i
(kn.on) (ki vny )

—— ——— — — — — — — — — — ]

All Memories

Use inverted index, locality sensitive hashing, something sensible

Key-Value Memory Networks for Directly Reading Documents, Miller et.al., EMNLP 2016



KV-MemNN

2. Score Memory-Keys p; = Softmax(ulm; )

ph, = Softmax{A®(q) 4 A®k (kn,))

o N S s
: Distribution over o / _______ ' Key

. Memory-Keys  + pot-Prod ! . BOW
................................. . ' Sum of Lo
' Embeddings
3. Generate Output
0= pic;
|
0="> pn,A®y(vp,) G
pooosoooommmsoooooo ooy . ,
+ Weighted average of | 1

: Memory-values

________________________

32
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KV-MemNN - Multiple Hops

In the j** hop:

Query representation:
qj = Rj(A®q(gj-1) + o)

Key Addressing

Ph, = SoftmaX(ACI)Q(qj) . A(I)K(khz))

Generate Response
a = Softmax(APg(qm+1) - B®y (v:))

Key-Value Memory Networks for Directly Reading Documents, Miller et.al., EMNLP 2016



KV-MemNN — What to store in memories?

1. KB Based:
Key: (subject, relation); Value: Object

K: (2001:a_space odyssey, directed by); V: stanley kubrick

2. Document Based

For each entity in document, extract 5-word window
around it

Key: window; Value: Entity

K: screenplay written by and; V: Hampton

34
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KV-MemNN — Experiments

 WikiMovies Benchmark
e Total 100K QA-pairs
e 10% for testing

Method KB Doc
E2E Memory

Network 78.5 69.9

Key-Value 93.9 76.2

Memory Network

35
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KV-MemNN

Generate Output using
' Averaged Memory-Values

| Score relevant

i Memory-Keys \
--------------- :\ Hopsj = 1,...H

\ ..... \
Candidates
Question embedding Key embeddings Value embeddings H
e | e ) (
= |- N —
_______ g I Inmer product
feononnneeeny e | W e | WP P BOy) |
Question : e b e ] ()< :
......... 1 I s I )
x o - Y — S
s o | R N —
\ e > J i Answer ! \
A q [Key addressing] Softmax [Value reading) N e )
\‘ d
............. . \\\\ [Key hashing] ,-----_---_.4?1551.(’1").---- - ---.A.(?_V.(})fi?------_---_---\
Knowledge | TTteellL i 2 S S -t - :
Source lr ---------------------- - : (Ah]’ vhl) (l‘/:_“ ‘,h_‘) (Ah_\" vhﬁ) (I\h-l‘ ‘,IH) o (l\h;\/" vhN) E
""""""" ! , Key-Value Memories ]
C . /
| Retrieve FTTTTTTTTTT e !
1 1
' relevant i Ge nerateRe SPonse
I .
: Memories
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KV-MemNN
IIIIIIII|IIIIIIIII

.....

Candidates

W}

Predicted
Answer

B<1>,(y)

Inner product
q” +1 N\
\_J
max, - g
—

Value embeddings

=1..H
%('v

(kh]' vl:l) (kh:’ vh:) (khi’ vhx) (khJ‘ vlw)

— xy)

&

Hops j

EIDEI--I:I-DEIE

Key-Value Memories

E Sentences

A
&
g = :
x =z g 1
5 £ = ! '
2 __E : H
= ' '
: : '
A
E
= .
I
= "
Zon
w I
: ¢
1
g s
3 ~
iz
g ;
g uestion g
e T St
H [ S
g ! ‘T
% 1= el
= LY =3
4 :Q"’
H
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CNN : Computer Vision :: RN N : NLP

38
Key-Value Memory Networksfor Directly Reading Documents, Miller et.al., EMNLP 2016



Dynamic Memory Networks — The Beast

Episodic Memory , A A A ] i i Answer module
Modul e’ e e’ e’ e’ e’ e e’
oaule 0.0 |o3 0.0 0.0 0.0 |0.9 0.0 oo)l
1 1 1 1 1 1 1
el e? e3 e4 e5 ﬁ6 e7 e8
0.3 0.0 0.0 0.0 0.0 0.0 I;o 0.0 ’I
]’ A

Input Module s, \52 s, S, S, \56 \s, 5
|||||||||I|||||||||||||l||l|||||||l||| > -
HERL AR DRRREA DRREE RRREA RREE DR
W, @ w,

& & Q ) e ) N Q
1}\{0 &L ..@’*\?” \\\& 6‘?} \\“p o“&o1> &
P &L N < D @ o &
«© ° ol ¢ ° N N o
e g N/ X L Q oS
& - 0/ 0 N 0 \y <
S © & N & o &
S zb P/ N T \g & &
S) s N\ K S & K3
* S N G S & Q N
& e/ & N $ N G
& o/ S NS ¥ & )
\0 Q&// ® >

Use RNNSs, specifically GRUs for every module
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DMN

| el L}
1
1
1

Final GRU Output R . |
 for tt" sentence ! »Ct = GRU(wt’ Ct )

40
Ask Me Anything: Dynamic Memory Networks for Natural Language Processing, Kumar et. al. ICML 2016



DMN

Question Module g

¢ = GRU(qy,, ¢" ")

41
Ask Me Anything: Dynamic Memory Networks for Natural Language Processing, Kumar et. al. ICML 2016



DMN

Hop= i = g;GRU(ct, hy_1) + (1 — g})h}_;

| ! e—TC

42
Ask Me Anything: Dynamic Memory Networks for Natural Language Processing, Kumar et. al. ICML 2016



DMN

Episodic Memory ,
e,
Module oD

Hop=i}  hy=gGRU(cr, by )+ (1 —gi)hi
i=2 ] e = i,

43
Ask Me Anything: Dynamic Memory Networks for Natural Language Processing, Kumar et. al. ICML 2016



m" = GRU(e*,m"™ 1)

44
Ask Me Anything: Dynamic Memory Networks for Natural Language Processing, Kumar et. al. ICML 2016




Answer module

Yp = SoftmaX(W(a)at)
ap = GRU([yt—la Q]a Oét—1)

Ask Me Anything: Dynamic Memory Networks for Natural Language Processing, Kumar et. al. ICML 2016



Answer module

How many GRUs were used with 2 hops?

46
Ask Me Anything: Dynamic Memory Networks for Natural Language Processing, Kumar et. al. ICML 2016




DMN — Qualitative Results

Question: Where was Mary before the Bedroom?
Answer: Cinema.

Facts Episode 1 Episode 2 Episode 3

Yesterday Julie traveled to the school.

Yesterday Marie went to the cinema. ]
This morning Julie traveled to the kitchen.

Bill went back to the cinema yesterday.

Mary went to the bedroom this morning. [ ]
Julie went back to the bedroom this afternoon.

[done reading] ]

> & O > VRN >
& o g EF &
Q& o @ N 3N
o < S o S
C < =)
o
N ¢
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Algorithm Learning




Neural Turing Machine

Copy Task: Implement the Algorithm

Given a list of numbers at input, reproduce the list at output

Neural Turing Machine Learns:
What to write to memory

When to write to memory
When to stop writing

Which memory cell to read from

AR A

How to convert result of read into final output



Neural Turing Machines

External Input External Output

"""""" \ """""" /

Controller

/ ‘Blurry’ \

Write Heads Read Heads

Neural Turing Machines, Graves et.al., arXiv:1410.5401



Neural Turing Machines

‘Blurry” Memory Addressing

(at time instant ‘t’) M
Z w (1) =1
: Soft Attention (Lectures 2, 3, 20, 24)
N
wi(0)=0.1 | w(1)=0.2 | w(2)=0.5 | w(3)=0.1 | w,(4)=0.1

Neural Turing Machines, Graves et.al., arXiv:1410.5401

51



Neural Turing Machines

More formally,

Blurry Read Operation
Given: M, (memory matrix) of size NxM

w; (weight vector) of length N
t (time index)

Neural Turing Machines, Graves et.al., arXiv:1410.5401



Neural Turing Machines: Blurry Writes

Blurry Write Operation

Decomposed into blurry erase + blurry add

Given: M, (memory matrix) of size NxM
w; (weight vector) of length N
t (time index)
e, (erase vector) of length M
a, (add vector) of length M

M (i) = My—1(¢)(1 — we(i)er) + we(i)ay

J

| |
Erase Component Add Component

Neural Turing Machines, Graves et.al., arXiv:1410.5401



Neural Turing Machines: Erase

Mt—l (Z) (1 — Wt (z)et)

Mx1

w1(0)=0.1 [ wy(1) =02 | wy(2) =05 | wy(3)=0.1 | wy(4) =01 | e
5 7 9 2 12 1.0
11 6 3 1 2 0.7
3 7 3 10 6 0.2
4 2 5 9 9 0.5
3 5 12 8 4 0.0

Neural Turing Machines, Graves et.al., arXiv:1410.5401
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Neural Turing Machines: Erase

M (1) =|M;—1(2)(1 — we(i)ey)

w1(0) = 0.1 [ wq(1)=0.2 [ w4(2) =05 | wy(3)=0.1 | wq(4)
4.5 5.6 4.5 1.8 10.8
10.23 5.16 1.95 0.93 1.86
294 6.72 2.7 9.8 5.88
3.8 1.8 3.75 8.55 8.55

3 5 12 8 4

Neural Turing Machines, Graves et.al., arXiv:1410.5401



Neural Turing Machines: Addition

M;(2) = My—1(2)(1 —we(2)er) +|we (2)ay
Wl(O) =0.1 Wl(l) =0.2 W1(2) =0.5 W1(3) =0.1 W1(4) =0.1 dq
4.5 5.6 4.5 1.8 10.8
10.23 5.16 1.95 0.93 1.86
294 6.72 2.7 9.8 5.88
3.8 1.8 3.75 8.55 8.55
3 5 12 8 4

Neural Turing Machines, Graves et.al., arXiv:1410.5401
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Neural Turing Machines: Blurry Writes

M:(1) = M;_1(2)(1 — we(i)er) + we(1)ay

4.8 6.2 6 2.1 11.1
10.63 5.96 3.95 1.33 2.26
2.74 6.32 1.7 9.6 5.68
3.8 1.8 3.75 8.55 8.55
3.2 54 13 8.2 4.2

Neural Turing Machines, Graves et.al., arXiv:1410.5401
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Neural Turing Machines: Demo

Demonstration: Training on Copy Task

Memory

Wirite head Read head

Input

Output

Error @ ’ ®

Training Progress

Figure from Snips Al's Medium Post

Neural Turing Machines, Graves et.al., arXiv:1410.5401



Neural Turing Machines: Attention Model

Generating w,

Content Based Location Based

Example: QA Task Example: Copy Task

- Score sentences by - Move to address (i+1)
similarity with Question after writing to index (i)

- Weights as softmax of - Weights = Transition
similarity scores probabilities

Neural Turing Machines, Graves et.al., arXiv:1410.5401



Neural Turing Machine: Attention Model

Prev. State

________

Controller
Outputs
Kk calwy

Steps for generating w,

1. ContentAddressing
2. Peaking
3. Interpolation
4. Convolutional Shift (Location
Addressing)
5. Sharpening
g
Wy
cs Wy
S Wt

Neural Turing Machines, Graves et.al., arXiv:1410.5401



Neural Turing Machine: Attention Model

Prev. State k, :Vector (length M) produced by Controller

________

Controller
Outputs

Neural Turing Machines, Graves et.al., arXiv:1410.5401



Neural Turing Machine: Attention Model

Prev. State Step 1: Content Addressing (CA)
M W (i) = exp < My(i), k; >

: i ' > exp < Mg(i), ke >
E(;_r;:c_roller

Outputs

k| ca

Neural Turing Machines, Graves et.al., arXiv:1410.5401



Neural Turing Machine: Attention Model

Prev. State Step 2: Peaking

Mt Wt (i) = exp(B(< My (i), ks >))
o t > exp(Be(< My (i), ky >))

________

Controller
Outputs
ki calwy

Neural Turing Machines, Graves et.al., arXiv:1410.5401



Neural Turing Machine: Attention Model

Prev. State Step 3: Interpolation (1)

| g __ c

thi Wy = gtWy + (1 — gt)wt—l
We—1i

Controller

Outputs

ki calwy

Neural Turing Machines, Graves et.al., arXiv:1410.5401



Neural Turing Machine: Attention Model

Prev. State Step 4: Convolutional Shift (CS)
M * ControlleroutputsS+¢, a normalized

| t: distribution overall N possible shifts
;th_lg * Rotation-shifted weights computed as:
SR | N-1

Controfler (i) = ) wi(f)se(j — 1)
Outputs §=0

k- calwy

Neural Turing Machines, Graves et.al., arXiv:1410.5401



Neural Turing Machine: Attention Model

Prev. State Step 5: Sharpening (S)

« Uses )t tosharpenas:

EMtE NN
w1 wy (1) = (i)

Wi —1 — ~ .
S : D> w(i)7
Controller

Outputs

k- calwy

St cs |y
Yt s | Wy

Neural Turing Machines, Graves et.al., arXiv:1410.5401



Neural Turing Machine: Controller Design

* Feed-forward: faster, more transparency &
interpretability about function learnt

* [STM: more expressive power, doesn’t [imit the
number of computations per time step

Both are end-to-end differentiable!
1. Reading/Writing -> Convex Sums
2. Ww;generation ->Smooth

3. Controller Networks

Neural Turing Machines, Graves et.al., arXiv:1410.5401



Neural Turing Machine: Network Overview

Unrolled Feed-forward Controller

Yt—1 Yt Yt+1

hi—1 hy hiy1

FF;_1 _l FF _l FFipq >

A

----- - --> My_y ----|---> M; ----]-----

— Tt—-1 I—> Tt I—) Tt4+1
Ti_1 T Tt4+1
Ti_1 T Tt4+1

Figure from Snips Al's Medium Post

Neural Turing Machines, Graves et.al., arXiv:1410.5401

Controller

Read heads
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Neural Turing Machines vs. MemNNs

MemNNSs

* Memory is static, with focus on retrieving (reading) information
from memory

NTMs

* Memory is continuously written to and read from, with network
learning when to perform memory read and write



Neural Turing Machines: Experiments

Task

Network Size

Number of Parameters

NTM w/ LSTM* LSTM NTM w/ LSTM LSTM
Copy 3x 100 3 x 256 67K 1.3M
Repeat Copy 3 x 100 3x512 66K 5.3M
Associative 3 x 100 3 x 256 /70K 1.3M
N-grams 3x 100 3x 128 61K 330K
Priority Sort 2 x 100 3x128 269K 385K

Neural Turing Machines, Graves et.al., arXiv:1410.5401
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Neural Turing Machines: ‘Copy’ Learning Curve

Trained on 8-bit sequences, 1<= sequence length <= 20
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Neural Turing Machines: ‘Copy’ Performance

LSTM

NTM

Targets

Outputs

v

Targets

Outputs

Targets

Outputs

Time > }

Neural Turing Machines, Graves et.al., arXiv:1410.5401

1.0

0.9

08

0.7

0.6

0.4

0.3

0.2

0.1

0.0

72



Neural Turing Machines triggered
an outbreak of Memory
Architectures!




Stack Augmented Recurrent Networks

Learn algorithms based on stack implementations (e.g.
learning fixed sequence generators)

Sequence generator Example
{a™b™ | n > 0} aabbaaabbbabaaaaabbbbb
{a"b"c™ | n > 0} aaabbbecccabcaaaaabbbbbeceece
{a™b"c*d™ | n > 0} aabbcecddaaabbbeccdddabed
{a™b*" | n > 0} aabbbbaaabbbbbbabb
{a™b™c™ ™ | n,m > 0} aabcecaaabbceecccabee
ne Lk, X >nXn, X o= | (k=2)12=212122-221211121-12111

Uses a stack data structure to store memory (as
opposed to a memory matrix)

Inferring Algorithmic Patternswith Stack-Augmented Recurrent Nets, Joulin et. al., arXiv:1503.01007 74



Dynamic Neural Turing Machines

Experimented with addressing schemes

* Dynamic Addresses: Addresses of memory locations learntin training —allows non-linear
location-based addressing

* Leastrecently used weighting: Prefer least recently used memory locations + interpolate
with content-based addressing

* Discrete Addressing: Sample the memory location from the content-based distribution to
obtain a one-hot address

* Multi-step Addressing: Allows multiple hops over memory

Results: bAbl QA Task

Location NTM | Content NTM Soft DNTM Discrete DNTM
1-step 31.4% 33.6% 29.5% 27.9%
3-step 32.8% 32.7% 24.2% 21.7%

Dynamic Neural Turing Machine with Soft and Hard Addressing Schemes, Gulchere et. al., arXiv:1607.00036/5



Stack Augmented Recurrent Networks

* Blurry ‘push”and ‘pop’ on stack. E.g.:
s¢|0] = a[Push|(h¢) + a|Pop|si—_1[1]

e Some results:

method a”b®  a™b"c* ab*cd® a™b*"  a"b™mct™
RNN 25%  23.3% 13.3% 23.3% 33.3%
LSTM 100%  100% 68.3% 75% 100%
List RNN 40+5 100% 33.3% 100% 100% 100%
Stack RNN 40+10 100% 100% 100% 100% 43.3%
Stack RNN 40+10 + rounding | 100%  100% 100% 100% 100%

Inferring Algorithmic Patternswith Stack-Augmented Recurrent Nets, Joulin et. al., arXiv:1503.01007



Differentiable Neural Computers

Advanced addressing mechanisms:

* Content Based Addressing

* Temporal Addressing
* Maintains notion of sequence in addressing

e Temporal Link Matrix L (size NxN), L[i,j] = degree to which
location / was written to after location J.

* Usage Based Addressing

Hybrid computing using a neural network with dynamic external memory, Graveset. al.,, Nature vol. 538



DNC: Usage Based Addressing

* Writing increases usage of cell, reading decreases
usage of cell

 Least used location has highest usage-based weighting

* Interpolate b/w usage & content based weights for
final write weights

Hybrid computing using a neural network with dynamic external memory, Graveset. al.,, Nature vol. 538



DNC: Example
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DNC: Improvements over NTMs

NTM DNC
e Large contiguous blocks of * Memory locations non-
memory needed contiguous, usage-based

* No way to free up memory e Regular de-allotment based on
cells after writing usage-tracking

Hybrid computing using a neural network with dynamic external memory, Graveset. al.,, Nature vol. 538



DNC: Experiments

Graph Tasks

Graph Representation: (source, edge, destination) tuples

Types of tasks:

- Traversal: Perform walk on graph given source, list of edges
- Shortest Path: Given source, destination

- Inference: Given source, relation over edges; find destination

Hybrid computing using a neural network with dynamic external memory, Graveset. al.,, Nature vol. 538



DNC: Experiments

Graph Tasks

Training over 3 phases:

* Graph description phase: (source, edge, destination) tuples fed into the

graph

* Query phase: Shortest path (source, , destination), Inference

(source, hybrid relation, ), Traversal (source, relation, relation ...,

* Answer phase: Target responses provided at output

Trained on random graphs of maximum size 1000

Hybrid computing using a neural network with dynamic external memory, Graveset. al.,, Nature vol. 538
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DNC: Experiments

Graph Tasks: London Underground
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DNC: Experiments

Graph Tasks: London Underground

(OxfordCircus, TottenhamCtRd, Central)
(TottenhamCtRd, OxfordCircus, Central)
(BakerSt, Marylebone, Circle)
(BakerSt, Marylebone, Bakerloo)
(BakerSt, OxfordCircus, Bakerloo)
Input Phase :
(LeicesterSq, CharingCross, Northern)
(TottenhamCtRd, LeicesterSq, Northern)
(OxfordCircus, PiccadillyCircus, Bakerloo)
(OxfordCircus, NottingHillGate, Central)
(OxfordCircus, Euston, Victoria)

Hybrid computing using a neural network with dynamic external memory, Graveset. al.,, Nature vol. 538



DNC: Experiments

Graph Tasks: London Underground

Traversal Task

(BondSt, _, Central) (BondSt, NottingHillGate, Central)
( Ciré:l_e,) ( C,ircle) (NottingHillGate, GloucesterRd, Circle)

o Circ.le), _— Circlel), (Westminster, Gre.enPark, Jubilee)
(, _, Jubilee), (_, _, Jubilee), (GreenPark, BondSt, Jubilee)

Query Phase Answer Phase

Hybrid computing using a neural network with dynamic external memory, Graveset. al.,, Naturevol. 538 25



DNC: Experiments

Graph Tasks: London Underground
Shortest Path Task

Moorgate, Bank, Northern)

(Moorgate, PiccadillyCircus, _)

Holborn, LeicesterSq, Piccadilly)

(
(Bank, Holborn, Central)
(
(

LeicesterSq, PiccadillyCircus, Piccadilly)

Query Phase Answer Phase

Hybrid computing using a neural network with dynamic external memory, Graveset. al.,, Naturevol. 538 26



DNC: Experiments

Graph Tasks: Freya’s Family Tree

Hybrid computing using a neural network with dynamic external memory, Graveset. al.,, Nature vol. 538



Conclusion

* Machine Learning models require memory and multi-hop
reasoning to perform Al tasks better

* Memory Networks for Text are an interesting direction but very
simple

e Generic architectures with memory, such as Neural Turing
Machine, limited applications shown

* Future directions should be focusing on applying generic neural
models with memory to more Al Tasks.

Hybrid computing using a neural network with dynamic external memory, Graveset. al.,, Nature vol. 538
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