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The	Machine	Learning	Holy	Grail

Moving	from	domain-specific	learning	
algorithms	to	general	purpose	learning	

algorithms	(meta-learning	algorithms)	that	can	
learn	better	learning	algorithms	

Stop	engineering	the	algorithms the	same	way	
we	stopped	engineering	the	features	!
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Inspiration:	Slow	Learning to	Learn	Fast

• We have a system of core knowledge that allows us to reason about objects,
numbers, spaces…

• The slow learning (optimization, search process) of evolution led to the
emergence of components that enable fast and varied learning

Algorithm

Meta-Algorithm
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• We have a system of core knowledge that allows us to reason about objects,
numbers, spaces…

• The slow learning (optimization, search process) of evolution led to the
emergence of components that enable fast and varied learning

Algorithm

Meta-Algorithm

Radical	 learning	 to	 learn	 is	 about	 encoding	 the	 initial	
learning	 algorithm	 in	 a	 universal	 language,	 with	
primitives	 that	 allow	 to	 modify	 the	 code	 itself	 in	
arbitrary	 computable	 fashion.	 Then,	 surround	 this	 self-
referential,	 self-	 modifying	 code	 by	 a	 recursive	
framework	 that	 ensures	 that	 only	 “useful”	 self-	
modifications	are	executed	or	survive	

Jürgen Schmidhuber 

Inspiration:	Slow	Learning to	Learn	Fast
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• Mathematical	Formulation	of	Meta-Learning

• Learning	the	Deep	learning	Architecture

• Learning	to	Explore
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• 𝐷	 ∶ Sample Space
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• 𝐷	 ∶ Sample Space

• 𝜋% ∶ Agent parametrized	by	𝜃𝜖 ⊝

• 𝜙	 :	The expected	performance	measure	of	the	agent	on	a	
given	task

• The	learning	algorithm	𝐿+:	(Θ,𝐷)→ Θ is	a	function	that	
changes	the	agent	parameter	Θ to	maximize its expected	
performance

• 𝜇 ∈ 𝑀 is	a	meta	parameter	of	the	learning	algorithm

• The expected	performance	gain of	the	learning	algorithm

• The meta-Algorithm ML:	(𝑀,𝐷)→ 𝑀 changes	the	meta-
parameters	of	the	learning	algorithm	to	maximize	it	expected	
performance	𝛿

12
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Formal	Definition	of	Meta-Learning

Scholarpedia	Article
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The	Programmable	Chronicles
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Ensemble	Methods

Scholarpedia	Article
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Ensemble	Methods

Number	of	classifiers,	data	subsets	with	sample	weights

Input/class	samples

Classification	Errors

Set	of	base-level	classifiers
Parameters	of	each	classifier

Supervised	learning

Boosting

Scholarpedia	Article
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Early	Days	Meta-Learning	 Algorithms

• Ensemble	methods

• Success-Story	Algorithm	(Schmidhuber et	al.,	1997)

• Multiple	learning	algorithms	(Rice,	1976)	

• Meta-Genetic	Programming	(Schmidhuber,	1987)	

• Fully	self-referential	learners:	Gödel	Machine	(Schmidhuber,	2006,	2009)

• Neuro-evolution	

• Originally	used	only	to	evolve	the	weights	of	a	fixed	architecture	(Miller	et	al.,	1989)

• Later	shown	advantageous	to	simultaneously	evolve	the	network	architecture

• NeuroEvolution of Augmenting Topologies -NEAT- (Stanley & Miikkulainen, 2002)
• Hypercube-Based NeuroEvolution of Augmenting Topologies -HyperNEAT- (Stanley et al., 2009)
• Compositional Pattern Producing Networks -CPPNs- (Stanley, 2007; Stanley et al., 2009)
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Learning	to	Learn	the	Deep	Learning	Network	Architecture	

Weights	initialization,	Learning	parameters,	Layers	
and	connections,	Learned	weights

Deep	NN

• Hyper-Parameter	Optimization

• Reinforcement	Learning	for	Architecture	Design

• Hypernetworks

• Evolution
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Hyper	Parameters	Optimization

• Grid	Search:	exhaustively	generates	candidates	from	a	grid	of	parameter	values (usually	uniformly	distributed)
• Random	Search	

Bergstra J,	Bengio Y.	Random	search	for	hyper-parameter	optimization.	Journal	of	Machine	Learning	Research.	2012;13(Feb):281-305.

𝑓 𝑥, 𝑦 = 𝑔 𝑥 + ℎ(𝑦)

[Lec2]

ℎ(𝑦) ℎ(𝑦)

𝑔(𝑥)𝑔(𝑥)
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Weights	initialization,	Learning	parameters,	Layers	
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Reinforcement	Q-Learning	to	discover	CNN	architectures

Baker	B,	Gupta	O,	Naik N,	Raskar R.	Designing	Neural	Network	Architectures	using	Reinforcement	Learning.	arXiv preprint	arXiv:1611.02167.	2016	Nov	7.

Given	a	learning	task,	
automatically	generate	a	
high	performing	CNN	

architecture?
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Reinforcement	Q-Learning	to	discover	CNN	architectures
-State	Space-

State	=	Tuple	of	relevant	layer	parameters

Baker	B,	Gupta	O,	Naik N,	Raskar R.	Designing	Neural	Network	Architectures	using	Reinforcement	Learning.	arXiv preprint	arXiv:1611.02167.	2016	Nov	7.
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• Action	=	set	of	layers	the	agent	might	pick	next	given	its	current	state
• Constraints

○ Limit	the	number	of	fc	layers	to	max	2
○ From	a	state	of	type	(C)	we	can	transition	to	any	other	state	type		
○ From	P	we	can	not	transition	to	P
○ Etc
○ …

Reinforcement	Q-Learning	to	discover	CNN	architectures
-Action	Space-

Baker	B,	Gupta	O,	Naik N,	Raskar R.	Designing	Neural	Network	Architectures	using	Reinforcement	Learning.	arXiv preprint	arXiv:1611.02167.	2016	Nov	7.
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-Training-

1. The	agent	sequentially selects layers via 𝜺 greedy	strategy	until	it	reaches	a	termination	state

Reinforcement	Q-Learning	to	discover	CNN	architectures

Baker	B,	Gupta	O,	Naik N,	Raskar R.	Designing	Neural	Network	Architectures	using	Reinforcement	Learning.	arXiv preprint	arXiv:1611.02167.	2016	Nov	7.
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-Training-

2.	The	CNN	architecture	defined	by	the	agent’s	path	is	trained on	the	chosen	learning	problem

Reinforcement	Q-Learning	to	discover	CNN	architectures

Baker	B,	Gupta	O,	Naik N,	Raskar R.	Designing	Neural	Network	Architectures	using	Reinforcement	Learning.	arXiv preprint	arXiv:1611.02167.	2016	Nov	7.
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3.	The	agent	is	given	a	reward equal	to	the	validation	accuracy

Reward:
Validation	Accuracy

-Training-
Reinforcement	Q-Learning	to	discover	CNN	architectures

Baker	B,	Gupta	O,	Naik N,	Raskar R.	Designing	Neural	Network	Architectures	using	Reinforcement	Learning.	arXiv preprint	arXiv:1611.02167.	2016	Nov	7.
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4.	The	validation	accuracy	and	the	architecture	description	are	stored	in	the replay	memory

Reward:
Validation	Accuracy

-Training-
Reinforcement	Q-Learning	to	discover	CNN	architectures

Baker	B,	Gupta	O,	Naik N,	Raskar R.	Designing	Neural	Network	Architectures	using	Reinforcement	Learning.	arXiv preprint	arXiv:1611.02167.	2016	Nov	7.
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5.	Experiences	are	sampled	periodically	from	the	replay	memory	to	update	Q-value

Reward:
Validation	Accuracy

-Training-
Reinforcement	Q-Learning	to	discover	CNN	architectures

Baker	B,	Gupta	O,	Naik N,	Raskar R.	Designing	Neural	Network	Architectures	using	Reinforcement	Learning.	arXiv preprint	arXiv:1611.02167.	2016	Nov	7.
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-Results-
Reinforcement	Q-Learning	to	discover	CNN	architectures

Baker	B,	Gupta	O,	Naik N,	Raskar R.	Designing	Neural	Network	Architectures	using	Reinforcement	Learning.	arXiv preprint	arXiv:1611.02167.	2016	Nov	7.
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Method CIFAR-10 MNIST CIFAR-100

Resnet(110)(He	et	al.,	2015) 6.61 - -

Resnet(1001)(He	et	al.,	2016) 4.62 - 22.71

VGGnet(Simonyan &	Zisserman,	2014) 7.25 - -

MetaQNN(ensemble) 7.32 0.32 -

MetaQNN(top	model) 6.92 0.44 27.14

-Results-
Reinforcement	Q-Learning	to	discover	CNN	architectures

Baker	B,	Gupta	O,	Naik N,	Raskar R.	Designing	Neural	Network	Architectures	using	Reinforcement	Learning.	arXiv preprint	arXiv:1611.02167.	2016	Nov	7.
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Top	Model	for	CIFAR10

C(512,5,1)

C(256,3,1)

C(256,5,1)

C(256,3,1)

P(5,3)

C(512,3,1)

C(512,5,1)

P(2,2)

SM(10)

VGGnet

C:	(#out_filter,filter_size,stride)
P:	(filter_size,stride)

C(64,3,1)
C(64,3,1)
P(2,2)

C(128,3,1)
C(128,3,1)
P(2,2)

C(256,3,2)
C(256,3,1)
P(2,2)

C(512,3,2)
C(512,3,1)
P(2,2)

C(512,3,2)
C(512,3,1)
P(2,2)

Fc(4096)
Fc(4096)
Fc(1000)	

Baker	B,	Gupta	O,	Naik N,	Raskar R.	Designing	Neural	Network	Architectures	using	Reinforcement	Learning.	arXiv preprint	arXiv:1611.02167.	2016	Nov	7.
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Policy	Gradient	to	Generate	New	CNN/RNN	Architectures

Can	we	use	an RNN to automatically generate	a description of	a	
CNN/RNN	network with high	performance	on	a	given	task?

Zoph,	Barret,	and	Quoc	V.	Le.	"Neural	architecture	search	with	reinforcement	learning."	arXiv preprint	arXiv:1611.01578 (2016).
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1. RNN	generates	a description of	a ‘child’	neural	network	(CNN/RNN)

Controller	RNN

CNN	Architecture

Validation	Accuracy

Search	space
Non-linearities:	rectifier	linear	units
Batch	normalization
Skip	connections	
filter	height	[1,3,5,7]
Filter	width	[1,3,5,7]
Number	of	filter	[24,36,48,64]
Strides	[1,2,3]

Policy	Gradient	to	Generate	New	CNN/RNN	Architectures
-Training-

Zoph,	Barret,	and	Quoc	V.	Le.	"Neural	architecture	search	with	reinforcement	learning."	arXiv preprint	arXiv:1611.01578 (2016).
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2.	The	child	network	is	trained	on	a	validation	data	set	(50	epochs)

Controller	RNN

CNN	Architecture

Validation	Accuracy

Policy	Gradient	to	Generate	New	CNN	Architectures
-Training-

Zoph,	Barret,	and	Quoc	V.	Le.	"Neural	architecture	search	with	reinforcement	learning."	arXiv preprint	arXiv:1611.01578 (2016).
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3.	The	accuracy on	the	validation	data	set	at	convergence	is	the	reward for	the	controller	RNN

Controller	RNN

CNN	Architecture

Validation	Accuracy

Policy	Gradient	to	Generate	New	CNN	Architectures
-Training-

Zoph,	Barret,	and	Quoc	V.	Le.	"Neural	architecture	search	with	reinforcement	learning."	arXiv preprint	arXiv:1611.01578 (2016).
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4.	Policy	gradient	is	used	to	update	the	parameters	of	the RNN	controller

Controller	RNN

CNN	Architecture

Validation	Accuracy

Policy	Gradient	to	Generate	New	CNN	Architectures
-Training-

Zoph,	Barret,	and	Quoc	V.	Le.	"Neural	architecture	search	with	reinforcement	learning."	arXiv preprint	arXiv:1611.01578 (2016).
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• At	layer	N,	add	an anchor	point	which	has	N-1	content	based	sigmoids to	indicate	the	previous	layers	that	need	to	be	
connected

Policy	Gradient	to	Generate	New	CNN	Architectures
-Skip	Connections	and	Branching	Layers	for	CNN-

Zoph,	Barret,	and	Quoc	V.	Le.	"Neural	architecture	search	with	reinforcement	learning."	arXiv preprint	arXiv:1611.01578 (2016).
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Data	set:	CIFAR	10

Policy	Gradient	to	Generate	New	CNN	Architectures
-Results-

Zoph,	Barret,	and	Quoc	V.	Le.	"Neural	architecture	search	with	reinforcement	learning."	arXiv preprint	arXiv:1611.01578 (2016).
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Discovered	CNN

FH :	Filter	height
FW:	Filter	Width
N :	Number	of	Filters

Zoph,	Barret,	and	Quoc	V.	Le.	"Neural	architecture	search	with	reinforcement	learning."	arXiv preprint	arXiv:1611.01578 (2016).
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• The	controller	needs	to	find	a	functional	form	for	ℎ= that	takes	𝑥= and	ℎ=>? as	inputs
• RNN: ℎ= = tanh	(𝑊? E 𝑥= +𝑊F E ℎ=>?)

• Better	cell	?

Policy	Gradient	to	Generate	New	RNN	Architectures
-Generate	Recurrent	Cell	Architectures-

Zoph,	Barret,	and	Quoc	V.	Le.	"Neural	architecture	search	with	reinforcement	learning."	arXiv preprint	arXiv:1611.01578 (2016).
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• Cell	Construction
o Tree	of	steps	
o The	nodes	in	the	tree	are indexed in	order	
o Controller	RNN	labels	each	step	in	the	tree	with	:

• a combination	method	(addition,	multiplication,…)	
• an activation	function	(tanh,	sigmoid…)

o Consider	two	state	variables	𝑐= and	𝑐=>?

• The	controller	needs	to	find	a	functional	form	for	ℎ= that	takes	𝑥= and	ℎ=>? as	inputs
• RNN: ℎ= = tanh	(𝑊? E 𝑥= +𝑊F E ℎ=>?)

• Better	cell	?

Policy	Gradient	to	Generate	New	RNN	Architectures
-Generate	Recurrent	Cell	Architectures-

Zoph,	Barret,	and	Quoc	V.	Le.	"Neural	architecture	search	with	reinforcement	learning."	arXiv preprint	arXiv:1611.01578 (2016).
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Index	0	

Policy	Gradient	to	Generate	New	RNN	Architectures
-Generate	Recurrent	Cell	Architectures-

Zoph,	Barret,	and	Quoc	V.	Le.	"Neural	architecture	search	with	reinforcement	learning."	arXiv preprint	arXiv:1611.01578 (2016).
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Index	0	

Index	1	

Policy	Gradient	to	Generate	New	RNN	Architectures
-Generate	Recurrent	Cell	Architectures-

Zoph,	Barret,	and	Quoc	V.	Le.	"Neural	architecture	search	with	reinforcement	learning."	arXiv preprint	arXiv:1611.01578 (2016).
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Index	0	

Index	1	

Index	2

Policy	Gradient	to	Generate	New	RNN	Architectures
-Generate	Recurrent	Cell	Architectures-

Zoph,	Barret,	and	Quoc	V.	Le.	"Neural	architecture	search	with	reinforcement	learning."	arXiv preprint	arXiv:1611.01578 (2016).



46

Index	0	

Index	1	

Index	2

Cell	Index

Cell	Index

Policy	Gradient	to	Generate	New	RNN	Architectures
-Generate	Recurrent	Cell	Architectures-

Zoph,	Barret,	and	Quoc	V.	Le.	"Neural	architecture	search	with	reinforcement	learning."	arXiv preprint	arXiv:1611.01578 (2016).
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LSTM

Best	Composed	Cell

Data	set:	Penn	Treebank

Policy	Gradient	to	Generate	New	RNN	Architectures
-Results-

Zoph,	Barret,	and	Quoc	V.	Le.	"Neural	architecture	search	with	reinforcement	learning."	arXiv preprint	arXiv:1611.01578 (2016).
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Learning	to	Learn	the	Deep	Learning	Network	Architecture	

Weights	initialization,	Learning	parameters,	Layers	
and	connections,	Learned	weights

Deep	NN

• Hyper-Parameter	Optimization

• Reinforcement	Learning	for	Architecture	Design

• Hypernetworks

• Evolution
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HyperNetworks

D.	Ha,	A.	Dai,	and	Q.	V.	Le. HyperNetworks.	arXiv preprint	arXiv:1609.09106	(2016).

Can	we	use	one	network	
– a	“hypernetwork”	– to	
generate	the	weights	for	

another	network?
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HyperNetworks

• Goal:
o Use a “hypernetwork” to generate the weights for another network
o Layer weights of main network computed as a function of a latent
representation associated with each layer

o Trained end-to-end with backpropagation

• Motivation:
o RNNs impose weight sharing across layers à vanishing gradients, inflexible

D.	Ha,	A.	Dai,	and	Q.	V.	Le. HyperNetworks.	arXiv preprint	arXiv:1609.09106	(2016).
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main RNN

HyperNetworks

D.	Ha,	A.	Dai,	and	Q.	V.	Le. HyperNetworks.	arXiv preprint	arXiv:1609.09106	(2016).
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main RNN
HyperRNN

HyperNetworks

D.	Ha,	A.	Dai,	and	Q.	V.	Le. HyperNetworks.	arXiv preprint	arXiv:1609.09106	(2016).
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main RNN
HyperRNN

HyperNetworks

D.	Ha,	A.	Dai,	and	Q.	V.	Le. HyperNetworks.	arXiv preprint	arXiv:1609.09106	(2016).
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Recall standard RNN formulation:

HyperNetworks

D.	Ha,	A.	Dai,	and	Q.	V.	Le. HyperNetworks.	arXiv preprint	arXiv:1609.09106	(2016).



57

Recall standard RNN formulation:

HyperNetworks

D.	Ha,	A.	Dai,	and	Q.	V.	Le. HyperNetworks.	arXiv preprint	arXiv:1609.09106	(2016).



58

Recall standard RNN formulation:

HyperNetworks

D.	Ha,	A.	Dai,	and	Q.	V.	Le. HyperNetworks.	arXiv preprint	arXiv:1609.09106	(2016).



59

Recall standard RNN formulation:

HyperRNN: weights allowed to float over time

HyperNetworks
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Recall standard RNN formulation:
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Recall standard RNN formulation:

HyperRNN: weights allowed to float over time

HyperNetworks

D.	Ha,	A.	Dai,	and	Q.	V.	Le. HyperNetworks.	arXiv preprint	arXiv:1609.09106	(2016).



66

Recall standard RNN formulation:

HyperRNN: weights allowed to float over time

how	to	compute	these	
embedding	vectors?

HyperNetworks

D.	Ha,	A.	Dai,	and	Q.	V.	Le. HyperNetworks.	arXiv preprint	arXiv:1609.09106	(2016).
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• Use	a	HyperRNN	to	compute	 and	 as	a	function	of	
and	 :

HyperNetworks

D.	Ha,	A.	Dai,	and	Q.	V.	Le. HyperNetworks.	arXiv preprint	arXiv:1609.09106	(2016).



68
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Learning	to	Learn	the	Deep	Learning	Network	Architecture	

Weights	initialization,	Learning	parameters,	Layers	
and	connections,	Learned	weights

Deep	NN

• Hyper-Parameter	Optimization

• Reinforcement	Learning	for	Architecture	Design

• Hypernetworks

• Evolution
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Genetic	Algorithms “As many more individuals of each species are born than can possibly
survive; and as, consequently, there is a frequently recurring struggle
for existence, it follows that any being, if it vary however slightly in any
manner profitable to itself, under the complex and sometimes varying
conditions of life, will have a better chance of surviving, and thus be
naturally selected.”

–– Darwin, On the Origin of Species by
Means of Natural Selection (1859)

Inspiration
o “Survival of the fittest”
o Three essential ingredients of an evolutionary process:

• Selection
• Variation
• Heritability
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Genetic	Algorithms	and	Neuroevolution

• Connection to deep learning
o Architecture search and hyperparameter optimization currently a
labor-intensive process

o Evolutionary algorithms offer natural framework for exploring neural
network topologies in unsupervised manner based on principles of
natural selection

o Evolutionary algorithms represent the models using an encoding that
is convenient for their purpose — analogous to nature’s DNA
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• How to represent the “DNA” of neural networks?
o Choose meaningful encoding

• How to “mutate” the neural network?
o Dependent on the chosen encoding

• How to evaluate fitness for each learned architecture?
o Train for fixed number of epochs on task of interest, evaluate performance

• What architectures can be learned with evolution?

Genetic	Algorithms	and	Neuroevolution
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• How to represent the “DNA” of neural networks?
o Choose meaningful encoding

• Model architecture using graph structure?
• Encode connections between layers using binary strings?
• Form connections between fixed type and number of layers using “active” module map?
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Model architecture using graph structure
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Convolution-BatchNorm-ReLU

Convolution-ReLU-MaxPool
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Model architecture using graph structure
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CNN RNN

How	to	represent	the	“DNA”	of	neural	networks?

Model architecture using graph structure
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How	to	represent	the	“DNA”	of	neural	networks?

CNN RNN

Model architecture using graph structure
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• How to represent the “DNA” of neural networks?
o Choose meaningful encoding

• Model architecture using graph structure?
• Encode connections between layers using binary strings?
• Form connections between fixed type and number of layers using “active” module map?

Genetic	Algorithms	and	Neuroevolution
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How	to	represent	the	“DNA”	of	neural	networks?
Encode connections between layers using binary strings

E.	Real,	S.	Moore,	A.	Selle,	S.	Saxena,	Y.	L.	Suematsu,	Q.	Le,	and	A.	Kurakin. Large-Scale	Evolution	of	Image	Classifiers.	arXiv preprint	arXiv:1703.01041	(2017).
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How	to	represent	the	“DNA”	of	neural	networks?
Encode connections between layers using binary strings

What	would	be	
the	encoding	of	
this	stage?
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• How to represent the “DNA” of neural networks?
o Choose meaningful encoding

• Model architecture using graph structure?
• Encode connections between layers using binary strings?
• Form connections between fixed type and number of layers using “active” module map?

Genetic	Algorithms	and	Neuroevolution
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C.	Fernando,	D.	Banarse,	C.	Blundell,	Y.	Zwols,	D.	Ha,	A.	A.	Rusu,	A.	Pritzel,	D.	Wierstra. PathNet:	Evolution	Channels	Gradient	Descent	in	Super	Neural	Networks.	arXiv preprint	arXiv:1701.08734	(2017).
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• How to represent the “DNA” of neural networks?
o Choose meaningful encoding

• How to “mutate” the neural network?
o Dependent on the chosen encoding

• How to evaluate fitness for each learned architecture?
o Train for fixed number of epochs on task of interest, evaluate performance

• What architectures can be learned with evolution?

Genetic	Algorithms	and	Neuroevolution
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• How to “mutate” the neural network?
o Dependent on the chosen encoding

• Add structure – nodes and edges – to the graph?
• Randomly flip bits with some mutation probability?
• Independently select with uniform probability the “active” modules in each layer?

Genetic	Algorithms	and	Neuroevolution
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How	to	“mutate”	the	neural	network?

Add structure – nodes and edges – to the graph
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How	to	“mutate”	the	neural	network?

Add structure – nodes and edges – to the graph

elaborate	
mutation	
operators

E.	Real,	S.	Moore,	A.	Selle,	S.	Saxena,	Y.	L.	Suematsu,	Q.	Le,	and	A.	Kurakin. Large-Scale	Evolution	of	Image	Classifiers.	arXiv preprint	arXiv:1703.01041	(2017).
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• How to “mutate” the neural network?
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• Randomly flip bits with some mutation probability?
• Independently select with uniform probability the “active” modules in each layer?
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How	to	“mutate”	the	neural	network?
Randomly flip bits with some mutation probability

L.	Xie and	A.	Yuille. Genetic	CNN.	arXiv preprint	arXiv:1703.01513	(2017).
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• How to “mutate” the neural network?
o Dependent on the chosen encoding

• Add structure – nodes and edges – to the graph?
• Randomly flip bits with some mutation probability?
• Independently select with uniform probability the “active” modules in each layer?

Genetic	Algorithms	and	Neuroevolution
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Independently select with uniform probability the “active” modules in each layer
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• How to represent the “DNA” of neural networks?
o Choose meaningful encoding

• How to “mutate” the neural network?
o Dependent on the chosen encoding

• How to evaluate fitness for each learned architecture?
o Train for fixed number of epochs on task of interest, evaluate performance

• What architectures can be learned with evolution?

Genetic	Algorithms	and	Neuroevolution
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E.	Real,	S.	Moore,	A.	Selle,	S.	Saxena,	Y.	L.	Suematsu,	Q.	Le,	and	A.	Kurakin. Large-Scale	Evolution	of	Image	Classifiers.	arXiv preprint	arXiv:1703.01041	(2017).

Learned	Network	Structures
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each dot represents one individual in the population
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blue dots are “alive”
(free to act as parents)
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best discovered
architecture
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evolution	sometimes	
stacks	convolutions	
without	any	non-
linearity	in	between

E.	Real,	S.	Moore,	A.	Selle,	S.	Saxena,	Y.	L.	Suematsu,	Q.	Le,	and	A.	Kurakin. Large-Scale	Evolution	of	Image	Classifiers.	arXiv preprint	arXiv:1703.01041	(2017).
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some convolutions are
followed by more than
one nonlinearity
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Case	Study:	PathNet

Can	we	“learn	without	forgetting”
– reuse	components	of	the	same
giant	neural	network,	but	for	

different tasks?
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agents	will	learn	how	to	best	reuse	

existing	parameters	in	its	environment
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• Each layer consists of 𝑀 modules
followed by transfer function

• For each layer, the outputs of the
modules are summed before being
passed into the active modules of the
next layer

• A module is active if it is present in
the path genotype currently being
evaluated

• A maximum of 𝑁 distinct modules
are permitted in a pathway

• The final layer is unique and
unshared for each task being learned
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• Each layer consists of 𝑀 modules
followed by transfer function

• For each layer, the outputs of the
modules are summed before being
passed into the active modules of the
next layer

• A module is active if it is present in
the path genotype currently being
evaluated

• A maximum of 𝑁 distinct modules
are permitted in a pathway

• The final layer is unique and
unshared for each task being learned
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• Train its pathway T epochs

• Evaluate its fitness
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• Binary tournament selection:
keep copy of “winning” pathway

• Mutate: choose independently
a module from each layer with
probability 1/(𝑁𝐿)
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• No simultaneous update of
parameters

• Evaluate fitness for all
pathways in parallel
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Transfer learning paradigm

• Three experiments:
I. learn task B from scratch using maximum-sized fixed pathway
II. train a maximum-sized fixed pathway on task A, finetune on task B
III. fix parameters of optimal pathway learned for task A, and re-evolve a new
population of pathways on task B

Case	Study:	PathNet
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Task	A:	Pong
Task	B:	Alien
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Case	Study:	PathNet



Task A: 5 vs. 6
Task B: 0 vs 9
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Binary MNIST classification

Case	Study:	PathNet
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Case	Study:	PathNet
Atari games
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Neuroevolution:	Pros	and	Cons

✔ Parallelizable
✔ Intuitive
✔ “Survival of the fittest” ensures solutions only get better
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Neuroevolution:	Pros	and	Cons

✔ Parallelizable
✔ Intuitive
✔ “Survival of the fittest” ensures solutions only get better

✘ Very slow
✘ Vast search space
✘ Mutation strategies still too constrained
✘ Fitness evaluation hazy
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So,	is	it	all	worth	it?
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M.	Andrychowicz,	M.	Denil,	S.	Gomez,	M.	W.	Hoffman,	D.	Pfau,	T.	Schaul,	B.	Shillingford,	and	N.	de	Freitas. Learning	to	Learn	by	Gradient	Descent	by	Gradient	Descent.	NIPS	(2016).

Computational	graph	guiding	gradient	flow
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Learning	to	Learn	by	Gradient	Descent	by	
Gradient	Descent

M.	Andrychowicz,	M.	Denil,	S.	Gomez,	M.	W.	Hoffman,	D.	Pfau,	T.	Schaul,	B.	Shillingford,	and	N.	de	Freitas. Learning	to	Learn	by	Gradient	Descent	by	Gradient	Descent.	NIPS	(2016).

Computational	graph	guiding	gradient	flow
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Learning	to	Learn	by	Gradient	Descent	by	
Gradient	Descent

M.	Andrychowicz,	M.	Denil,	S.	Gomez,	M.	W.	Hoffman,	D.	Pfau,	T.	Schaul,	B.	Shillingford,	and	N.	de	Freitas. Learning	to	Learn	by	Gradient	Descent	by	Gradient	Descent.	NIPS	(2016).

Computational	graph	guiding	gradient	flow
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Learning	to	Learn	by	Gradient	Descent	by	
Gradient	Descent

M.	Andrychowicz,	M.	Denil,	S.	Gomez,	M.	W.	Hoffman,	D.	Pfau,	T.	Schaul,	B.	Shillingford,	and	N.	de	Freitas. Learning	to	Learn	by	Gradient	Descent	by	Gradient	Descent.	NIPS	(2016).

Computational	graph	guiding	gradient	flow
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Learning	to	Learn	by	Gradient	Descent	by	
Gradient	Descent

M.	Andrychowicz,	M.	Denil,	S.	Gomez,	M.	W.	Hoffman,	D.	Pfau,	T.	Schaul,	B.	Shillingford,	and	N.	de	Freitas. Learning	to	Learn	by	Gradient	Descent	by	Gradient	Descent.	NIPS	(2016).

Computational	graph	guiding	gradient	flow
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Learning	to	Learn	by	Gradient	Descent	by	
Gradient	Descent

M.	Andrychowicz,	M.	Denil,	S.	Gomez,	M.	W.	Hoffman,	D.	Pfau,	T.	Schaul,	B.	Shillingford,	and	N.	de	Freitas. Learning	to	Learn	by	Gradient	Descent	by	Gradient	Descent.	NIPS	(2016).

Computational	graph	guiding	gradient	flow
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Learning	to	Learn	by	Gradient	Descent	by	
Gradient	Descent

M.	Andrychowicz,	M.	Denil,	S.	Gomez,	M.	W.	Hoffman,	D.	Pfau,	T.	Schaul,	B.	Shillingford,	and	N.	de	Freitas. Learning	to	Learn	by	Gradient	Descent	by	Gradient	Descent.	NIPS	(2016).

Computational	graph	guiding	gradient	flow
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Learning	to	Learn	by	Gradient	Descent	by	
Gradient	Descent

M.	Andrychowicz,	M.	Denil,	S.	Gomez,	M.	W.	Hoffman,	D.	Pfau,	T.	Schaul,	B.	Shillingford,	and	N.	de	Freitas. Learning	to	Learn	by	Gradient	Descent	by	Gradient	Descent.	NIPS	(2016).

Computational	graph	guiding	gradient	flow
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Learning	to	Learn	by	Gradient	Descent	by	
Gradient	Descent

M.	Andrychowicz,	M.	Denil,	S.	Gomez,	M.	W.	Hoffman,	D.	Pfau,	T.	Schaul,	B.	Shillingford,	and	N.	de	Freitas. Learning	to	Learn	by	Gradient	Descent	by	Gradient	Descent.	NIPS	(2016).

Computational	graph	guiding	gradient	flow
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Learning	to	Learn	by	Gradient	Descent	by	
Gradient	Descent

• In practice:
infeasible

M.	Andrychowicz,	M.	Denil,	S.	Gomez,	M.	W.	Hoffman,	D.	Pfau,	T.	Schaul,	B.	Shillingford,	and	N.	de	Freitas. Learning	to	Learn	by	Gradient	Descent	by	Gradient	Descent.	NIPS	(2016).
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Learning	to	Learn	by	Gradient	Descent	by	
Gradient	Descent

One	step	of	an	LSTM	optimizer:	all	LSTMs	have	
shared	parameters,	but	separate	hidden	states

M.	Andrychowicz,	M.	Denil,	S.	Gomez,	M.	W.	Hoffman,	D.	Pfau,	T.	Schaul,	B.	Shillingford,	and	N.	de	Freitas. Learning	to	Learn	by	Gradient	Descent	by	Gradient	Descent.	NIPS	(2016).
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Learning	to	Learn	by	Gradient	Descent	by	
Gradient	Descent
Learning curves for the base network using different optimizers

M.	Andrychowicz,	M.	Denil,	S.	Gomez,	M.	W.	Hoffman,	D.	Pfau,	T.	Schaul,	B.	Shillingford,	and	N.	de	Freitas. Learning	to	Learn	by	Gradient	Descent	by	Gradient	Descent.	NIPS	(2016).
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Learning	to	Learn	by	Gradient	Descent	by	
Gradient	Descent
Learning curves for the base network using different optimizers

M.	Andrychowicz,	M.	Denil,	S.	Gomez,	M.	W.	Hoffman,	D.	Pfau,	T.	Schaul,	B.	Shillingford,	and	N.	de	Freitas. Learning	to	Learn	by	Gradient	Descent	by	Gradient	Descent.	NIPS	(2016).
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Learning	to	Learn	by	Gradient	Descent	by	
Gradient	Descent
Learning curves for the base network using different optimizers

M.	Andrychowicz,	M.	Denil,	S.	Gomez,	M.	W.	Hoffman,	D.	Pfau,	T.	Schaul,	B.	Shillingford,	and	N.	de	Freitas. Learning	to	Learn	by	Gradient	Descent	by	Gradient	Descent.	NIPS	(2016).
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Learning	to	Learn	by	Gradient	Descent	by	
Gradient	Descent
Generalization performance of optimizer

M.	Andrychowicz,	M.	Denil,	S.	Gomez,	M.	W.	Hoffman,	D.	Pfau,	T.	Schaul,	B.	Shillingford,	and	N.	de	Freitas. Learning	to	Learn	by	Gradient	Descent	by	Gradient	Descent.	NIPS	(2016).



215

Learning	to	Learn	by	Gradient	Descent	by	
Gradient	Descent
Generalization performance of optimizer

M.	Andrychowicz,	M.	Denil,	S.	Gomez,	M.	W.	Hoffman,	D.	Pfau,	T.	Schaul,	B.	Shillingford,	and	N.	de	Freitas. Learning	to	Learn	by	Gradient	Descent	by	Gradient	Descent.	NIPS	(2016).
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Learning	to	Learn	by	Gradient	Descent	by	
Gradient	Descent
Generalization performance of optimizer

M.	Andrychowicz,	M.	Denil,	S.	Gomez,	M.	W.	Hoffman,	D.	Pfau,	T.	Schaul,	B.	Shillingford,	and	N.	de	Freitas. Learning	to	Learn	by	Gradient	Descent	by	Gradient	Descent.	NIPS	(2016).
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Learning	to	Learn	by	Gradient	Descent	by	
Gradient	Descent
Generalization performance of optimizer

M.	Andrychowicz,	M.	Denil,	S.	Gomez,	M.	W.	Hoffman,	D.	Pfau,	T.	Schaul,	B.	Shillingford,	and	N.	de	Freitas. Learning	to	Learn	by	Gradient	Descent	by	Gradient	Descent.	NIPS	(2016).

What went wrong?
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Learning	to	learn	by	gradient	descent	by	
gradient	descent
Using a learned optimizer for neural style transfer

M.	Andrychowicz,	M.	Denil,	S.	Gomez,	M.	W.	Hoffman,	D.	Pfau,	T.	Schaul,	B.	Shillingford,	and	N.	de	Freitas. Learning	to	Learn	by	Gradient	Descent	by	Gradient	Descent.	NIPS	(2016).
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Learning	to	learn	by	gradient	descent	by	
gradient	descent
Using a learned optimizer for neural style transfer

M.	Andrychowicz,	M.	Denil,	S.	Gomez,	M.	W.	Hoffman,	D.	Pfau,	T.	Schaul,	B.	Shillingford,	and	N.	de	Freitas. Learning	to	Learn	by	Gradient	Descent	by	Gradient	Descent.	NIPS	(2016).
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Learning	to	learn	by	gradient	descent	by	
gradient	descent
Using a learned optimizer for neural style transfer

M.	Andrychowicz,	M.	Denil,	S.	Gomez,	M.	W.	Hoffman,	D.	Pfau,	T.	Schaul,	B.	Shillingford,	and	N.	de	Freitas. Learning	to	Learn	by	Gradient	Descent	by	Gradient	Descent.	NIPS	(2016).

Seems	to	work,	but	is	this	loss	informative	enough	to	tell	us	
whether	gradient	descent	was	really	learned?
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Learning	to	Learn	for	Global	Optimization	of	
Black	Box	Functions

• Address the problem of finding a global minimizer of a black-box loss function :

• At test time, is not available to the learner in closed form, but can be evaluated at
a query point

• Hence, can only observe through unbiased noisy pointwise observations
such that:

Y.	Chen,	M.	W.	Hoffman,	S.	G.	Colmenarejo,	M.	Denil,	T.	P.	Lillicrap,	and	N.	de	Freitas. Learning	to	Learn	for	Global	Optimization	of	Black	Box	Functions.	arXiv preprint	arXiv:1611.03824	(2016).
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Learning	to	Learn	for	Global	Optimization	of	
Black	Box	Functions

• Given the current state of knowledge , propose a query point .

• Observe the response .

• Update any internal statistics to produce .

Y.	Chen,	M.	W.	Hoffman,	S.	G.	Colmenarejo,	M.	Denil,	T.	P.	Lillicrap,	and	N.	de	Freitas. Learning	to	Learn	for	Global	Optimization	of	Black	Box	Functions.	arXiv preprint	arXiv:1611.03824	(2016).
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Learning	to	Learn	for	Global	Optimization	of	
Black	Box	Functions

previous
hidden	
state

previous
query	
point

previous
function
evaluation

updated
hidden	
state

new query point
Computational graph of the learned black-box optimizer
unrolled over multiple time steps: the learning process
consists of differentiating the given loss with respect to
the RNN parameters.

Y.	Chen,	M.	W.	Hoffman,	S.	G.	Colmenarejo,	M.	Denil,	T.	P.	Lillicrap,	and	N.	de	Freitas. Learning	to	Learn	for	Global	Optimization	of	Black	Box	Functions.	arXiv preprint	arXiv:1611.03824	(2016).
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Learning	to	Learn	for	Global	Optimization	of	
Black	Box	Functions

training	horizon

provide	information	
from every	step	along	
the	optimizer	trajectory

expected	posterior	improvement
of	querying									given	
observations up	to	time	

observed	improvement
of	querying									given	
observations up	to	time	

Choice of loss function to train RNN optimizer

Y.	Chen,	M.	W.	Hoffman,	S.	G.	Colmenarejo,	M.	Denil,	T.	P.	Lillicrap,	and	N.	de	Freitas. Learning	to	Learn	for	Global	Optimization	of	Black	Box	Functions.	arXiv preprint	arXiv:1611.03824	(2016).
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Learning	to	Learn	for	Global	Optimization	of	
Black	Box	Functions
Evaluating exploration capability over time

Search trajectories of for different
models on a 1-dimensional function

Red line: function value vs input.
Green cross: function value on query points.
Blue line: search iteration vs query locations.

Y.	Chen,	M.	W.	Hoffman,	S.	G.	Colmenarejo,	M.	Denil,	T.	P.	Lillicrap,	and	N.	de	Freitas. Learning	to	Learn	for	Global	Optimization	of	Black	Box	Functions.	arXiv preprint	arXiv:1611.03824	(2016).
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Fast	Reinforcement	Learning	Via	Slow	Reinforcement	Learning	
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RNN

Optimizee parameters

Backpropagation

Fast	Reinforcement	Learning	Via	Slow	Reinforcement	Learning	
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Fast	Reinforcement	Learning	Via	Slow	Reinforcement	Learning	

RNN	Symposium	2016:	Ilya	Sutskever	- Meta	Learning	in	the	Universe.	Duan,	Yan,	et	al.	"RL^	2:	Fast	Reinforcement	Learning	via	Slow	Reinforcement	Learning."	arXiv	preprint	arXiv:1611.02779 (2016).

-Motivation-

Open	AI	Universe

A	platform	for	benchmarking	
and	developing	the	ability	of	
agents	to	rapidly	solve	a	wide	
variety	of	new problems	that	

are	difficult
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• why	are	humans	better	than	reinforcement	learning	agents?
• excellent	data	efficiency
• prior	experience		(The	agent	needs	to	build	its	knowledge	of	the	environment	from	scratch)

• Prior	experience
• Can	be	represented	by	a	distribution	over	environments

• fundamental	nature	of	rules
• appearance	and	dynamics	of	objects
• typical	ways	in	which	control	works
• how	scoring	works
• Etc

Fast	Reinforcement	Learning	Via	Slow	Reinforcement	Learning	

RNN	Symposium	2016:	Ilya	Sutskever	- Meta	Learning	in	the	Universe.	Duan,	Yan,	et	al.	"RL^	2:	Fast	Reinforcement	Learning	via	Slow	Reinforcement	Learning."	arXiv	preprint	arXiv:1611.02779 (2016).
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• Solution:	train	an	RNN	policy	to	solve	many	environments	simultaneously	

Given	a	distribution	over	environments,	which	RL	does	the	best?

• Performance	measure
• How	well	does	the	RNN	policy	solve	environments	drawn	from	a	random	distribution?

RNN	Symposium	2016:	Ilya	Sutskever	- Meta	Learning	in	the	Universe.	Duan,	Yan,	et	al.	"RL^	2:	Fast	Reinforcement	Learning	via	Slow	Reinforcement	Learning."	arXiv	preprint	arXiv:1611.02779 (2016).



232

Training

-1- -2- -3-

Reset	the	hidden	state

RNN	Symposium	2016:	Ilya	Sutskever	- Meta	Learning	in	the	Universe.	Duan,	Yan,	et	al.	"RL^	2:	Fast	Reinforcement	Learning	via	Slow	Reinforcement	Learning."	arXiv	preprint	arXiv:1611.02779 (2016).
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• Slow	RL	Algorithm
• Trains	the	RNN	policy
• Tune	the	weights	to	solve	a	given	environment

• Fast	RL	Algorithm
• The	RL	algorithm	to	solve	a	particular	MDP	

Fast	Reinforcement	Learning	Via	Slow	Reinforcement	Learning	

RNN	Symposium	2016:	Ilya	Sutskever	- Meta	Learning	in	the	Universe.	Duan,	Yan,	et	al.	"RL^	2:	Fast	Reinforcement	Learning	via	Slow	Reinforcement	Learning."	arXiv	preprint	arXiv:1611.02779 (2016).
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Evaluation:	Multi-Armed	Bandit
Can	RL2	learn	algorithms	that	achieve	good	performance	on	MDP	classes	with	special	
structure	and	optimal	solution?	

Asymptotically	optimal	algorithms

• Multi-armed	bandit
• Agent	environment	is	stateless
• There	are	k	arms
• At	every	time	step,	the	agent	pulls	one	arm		and	receives	an	award	drown	

from	an	unknown	distribution	
• Goal:maximize	the	total	reward	obtained	over	a	fixed	number	of	steps
• Key	challenge: balance exploration	and	exploitation

RNN	Symposium	2016:	Ilya	Sutskever	- Meta	Learning	in	the	Universe.	Duan,	Yan,	et	al.	"RL^	2:	Fast	Reinforcement	Learning	via	Slow	Reinforcement	Learning."	arXiv	preprint	arXiv:1611.02779 (2016).
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Asymptotically	optimal	algorithms

RL	for	long	time	horizons	is	difficult!
K:	number	of	bandits
N:	number	of	episodes

Evaluation:	Multi-Armed	Bandit
Can	RL2	learn	algorithms	that	achieve	good	performance	on	MDP	classes	with	special	
structure	and	optimal	solution?	

RNN	Symposium	2016:	Ilya	Sutskever	- Meta	Learning	in	the	Universe.	Duan,	Yan,	et	al.	"RL^	2:	Fast	Reinforcement	Learning	via	Slow	Reinforcement	Learning."	arXiv	preprint	arXiv:1611.02779 (2016).
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Evaluation:	Visual	Navigation	Built	on	ViZDoom
Can	RL2	scale	to	high-dimensional	tasks?	

Goal	of	the	meta-learner:	navigate	a	random	maze	to	find	a	target

Reward
+1,	target	is	reached,
−	0.001	hit	the	wall
−	0.04	per	time	step

RNN	Symposium	2016:	Ilya	Sutskever	- Meta	Learning	in	the	Universe.	Duan,	Yan,	et	al.	"RL^	2:	Fast	Reinforcement	Learning	via	Slow	Reinforcement	Learning."	arXiv	preprint	arXiv:1611.02779 (2016).
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Fast	Reinforcement	Learning	Via	Slow	Reinforcement	Learning	
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RNN	(Reinforcement	learning)

RNN	weights

RNN	(Reinforcement	learning)

Fast	Reinforcement	Learning	Via	Slow	Reinforcement	Learning	
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Index

• Formal	Definition	of	Meta-Learning

• Learning	the	Deep	learning	Architecture

• Learning	to	Explore

• Learning	to	Seek	Knowledge

• Learning	to	Communicate



• Goal:	build	agents	that	can	learn	to	experiment	so	as	to	learn	representations that	are	informative about	the	physical	
properties	of	the	object	using	RL

• Formulation:	Experimentation	is	the	problem	of	answering	questions	about	the	non-visual	properties	of	the	object

Learning	to	Perform	Physics	Experiments	Via	Deep	Reinforcement	
Learning

Environment Agent

Question/Reward

Answer

Denil,	Misha,	et	al.	"Learning	to	Perform	Physics	Experiments	via	Deep	Reinforcement	Learning."	arXiv	preprint	arXiv:1611.01843 (2016).
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■ Environments

o Heavier:	Agent	applies	forces	to	the	blocks	and	must	infer	which	of	the	blocks	is	the	heaviest

⟹ Estimate	Mass

o Towers:	Agent	infers	how	many	rigid	bodies	a	tower	is	composed	of	by	knocking	it	down

⟹ Estimate cohesion	of	objects	

■ Actions:	Poking	or	answering	questions

Learning	to	Perform	Physics	Experiments	Via	Deep	Reinforcement	
Learning

Environment Agent

Question/Reward

Answer

Denil,	Misha,	et	al.	"Learning	to	Perform	Physics	Experiments	via	Deep	Reinforcement	Learning."	arXiv	preprint	arXiv:1611.01843 (2016).
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• The	agent	is	trained	to	answer	questions	using	reinforcement	learning

• The	environment	follows	a	three	phase	structure

Interaction Labeling Reward

• Exploration	phase
• The	agent	is	free	to	interact	with	

the	environment	

• Agent	answers	the	question	of	the	
environment

• Agent	produces	a	labeling	action

Learning	to	Perform	Physics	Experiments	Via	Deep	Reinforcement	
Learning

Denil,	Misha,	et	al.	"Learning	to	Perform	Physics	Experiments	via	Deep	Reinforcement	Learning."	arXiv	preprint	arXiv:1611.01843 (2016).
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• The	agent	is	trained	to	answer	questions	using	reinforcement	learning

• The	environment	follows	a	three	phase	structure

Interaction Labeling Reward

• Exploration	phase
• The	agent	is	free	to	interact	with	

the	environment	

• Agent	answers	the	question	of	the	
environment

• Agent	produces	a	labeling	action

Tradeoff	btw	answering	now	or	
delaying	to	gather	more	information

1. Difficulty	to	answer	the	question	(Environment)
2. Cost	of	gathering	information	(varying	the	discount	factor)

Learning	to	Perform	Physics	Experiments	Via	Deep	Reinforcement	
Learning

Denil,	Misha,	et	al.	"Learning	to	Perform	Physics	Experiments	via	Deep	Reinforcement	Learning."	arXiv	preprint	arXiv:1611.01843 (2016).
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• As	the level	of	difficulty	increases,	the	learned	policy	transitions	from	guessing	immediately when	a	heavy	block	is	
found	to	strongly	preferring	to	poke	all	blocks	before	making	a	decision

Training	on	features	(block	positions) Training	on	pixels

Which	is	HEAVIER?
-Results-

Denil,	Misha,	et	al.	"Learning	to	Perform	Physics	Experiments	via	Deep	Reinforcement	Learning."	arXiv	preprint	arXiv:1611.01843 (2016).
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Learning	to	Perform	Physics	Experiments	Via	Deep	Reinforcement	
Learning
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DNN	Architecture

RNN	weights

Reinforcement	Learning

Learning	to	Perform	Physics	Experiments	Via	Deep	Reinforcement	
Learning
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Learning	to	Communicate	with	Deep	Multi-Agent	Reinforcement	Learning	
• Goal:	how	can	agents	use	machine	learning	to automatically discover	the	communication	protocols	they	need	to	

coordinate	their	behavior?

• Agents	must	learn	communication	protocols	in	order	to	share	information	that	is	needed	to	solve	the	task

Talk	by	Jakob	Foerster.	Foerster,	Jakob,	et	al.	"Learning	to	communicate	with	deep	multi-agent	reinforcement	learning."	Advances	in	Neural	Information	Processing	Systems.	2016.
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• Setting under	consideration

o Sequential	multi-agent	decision	problems

o Fully	cooperative: Agents share	the goal of	maximizing	the	same	discounted	sum	of	rewards

o Partially	observable	:	Each	agent	receives	a	partial	observation	correlated	with	the	state

o Agents	can	communicate with	each	others	as	part	of	solving	the	task

Learning	to	Communicate	with	Deep	Multi-Agent	Reinforcement	Learning	

Talk	by	Jakob	Foerster.	Foerster,	Jakob,	et	al.	"Learning	to	communicate	with	deep	multi-agent	reinforcement	learning."	Advances	in	Neural	Information	Processing	Systems.	2016.
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• Training phase:

o Centralized learning phase: All agents learn together and communicate freely

o The strategy they come up with is decentralized

o There is a channel, but agents initially don’t know how to use

o Learn a strategy for communication through the channel

Learning	to	Communicate	with	Deep	Multi-Agent	Reinforcement	Learning	

Talk	by	Jakob	Foerster.	Foerster,	Jakob,	et	al.	"Learning	to	communicate	with	deep	multi-agent	reinforcement	learning."	Advances	in	Neural	Information	Processing	Systems.	2016.
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How	Can	We	Do	Reinforcement	Learning	With	Multiple	Agents?	

• Answer	

o Each	Agent	has	a	DQN	network

o 2 action	spaces

o 1	state	space

o shared	reward

Talk	by	Jakob	Foerster.	Foerster,	Jakob,	et	al.	"Learning	to	communicate	with	deep	multi-agent	reinforcement	learning."	Advances	in	Neural	Information	Processing	Systems.	2016.
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• Answer	

o Each	Agent	has	a	DQN	network

o 2 action	spaces

o 1	state	space

o Shared	reward

What’s	the	best	way	allowing	agents	
to	communicate	in	order	to	solve	a	

task?

How	Can	We	Do	Reinforcement	Learning	With	Multiple	Agents?	

Talk	by	Jakob	Foerster.	Foerster,	Jakob,	et	al.	"Learning	to	communicate	with	deep	multi-agent	reinforcement	learning."	Advances	in	Neural	Information	Processing	Systems.	2016.
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Talk	by	Jakob	Foerster.	Foerster,	Jakob,	et	al.	"Learning	to	communicate	with	deep	multi-agent	reinforcement	learning."	Advances	in	Neural	Information	Processing	Systems.	2016.
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Reinforced	Inter-Agent	Learning	

• RIAL

o The	agent	treats	the	communication	message	as	another	action	(Learn	the	Q-value	for	messages)

o Process

• Q-Network	receives	observation	and	message

• Select	the	action/message to	send

• Agent2 receives	the	message

• Environment	sends	the	reward

o Parameter	sharing

o There	is	no	gradient	exchange between the agents

Talk	by	Jakob	Foerster.	Foerster,	Jakob,	et	al.	"Learning	to	communicate	with	deep	multi-agent	reinforcement	learning."	Advances	in	Neural	Information	Processing	Systems.	2016.
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• DIAL

o Gradient	flows between	agents:	from	the	recipient	to	the	sender

o Process

• Agent	1	receives	a	message

• Agent	1	decides	an	action	

• Agent	1	receives	DQN	error

• Agent	1 calculate	the	gradient	of	the	loss	with	respect	to	the	
received	message	

• Agent	1	sends	the	gradient	it	back	to	the	sender	(Agent2)

• Agent	2	updates	its	weights	to	modify	the	message	so	that	it	
reduces	the	DQN	error	of	Agent1

Reinforced	Inter-Agent	Learning	

Talk	by	Jakob	Foerster.	Foerster,	Jakob,	et	al.	"Learning	to	communicate	with	deep	multi-agent	reinforcement	learning."	Advances	in	Neural	Information	Processing	Systems.	2016.
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• DIAL

o Gradient	flows	between	agents:	from	the	recipient	to	the	sender

o Process

• Agent	1	receives	a	message

• Agent	1	decides	an	action	

• Agent	1	receives	DQN	error

• Agent	1 calculate	the	gradient	of	the	loss	with	respect	to	the	
received	message	

• Agent	1	sends	the	gradient	it	back	to	the	sender	(Agent2)

• Agent	2	updates	its	weights	to	modify	the	message	so	that	it	
reduces	the	DQN	error	of	Agent1

Would	this	work?	

Reinforced	Inter-Agent	Learning	

Talk	by	Jakob	Foerster.	Foerster,	Jakob,	et	al.	"Learning	to	communicate	with	deep	multi-agent	reinforcement	learning."	Advances	in	Neural	Information	Processing	Systems.	2016.
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Representing	messages

Talk	by	Jakob	Foerster.	Foerster,	Jakob,	et	al.	"Learning	to	communicate	with	deep	multi-agent	reinforcement	learning."	Advances	in	Neural	Information	Processing	Systems.	2016.
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Architecture

Talk	by	Jakob	Foerster.	Foerster,	Jakob,	et	al.	"Learning	to	communicate	with	deep	multi-agent	reinforcement	learning."	Advances	in	Neural	Information	Processing	Systems.	2016.
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Experiments	–Switch	Riddle

“One hundred prisoners have been newly ushered into prison.
The warden tells them that starting tomorrow, each of them will be placed in an isolated
cells, unable to communicate among each others.
Each day, the warden will choose one of the prisoners uniformly at random with
replacement, and place him in a central interrogation room containing only a light bulb
with a toggle switch. The prisoner will be able to observe the current state of the light. If he
wishes he can toggle the light bulb.
He also has the option of announcing that he believes all prisoners have visited the
interrogation room at some point in time. If the announcement is true, all prisoners are set
free, but if it is false, all prisoners are executed.
Thee warden leaves and the prisoners huddle to discuss their fate.
Can they agree on a protocol to guarantee their freedom?”

(Wu, 2002)

Talk	by	Jakob	Foerster.	Foerster,	Jakob,	et	al.	"Learning	to	communicate	with	deep	multi-agent	reinforcement	learning."	Advances	in	Neural	Information	Processing	Systems.	2016.
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Action

Prisoner	in	IR

Switch

Talk	by	Jakob	Foerster.	Foerster,	Jakob,	et	al.	"Learning	to	communicate	with	deep	multi-agent	reinforcement	learning."	Advances	in	Neural	Information	Processing	Systems.	2016.
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Action

Prisoner	in	IR

Switch

RL	Setting

Multi-agent :	N	agents	with	1	communication	channel

State :	N-bit	array		(has	the	i-th prisoner	been	to	the	IR)	

Action :	Tell/	None/	Switch

Reward :		+1	(freedom)/	0	(episode	expires)/	-1	(all	die)

Observation:	None/Switch

Talk	by	Jakob	Foerster.	Foerster,	Jakob,	et	al.	"Learning	to	communicate	with	deep	multi-agent	reinforcement	learning."	Advances	in	Neural	Information	Processing	Systems.	2016.
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Did	the	Agents	Learn	to	Communicate?

4	Mignions

Talk	by	Jakob	Foerster.	Foerster,	Jakob,	et	al.	"Learning	to	communicate	with	deep	multi-agent	reinforcement	learning."	Advances	in	Neural	Information	Processing	Systems.	2016.
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2	people:	On
1	person:	off

Solution	for	3	Agents

Talk	by	Jakob	Foerster.	Foerster,	Jakob,	et	al.	"Learning	to	communicate	with	deep	multi-agent	reinforcement	learning."	Advances	in	Neural	Information	Processing	Systems.	2016.
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Conclusion

• Learning to learn the deep learning architecture
o Two types of meta-learning algorithms

• Evolution-inspired

• Reinforcement learning

o “No Free Lunch”: both with their own disadvantages
✔ Possible to reach state-of-the-art on simple tasks

✘ Requires lots of computational resources

• Learning to explore, seek knowledge, communicate
o Using RL as a meta-learning algorithm seems promising

• Meta-learning is the next frontier in AI



Thank	you!



References:
Architecture	Search

Genetic	CNN

HyperNetworks

Evolving	Deep	Neural	Networks

Large-Scale	Evolution	of	Image	Classifiers

Random	Search	for	Hyper-Parameter	Optimization

Neural	Architecture	Search	with	Reinforcement	Learning

Designing	Neural	Network	Architectures	using	Reinforcement	Learning

PathNet:	Evolution	Channels	Gradient	Descent	in	Super	Neural	Networks

270



Learning	to	Navigate	in	Complex	Environments

Learning	to	Learn	by	Gradient	Descent	by	Gradient	Descent

Learning	to	Learn	for	Global	Optimization	of	Black	Box	Functions

RL2:	Fast	Reinforcement	Learning	via	Slow	Reinforcement	Learning

Learning	to	Poke	by	Poking:	Experiential	Learning	of	Intuitive	Physics

Learning	to	Perform	Physics	Experiments	via	Deep	Reinforcement	Learning	

271

References:
Learning	to	Explore



272

Learning	to	Perform	Physics	Experiments	via	Deep	Reinforcement	Learning	

References:
Learning	to	Seek	Knowledge



273

Learning	to	Communicate	with	Deep	Multi-Agent	Reinforcement	Learning

References:
Learning	to	Communicate



274

Metalearning,	Scholarpedia

Taxonomy	of	Methods	for	Deep	Meta	Learning

RNN	Symposium	2016:	Ilya	Sutskever	- Meta	Learning	in	the	Universe

Learning	to	Communicate	with	Deep	Multi-Agent	Reinforcement	Learning	- Jakob	Foerster

Blogs	&	Talks


