BI-DIRECTIONAL ATTENTION FLOW FOR MACHINE COMPREHENSION

Presented By: Dongming Lei, Quan Wan, Ellen Wu

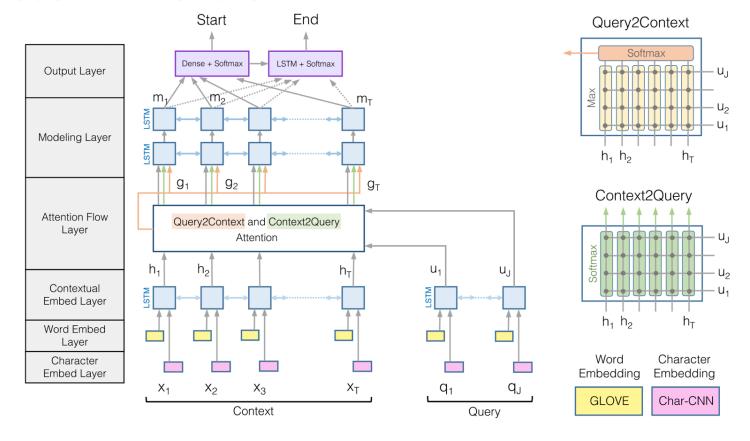
Background

- Question Answering (QA) task is defined as taking a natural language question as input and producing a relevant answer from some information source
- Traditional work in text-based QAS focused on extracting facts from largescale corpora
- Reading comprehension task requires deeper reasoning to answer questions given a paragraph or short text (e.g. SAT questions)

Project Overview

- Problem definition:
 - Given a question and its corresponding short text, find the answer as a snippet of the text
- Datasets:
 - SQuAD (100,000+ questions on a set of Wikipedia articles)
- Model:
 - BIDAF (Bi-Directional Attention Model)

Model Architecture

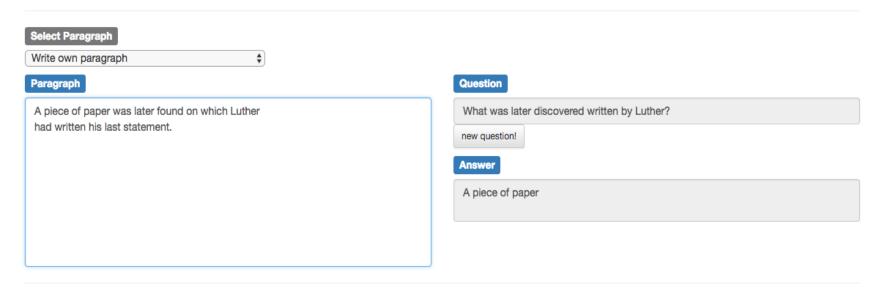


Error Analysis -- Syntactic complications and ambiguities

Bi-directional Attention Flow Demo

for Stanford Question Answering Dataset (SQuAD)

Direction: Select a paragraph and write your own question. The answer is always a subphrase of the paragraph - remember it when you ask a question!

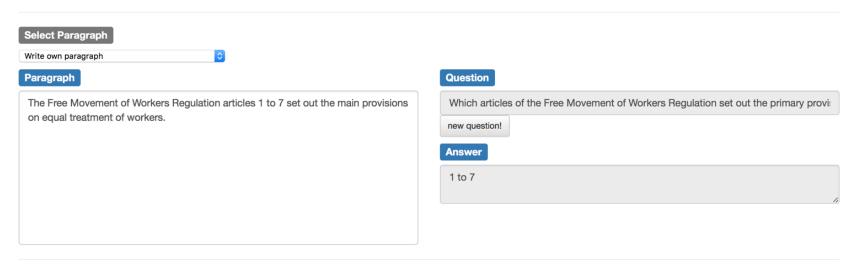


Error Analysis -- Imprecise Boundary

Bi-directional Attention Flow Demo

for Stanford Question Answering Dataset (SQuAD)

Direction: Select a paragraph and write your own question. The answer is always a subphrase of the paragraph - remember it when you ask a question!



Variation Analysis

- The figure shows the performance of the model and its ablations
- Speculations
 - Word-level embedding vs Char-level embedding

	EM	F1
No char embedding	65.0	75.4
No word embedding	55.5	66.8
No C2Q attention	57.2	67.7
No Q2C attention	63.6	73.7
Dynamic attention	63.5	73.6
BIDAF (single)	67.7	77.3
BIDAF (ensemble)	72.6	80.7

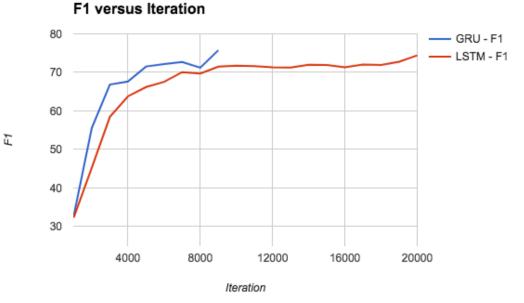
Variation Analysis: GRU Substitution

- In the contextual layer, bidirectional LSTM was used to to model the temporal interactions between words
- We substitute the <u>LSTM</u> with <u>GRU</u>
- Observed <u>similar performance</u> but <u>faster</u> to converge

	EM	F1	Number of iterations to converge
LSTM	63.98	74.94	20000
GRU	65.57	75.75	9000

Variation Analysis: GRU

- In the contextual layer, bidirectio interactions between words
- We substitute the <u>LSTM</u> with <u>GRI</u>
- Observed <u>similar performance</u> b



	EM	F1	Number of iterations to converge
LSTM	63.98	74.94	20000
GRU	65.57	75.75	9000

Variation Analysis: Word Embedding Model Substitution

- With the observation that the word embedding layer contributes a lot to the final performance, we compared and analyzed the following word embedding:
 - Dependency Embedding
 - Word2Vec (Both 100 dimensions and 300 dimensions)
 - Mixture of Dependency Embedding and GloVe

	EM	F1
Word2Vec (100-d)	55.67	66.24
Word2Vec (300-d)	55.27	65.93
GloVe (100-d)	63.98	74.94
Dependency Embedding (100-d)	64.85	74.41
DM+GloVe (200-d)	67.31	76.84

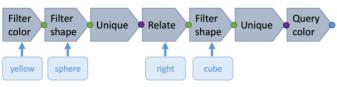
Revisiting the Visual Question Answering Models on the CLEVR Datasets

Liang-Wei Chen, Shuai Tang

Project Goal

- Run state-of-the-arts VQA models on the CLEVR dataset
 - ☐ Implement and compare VQA baselines
 - ☐ Test the ncompositional VQA model
- Why CLEVR?
 - □ CLEVR minimizes question-answer biases
 - ☐ CLEVR has more complicated questions

Sample chain-structured question:



What color is the cube to the right of the yellow sphere?

Experiment 1 - Implement and compare VQA baselines

- ☐ Image feautures: ResNet50, word embeddings: GloVe
- ☐ Two dimensions
 - ☐ Different question encoders (BOW v.s. LSTM)
 - ☐ Different question-image embeddings
- ☐ Accuracies on the validation set

	Concatenation	Pointwise Multiplication	MCB
Bag-of-words (BOW)	48.04	53.66	51.46
LSTM	50.06	54.97	46.44

BOW v.s. LSTM

- ☐ Generally, LSTM performs better than BOW
 - ☐ CLEVR questions are longer than VQA 1.0 (~18 words vs. ~6 words)
- ☐ However, LSTM with MCB converges only to 46.44% accuracy

	Concatenation	Pointwise Multiplication	MCB
Bag-of-words (BOW)	48.04	53.66	51.46
LSTM	50.06	54.97	46.44

Concatenation v.s. Pointwise Multiplication v.s. MCB

- □ BOW : Pointwise Multiplication > MCB > Concatenation
 - ☐ Concatenation doesn't jointly embed the question and image into the same space
- ☐ LSTM Pointwise Multiplication > Concatenation > MCB
 - □ Consistent with the performances reported in the CLEVR paper: (LSTM +Concatenation) is better than (LSTM+MCB)

	Concatenation	Pointwise Multiplication	MCB
Bag-of-words (BOW)	48.04	53.66	51.46
LSTM	50.06	54.97	46.44

Experiment 2: Dynamical Neural Module Net

- ☐ Question Parse Results between VQA and CLEVR train:
 - ☐ Avg. question length: 6.20 words vs. 18.38 words
 - ☐ Default layout "(what thing)" percentage : 4.5% VS 29.1%
 - ☐ Avg. candidate number per question: 2.35 vs 2.41
 - ☐ Avg. number of modules in a candidate : 2.54 vs 2.58

Experiment 2: Dynamical Neural Module Net

□ DMNM parsing examples:

	Question	Parse
VQA	What is the table made of?	(what table);(what make);(what (and table make))
	How is the floor made?	(_what _thing)
CLEVR	Are there any other things that are the same shape as the big metallic object?	(is big);(is object);(is (and big object))
	There is another thing that is the same material as the gray object; what is its color?	(_what _thing)

- DNMN question parser can't handle very complex questions
- Some are questions in CLEVR that start with a statement.

Experiment 2: Dynamical Neural Module Net

☐ DMNM training:

	VQA	CLEVR
Num of open-ended questions	248349	699989
Top-n answer cutoff	2002	31
Number of predicates	877	55
Vocabulary size	3591	92
Validation Acc. at 10th epoch	26.6%	n/a*

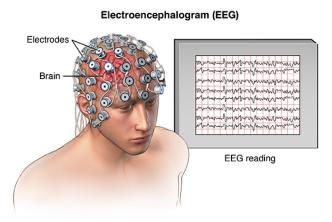
^{*}Still Tuning learning parameters on CLEVR

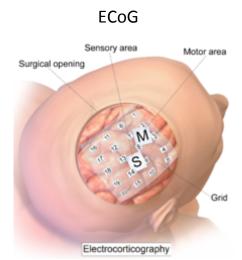
Deep Learning For Memory State Classification

SAFA MESSAOUD

Motivation

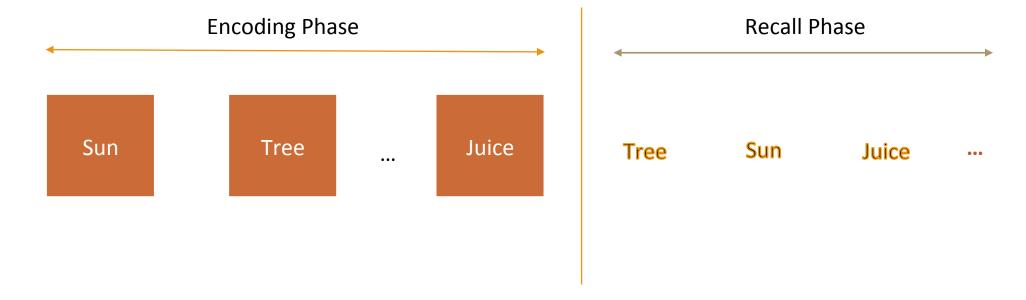
- Given an electrophysiological recording of the brain (EEG/ECoG), can we infer the cognitive state of the patient
 - Memory Performance
 - Memory Workload
- OBenefits
 - Cognitive BCI
 - Electrical Brain Stimulation





ECoG Data

Free Recall Experiment

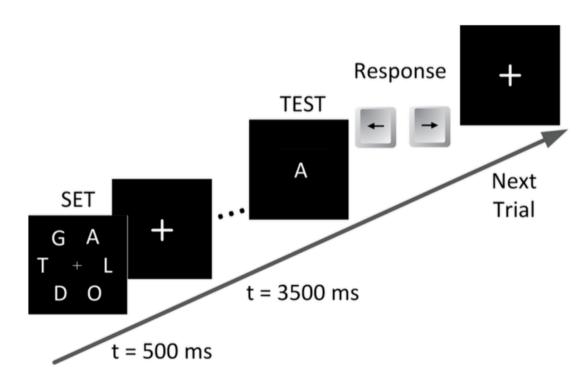


Number of samples: 80k Number of patients: 140

Binary classification: recalled/forgotten

EEG Data

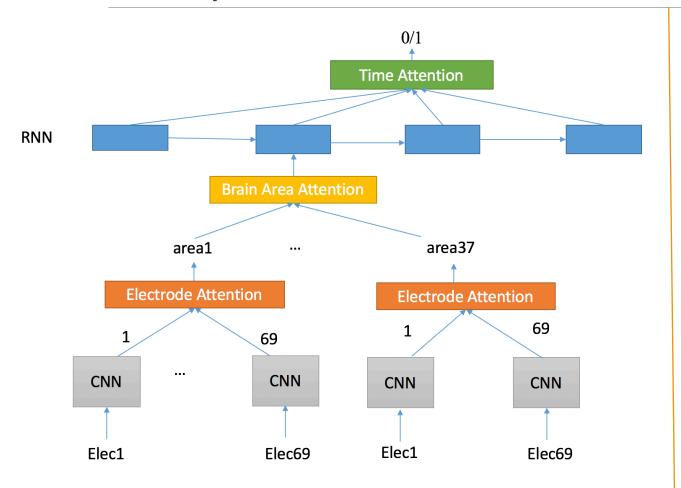
Memory Workload Experiment

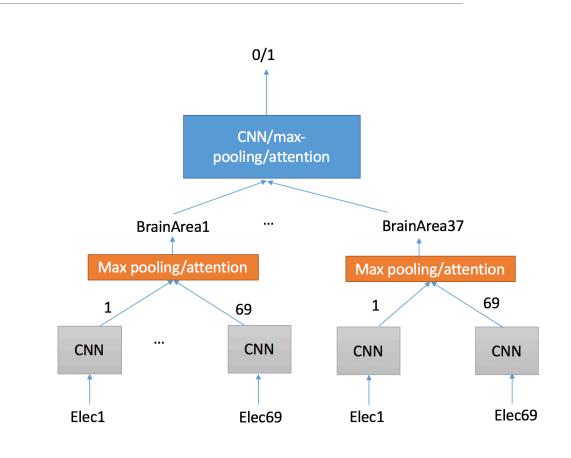


Number of samples: 2670 Number of patients: 13

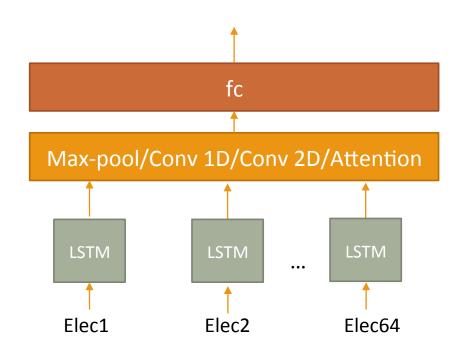
Multi-class classification: Memory Workload 1-4

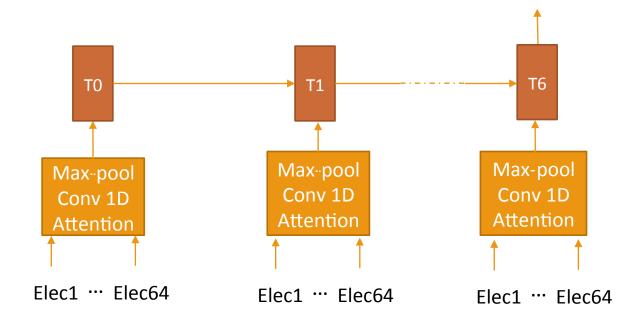
DeepECoG





DeepEEG



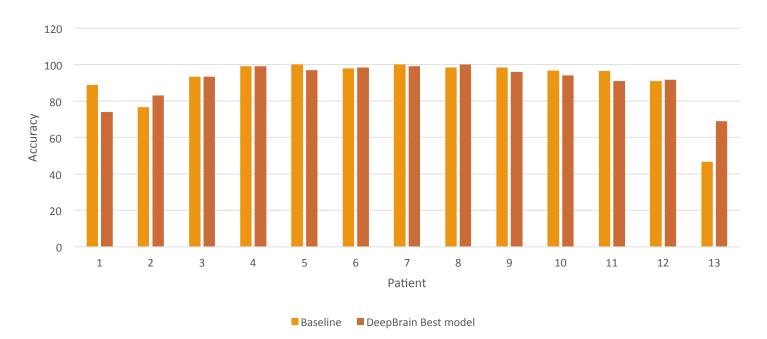


Results

DeepECoG

F1-score ~0.125

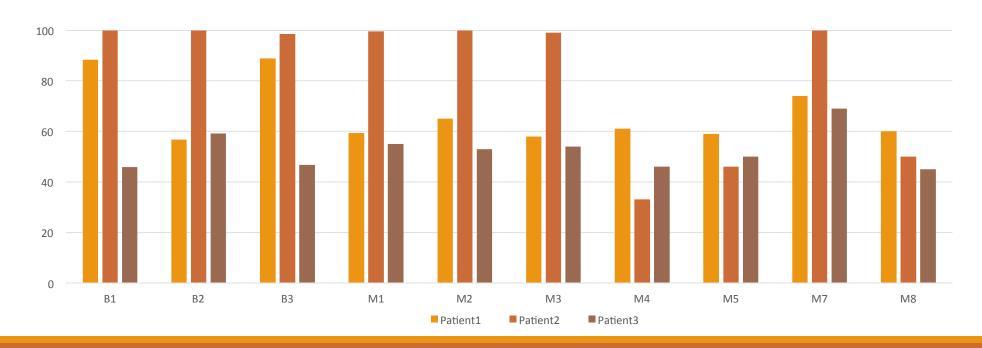
DeepEEG



Results

- DeepECoG
 - F1-score ~0.125

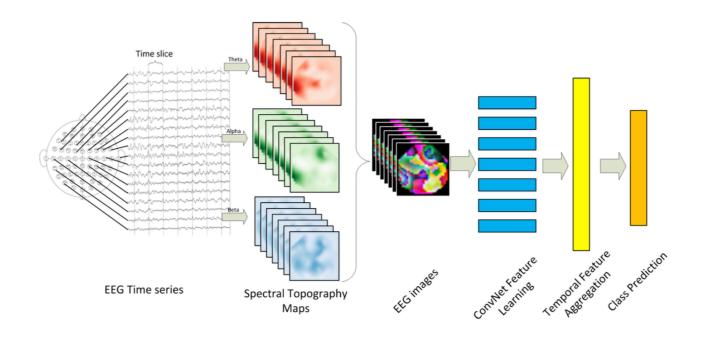
DeepEEG

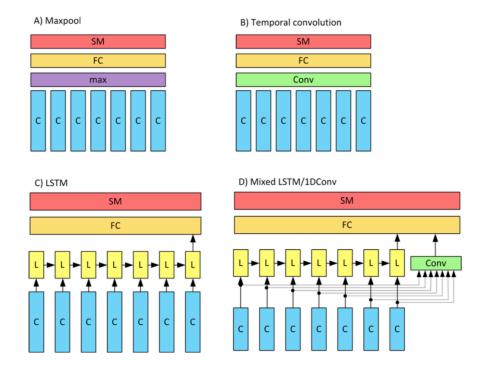


Conclusion

- ECoG data is hard to analyze because of the poor alignment across patients
- Attention did not work well for both ECoG and EEG data
 - The most salient features are not related to a single electrode, frequency or time points, it is a complex function of cross frequencies coupling, cross electrode coupling ...
- Spend time checking your data's quality, Deep Learning does not not solve all big data problems!

Baseline





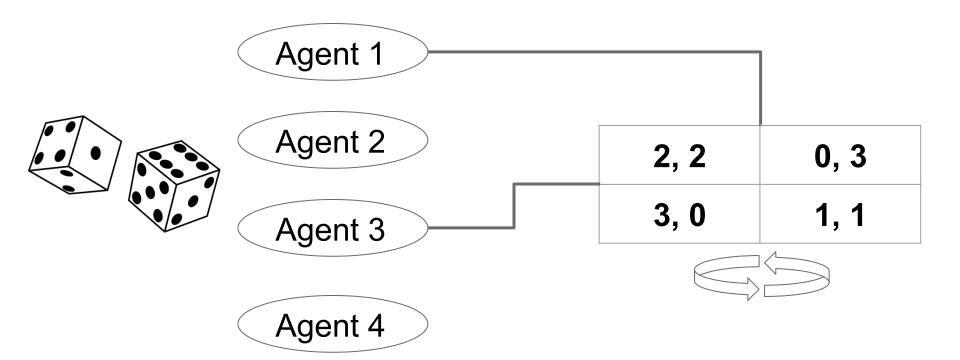
Multi-Agent Meta RL

Prajit Ramachandran

Method

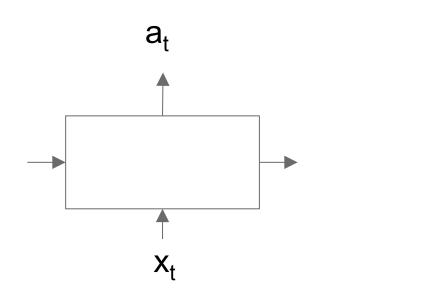
Player 2

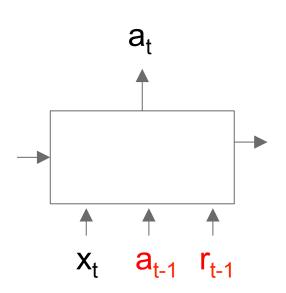
Player 1	2, 2	0, 3
	3, 0	1, 1



Normal RL

Meta RL





What behaviors are learned?

Do agents cooperate?

Preliminary Results

Chicken

	Swerve	Drive
Swerve	0, 0	-1, +1
Drive	+1, -1	-5, -5

3 types of personalities

- Appeaser
 - Starts and continues with swerve
- Opportunistic
 - Starts with drive but falls back to swerve if opponent also drives
- Aggressor
 - Starts and continues with drive

Matchups

- Aggressor > Opportunistic > Appeaser
- Appeaser vs Appeaser: eventually one agent starts to drive
- Aggressor vs Aggressor : eventually one agent starts to swerve
- Possible presence of a "count neuron"

Battle of Sexes

	Football	Opera
Football	3, 2	1, 1
Opera	0, 0	2, 3

Behavior

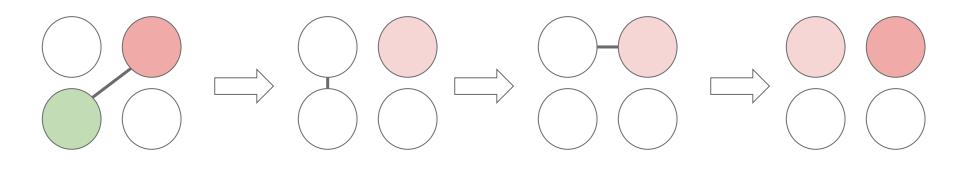
- Each agent alternates between football and opera
 - Invariant to which sex
 - Fair and maximal rewards for everyone

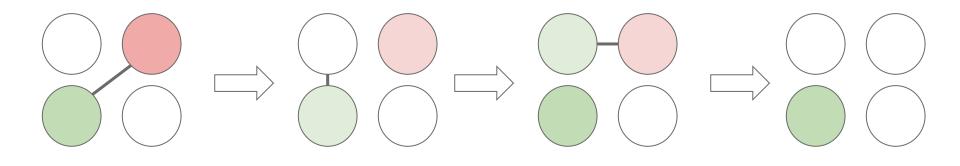
Stag Hunt

	Stag	Hare
Stag	2, 2	0, 1
Hare	1, 0	1, 1

Behavior

- At low discount factors, always choose stag
- At high discount factors, always choose hare





Prisoner's Dilemma

	Silent	Betray
Silent	2, 2	0, 1
Betray	1, 0	1, 1

Behavior

- Every agent betrays each other
- Robustly reaches this solution
- Humans cooperate with each other in the same setting

Can we induce different behavior?

- Train on multiple different environments at once
- Global learning of behaviors
- Possible application: reduce pathological behavior for Al safety (paperclip maximizer)

SELF-SUPERVISED LEARNING WITH DEEP MODELS

Raymond Yeh, Junting Lou, Teck Yian Lim

Background

```
Labeled Examples
(1, 1) (5, 5)
(9, 9)
```

Unlabeled Examples

1 1 5 4 3 7 5 3 5 3 6 3 5 3 0 0

Background

Self-supervision --- Supervised learning technique which make use of unlabeled data.

In Deep Learning self-supervision is typically formulated as two tasks:

- Auxiliary Task: The task to use the unlabeled data.
- Main Task: The task that we care about (with labels).

Pre-train the deep network on the auxiliary task, then **fine-tune** the deep network on the main task.

Background

Main Task: Image Classification

Auxiliary Tasks:

Colorization

Context Encoder

Variational Autoencoder

Angle Classification (Our proposed method)

Training & Hyperparameters

"Optimization is easy when other people have found the hyper-parameter combination that works"

Issue:

- Hyper-parameter tuning matters A LOT
 - Expert tuned deep nets will outperform ones tuned by a novice.

Solution:

- Fix a hyper-parameter search scheme ahead of time, and do not change it.
 - You will be very tempted to change it!

Evaluation

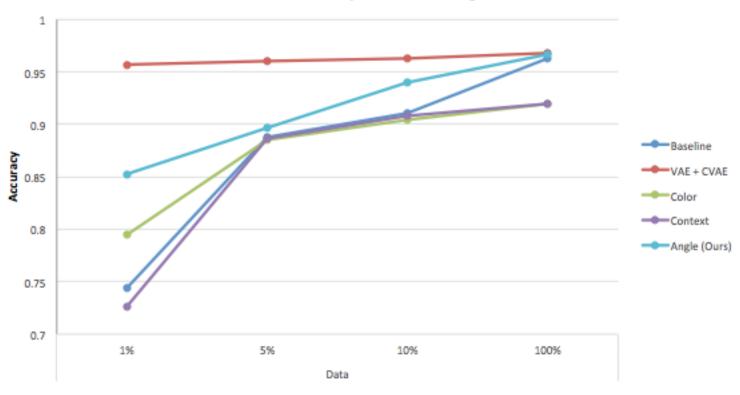
Fine-tune or fix the pre-trained weights?

Fine-tune, why not use all the labels?

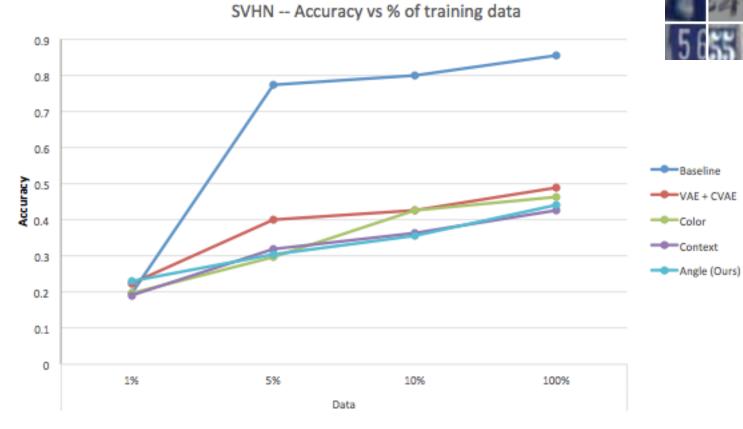
How to demonstrate effectiveness of pre-training?

Assume limited labeled data by withholding examples the training set.

Result (MNIST)



Result (SVHN)



VAE + CVAE

What we have learned

- Pre-training hurts when you have enough training data.
- Pre-training helps when you have less than 1% of the training dataset (approx. <1000 samples).
- Very difficult to evaluate fairly
 - Hyper-parameter sensitive.
 - Performance is not consistent across dataset.

Improving Conditional GANs for Image-to-Image Translation?

M. I. Vasileva

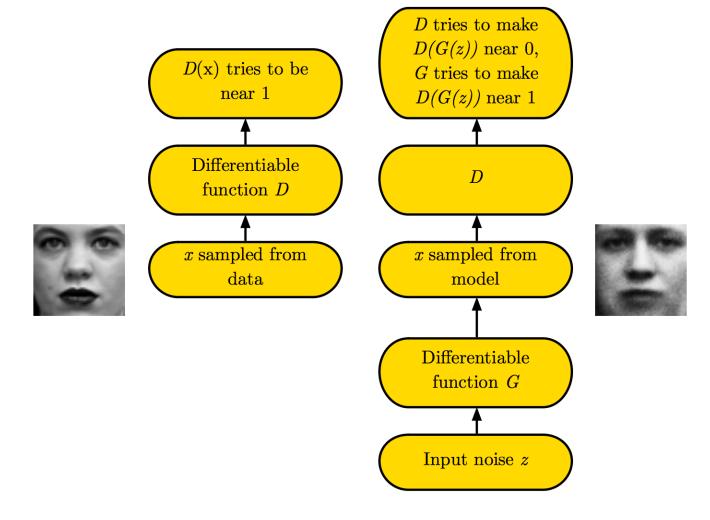
Generative Adversarial Networks: Refresher

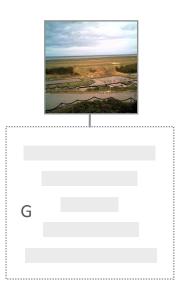
Standard GAN formulation:

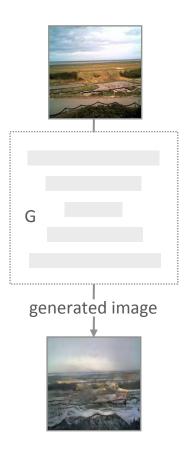
$$\min_{G} \max_{D} V(D,G)$$

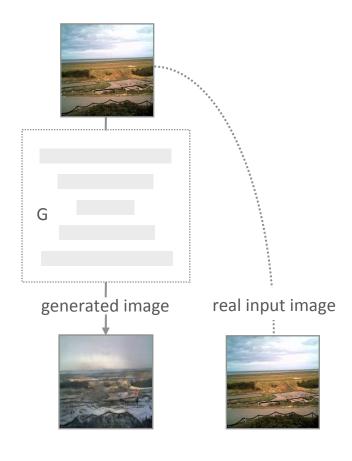
$$V(D, G) := \mathbb{E}_{\mathbf{x} \sim p_{\mathbf{X}}} \left[\log D(\mathbf{x}) \right] + \underbrace{\mathbb{E}_{\mathbf{x} \sim p_{G}} \left[\log \left(1 - D(\mathbf{x}) \right) \right]}_{\mathbb{E}_{\mathbf{z} \sim p_{\mathbf{Z}}} \left[\log \left(1 - D(G(\mathbf{z})) \right) \right]}$$

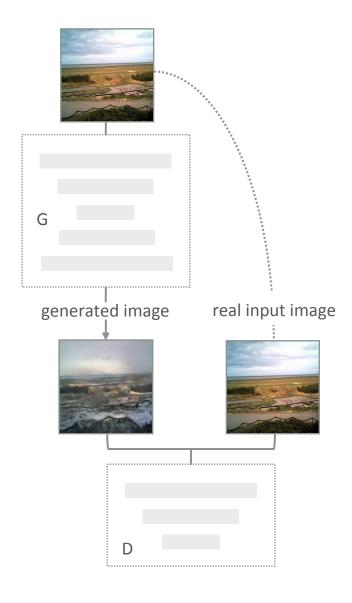
Generative Adversarial Networks: Refresher

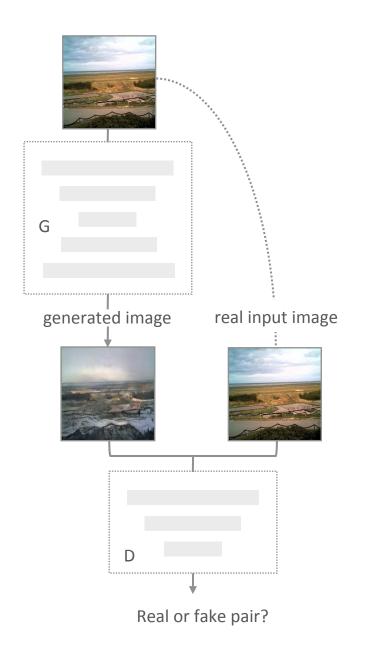


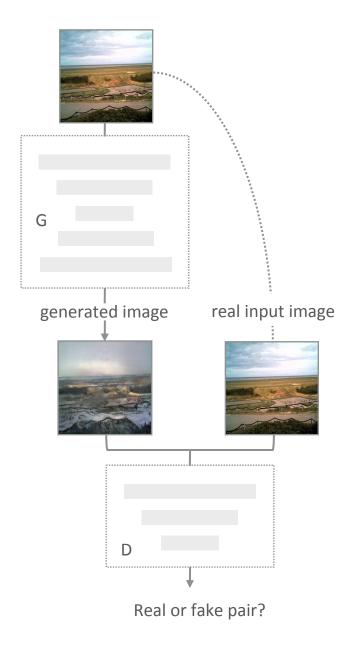


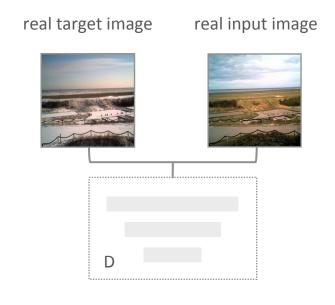


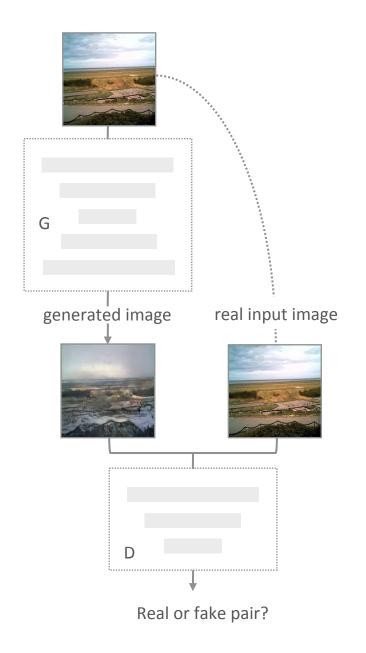


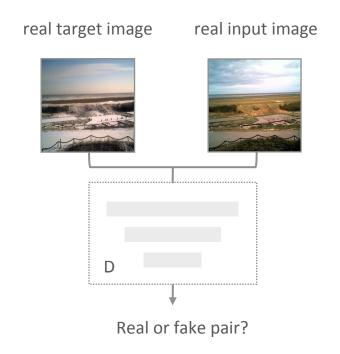


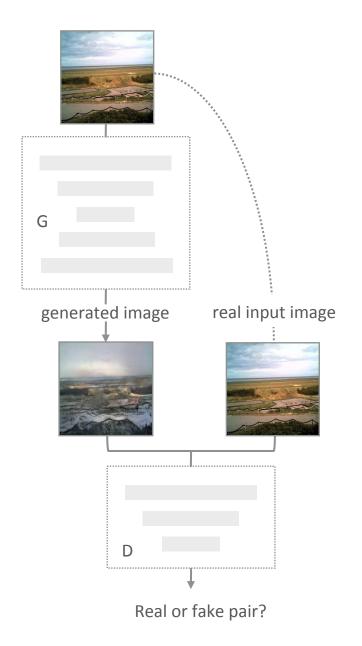




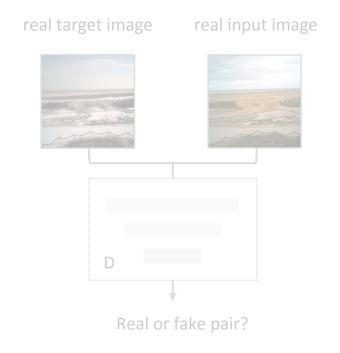


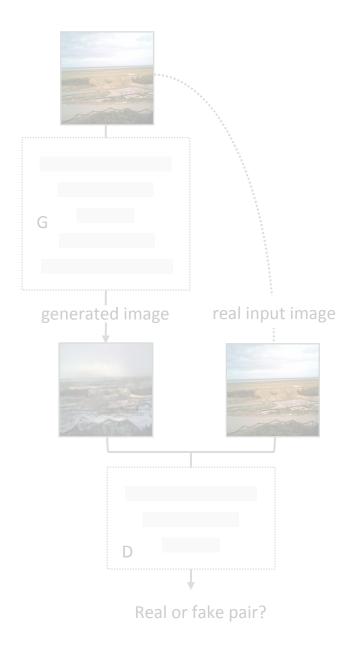


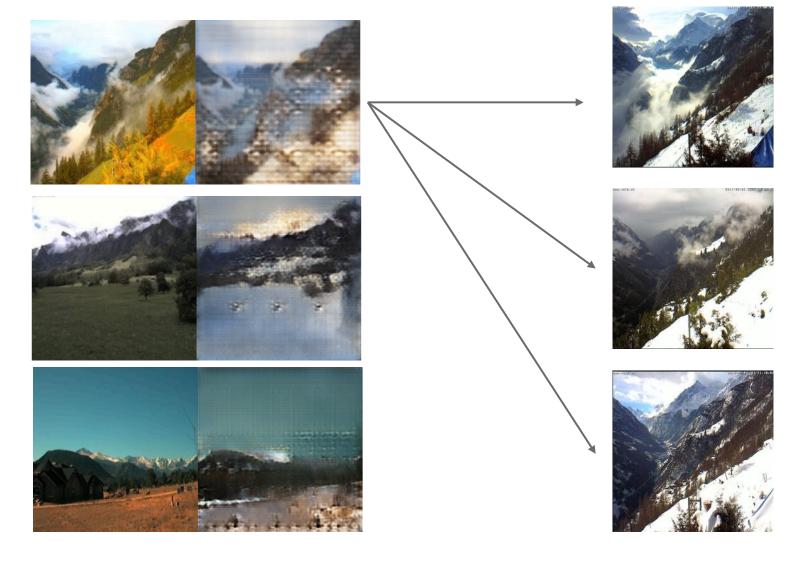


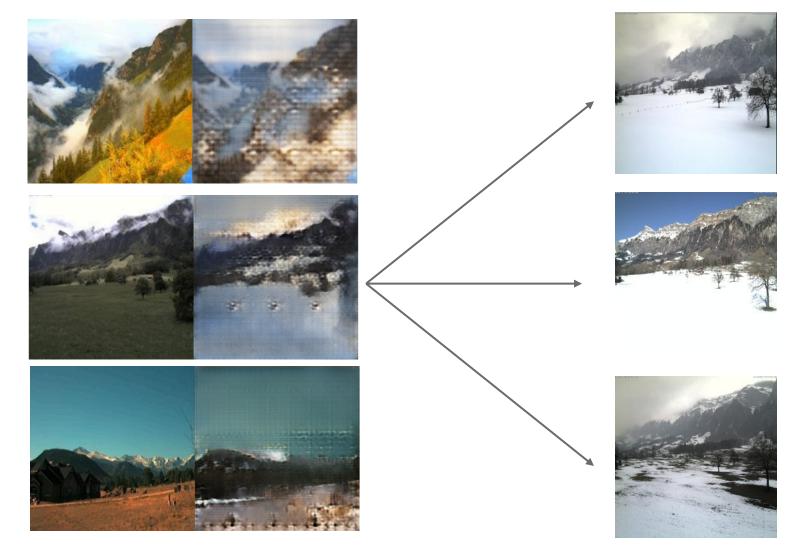


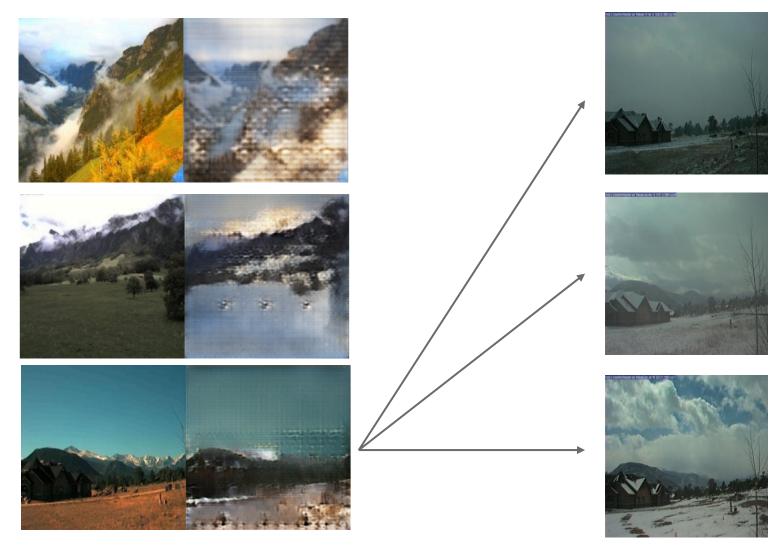
"Image-to-Image Translation"

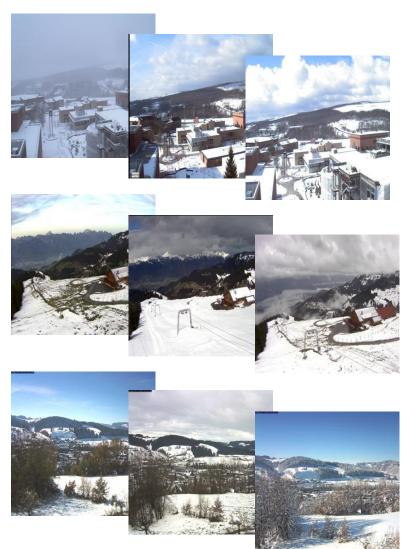


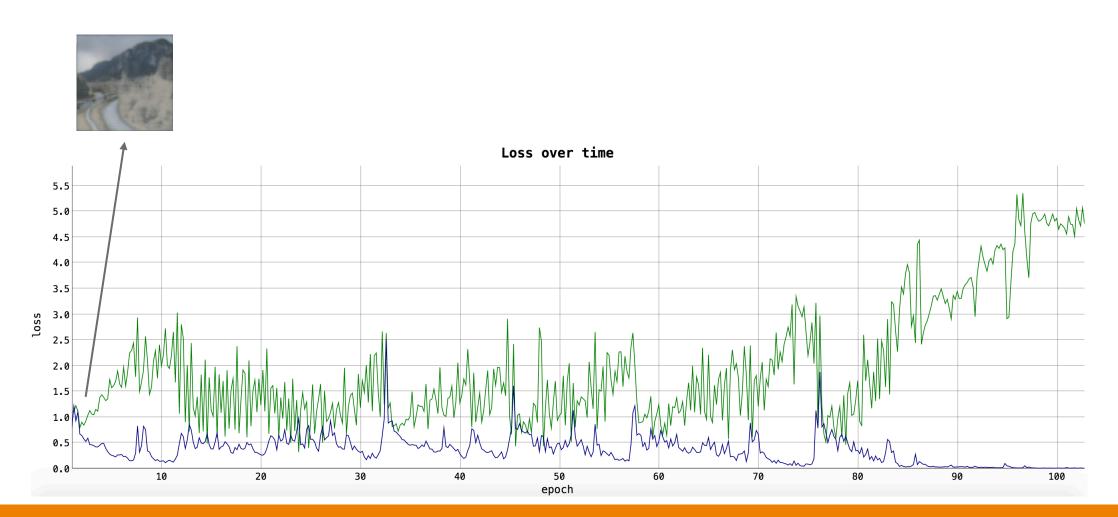


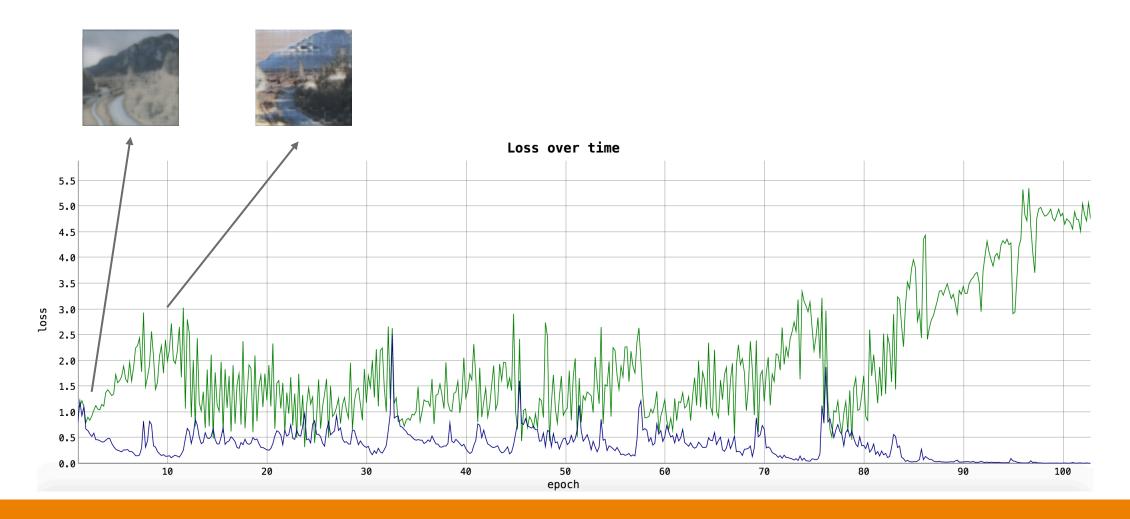


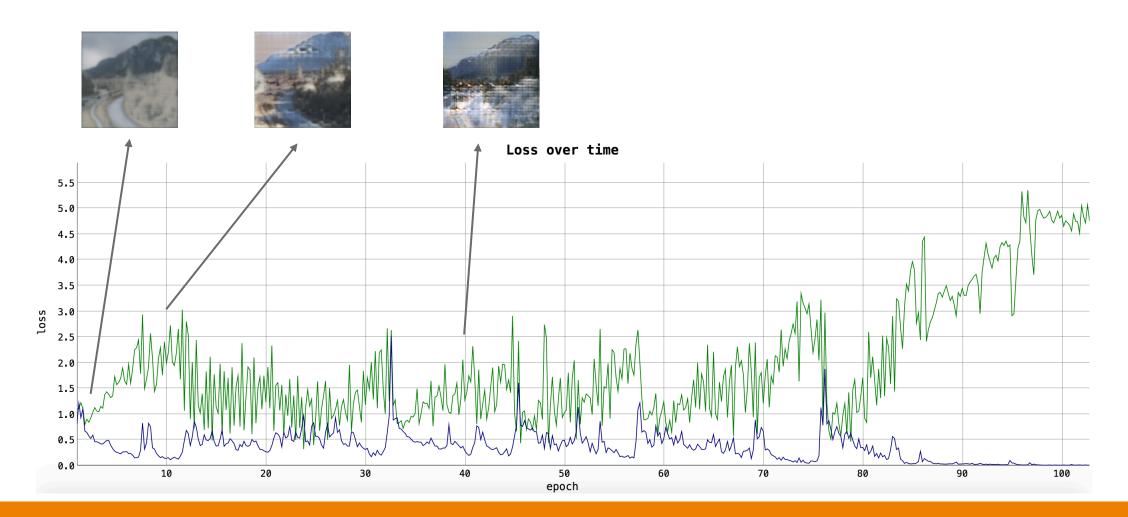


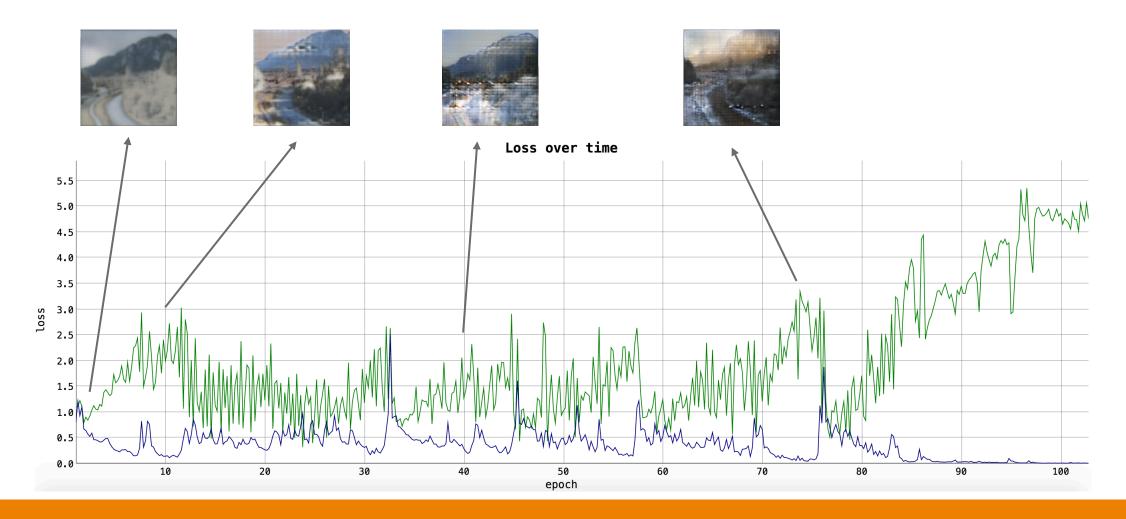


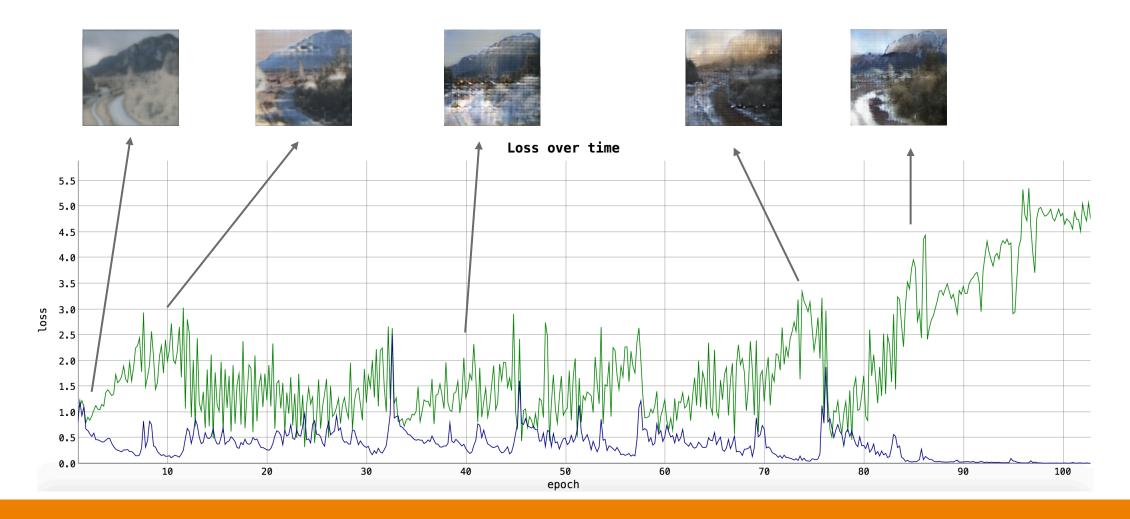


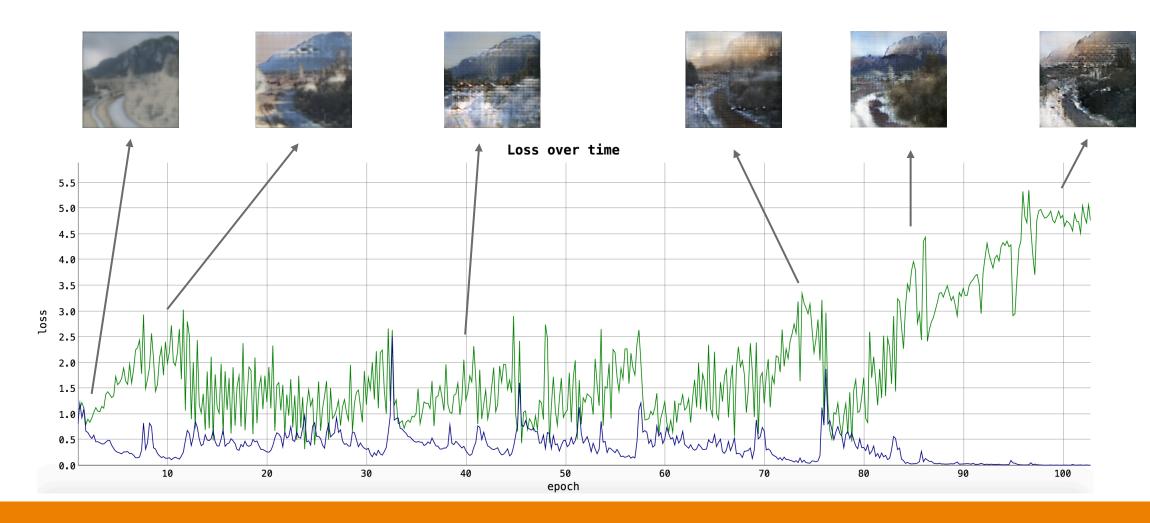


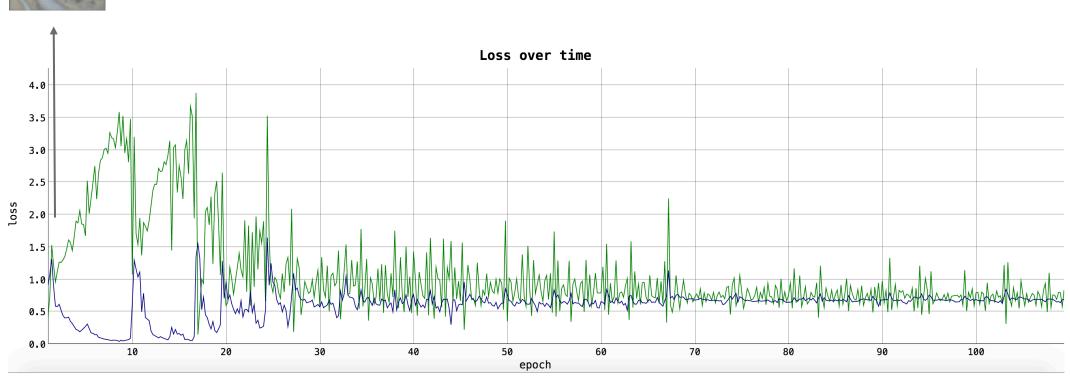


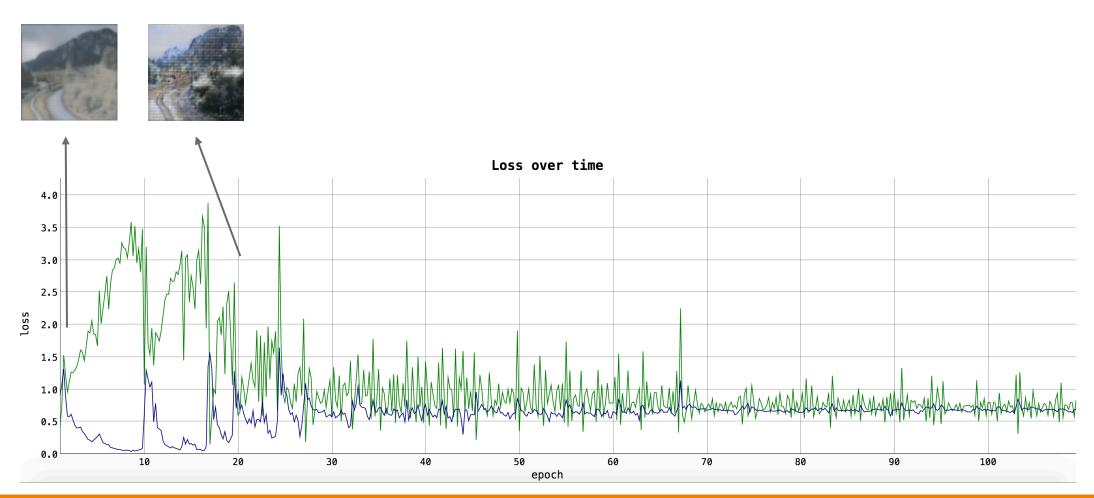


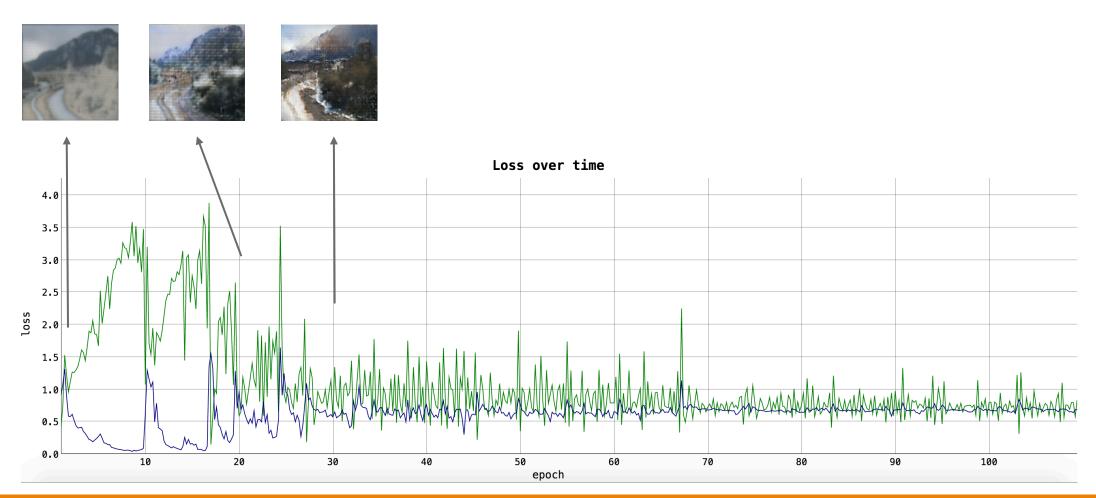


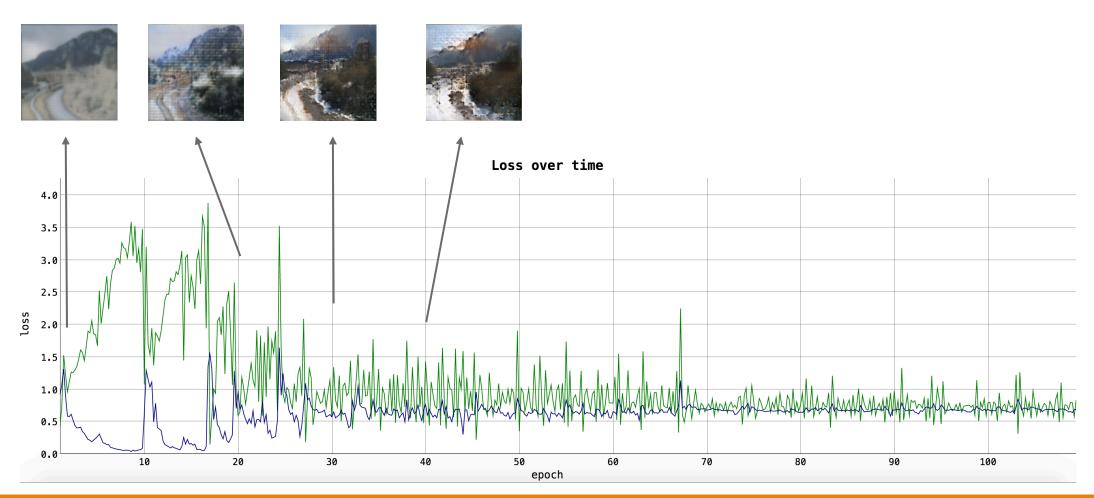


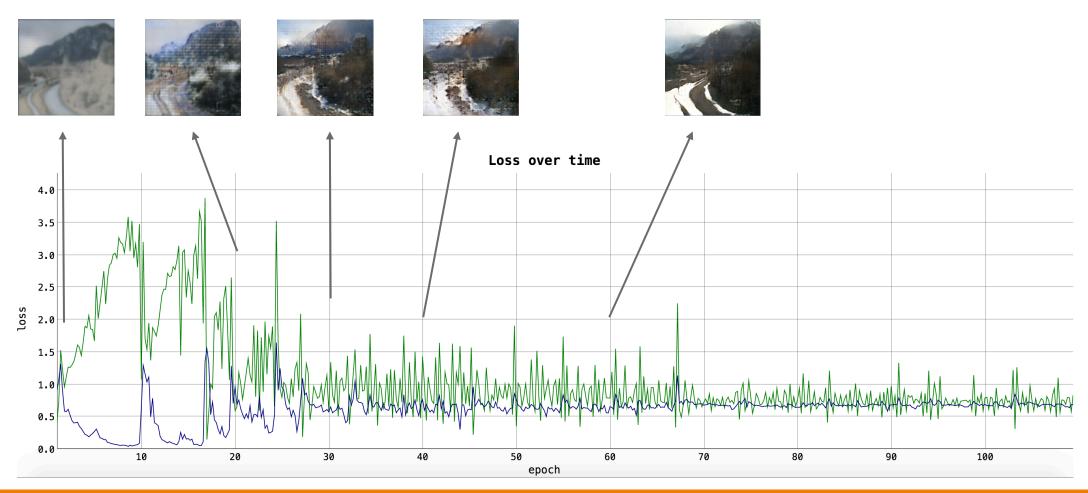


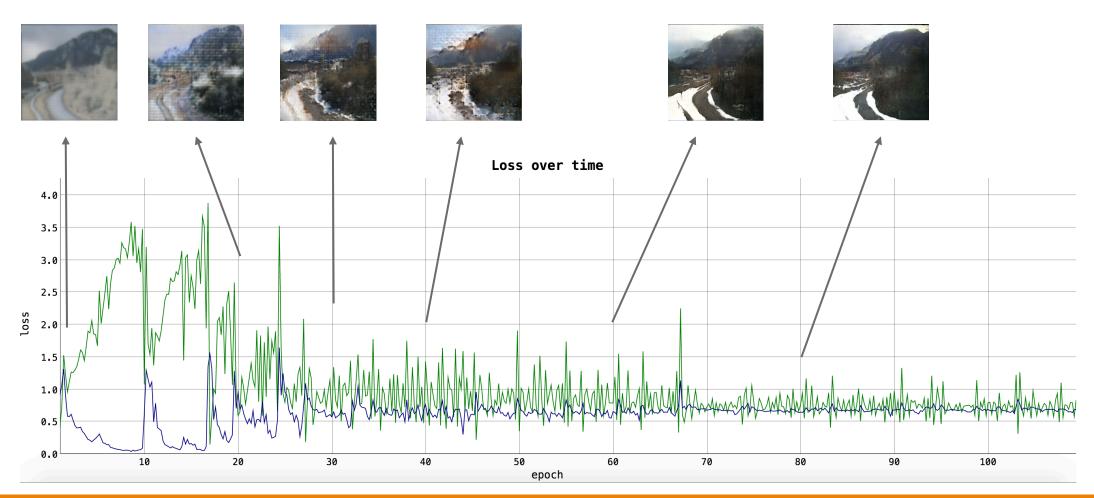




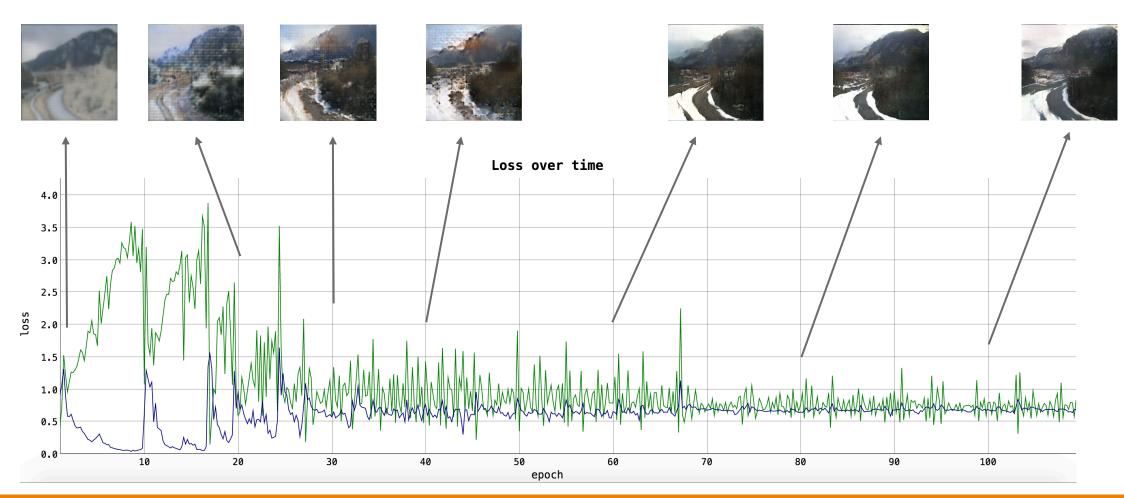








real input image



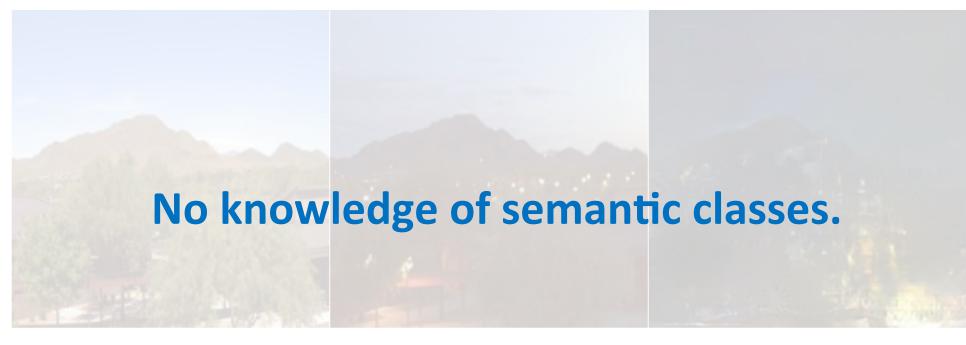
horses-to-zebras

day-to-night

real input image

real target image

generated image

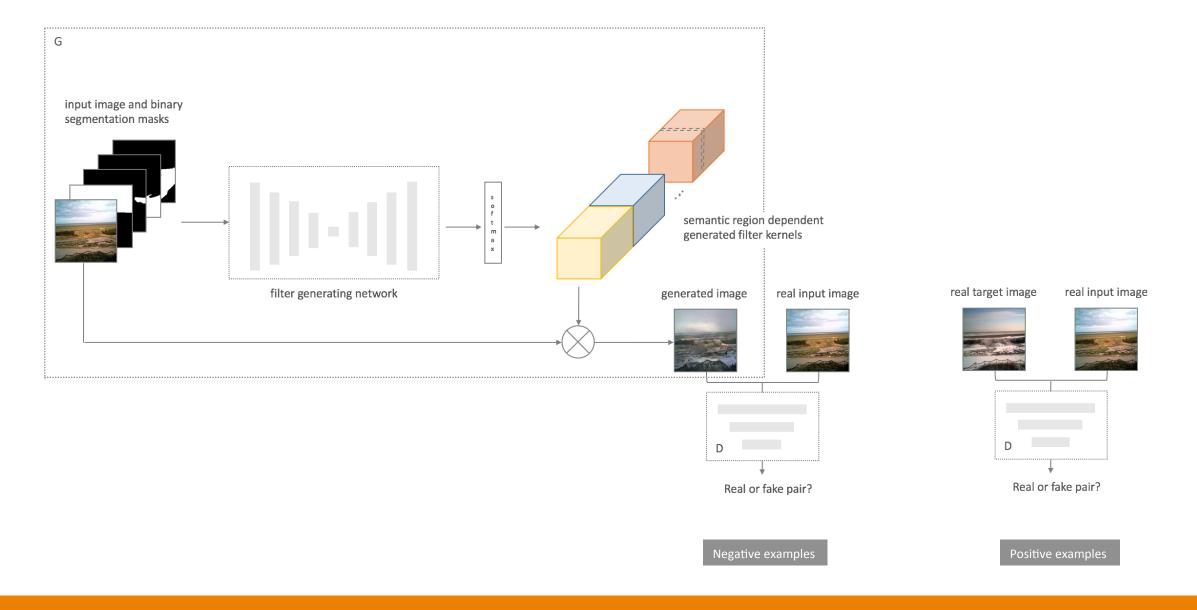


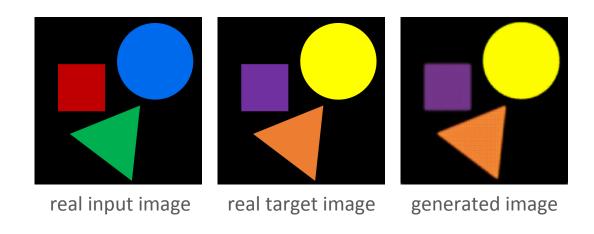
real input image

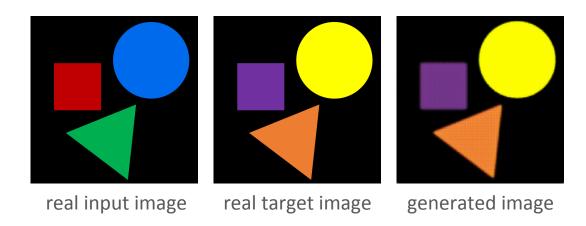
real target image

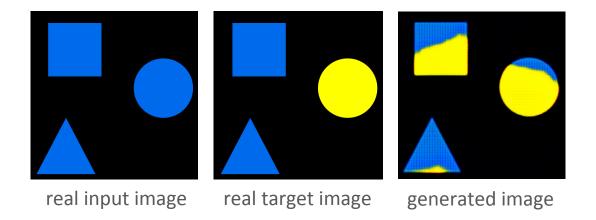
generated image

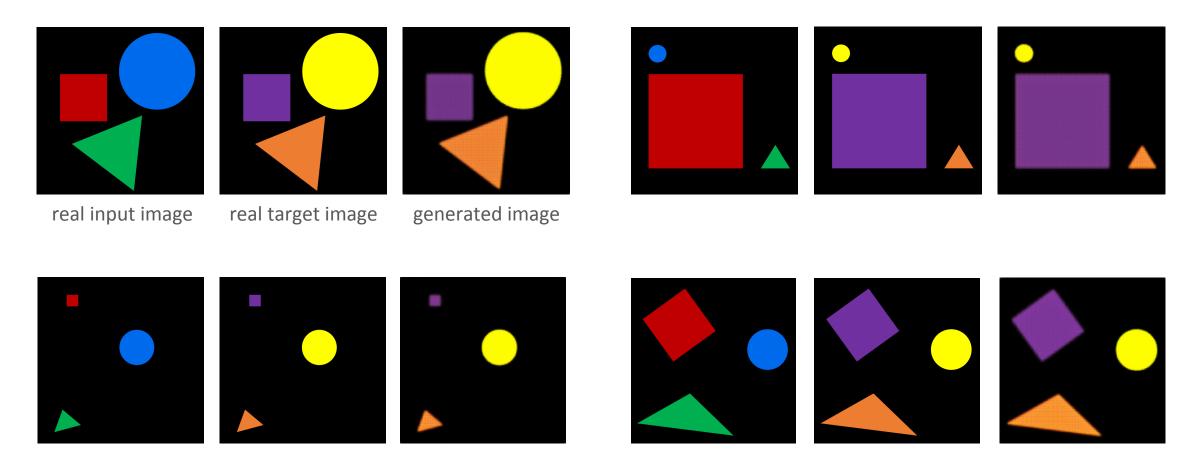
Suggestion: Generate Filters Dynamically

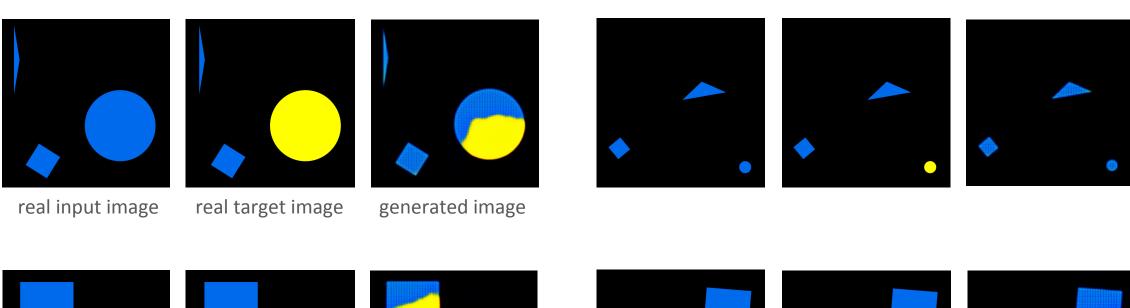


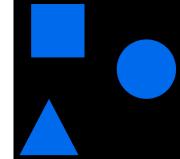


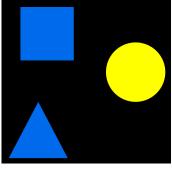


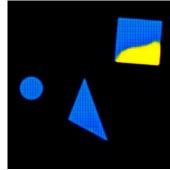


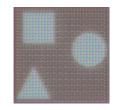


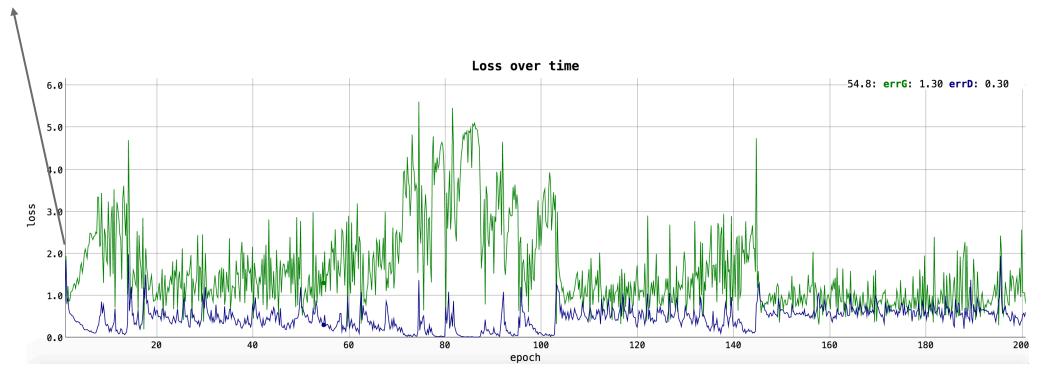


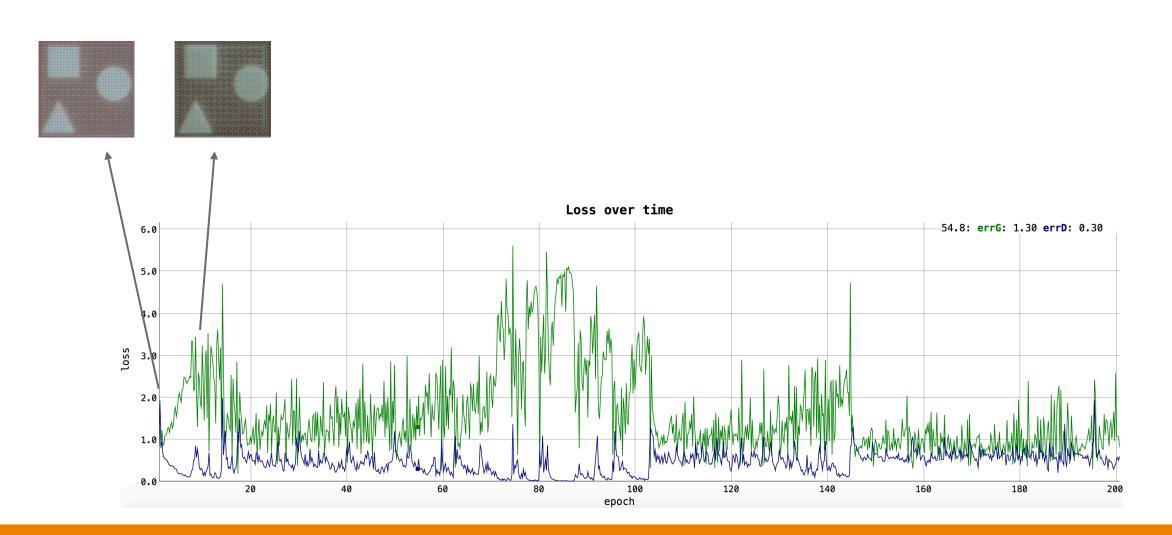


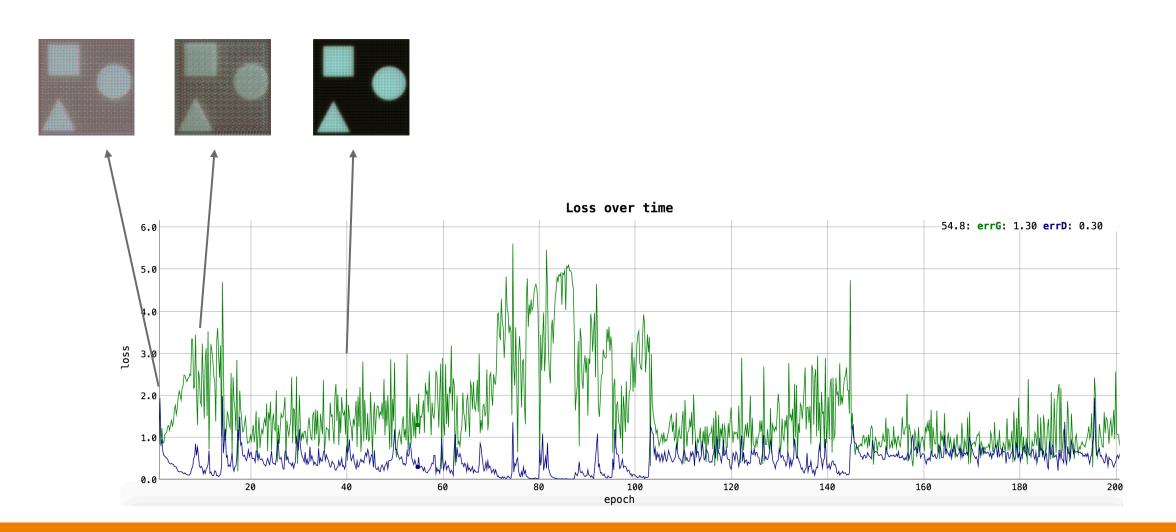


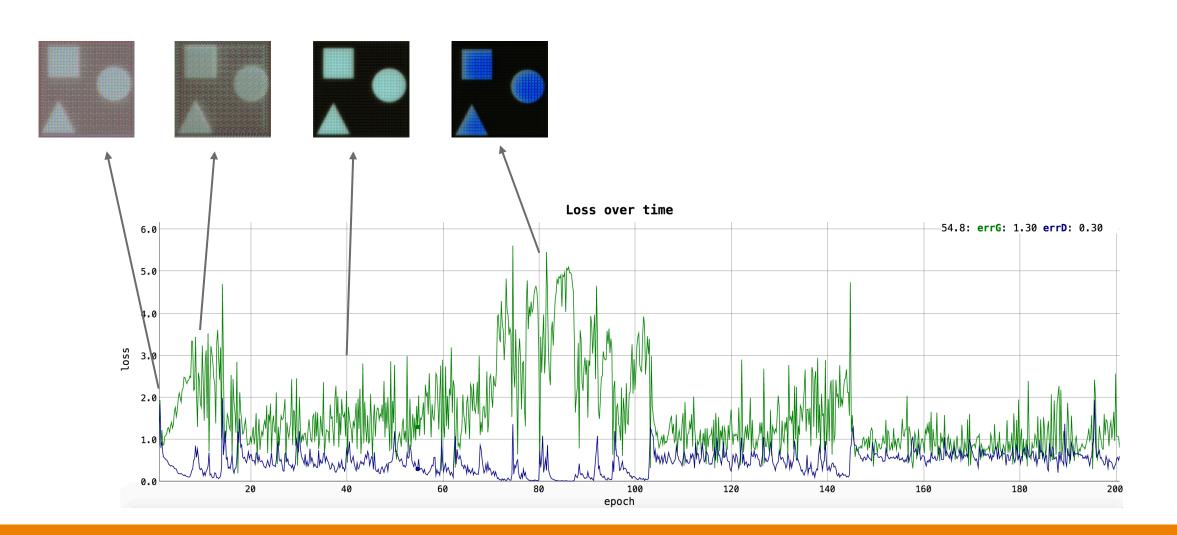


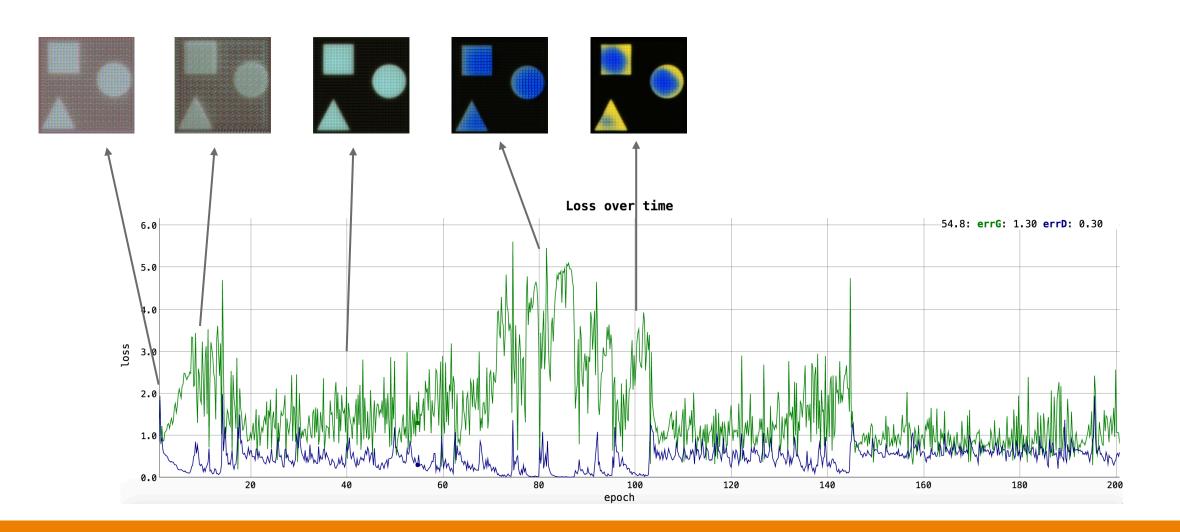


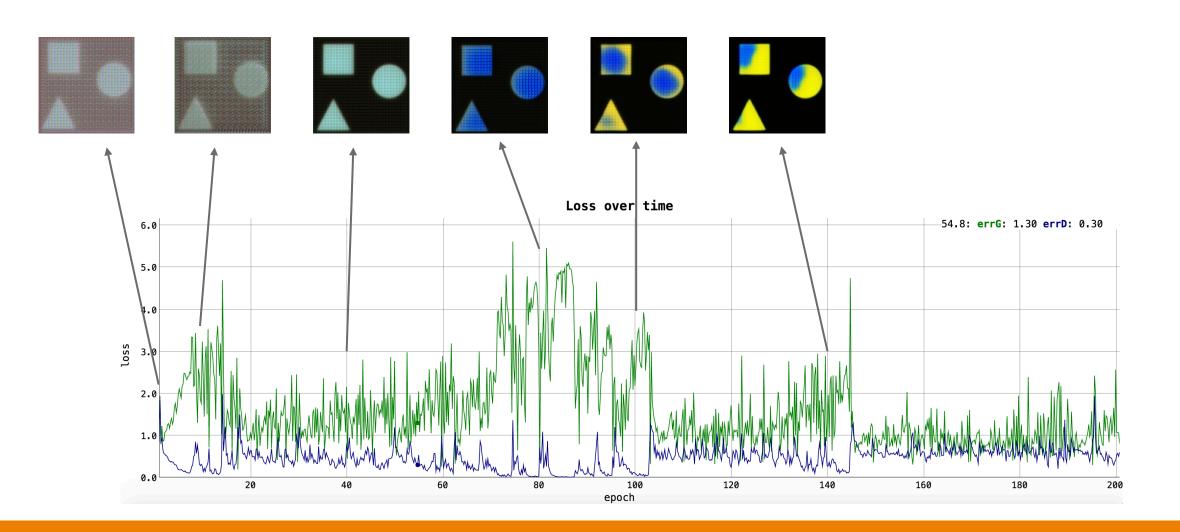


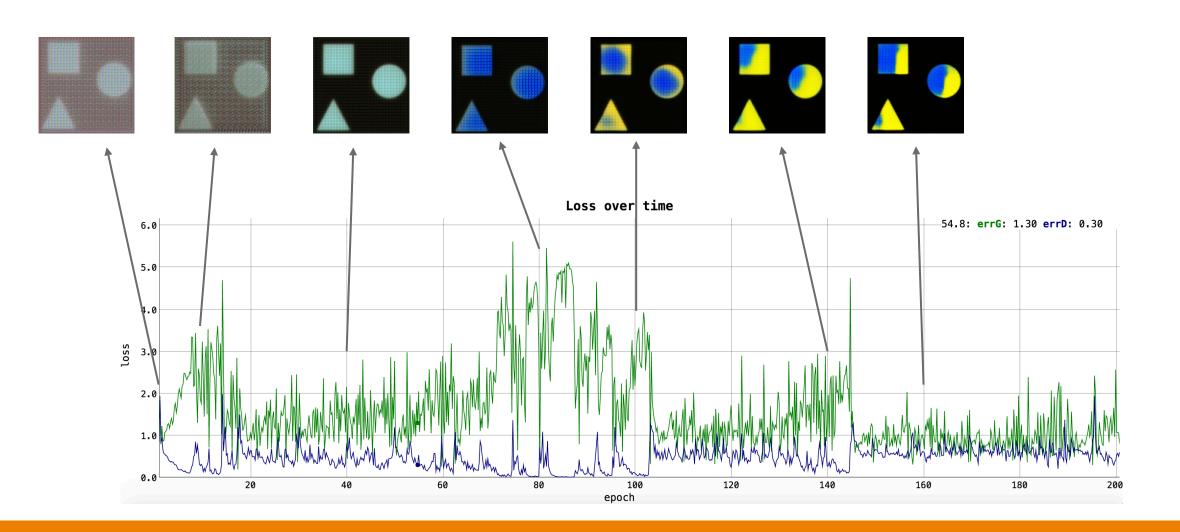


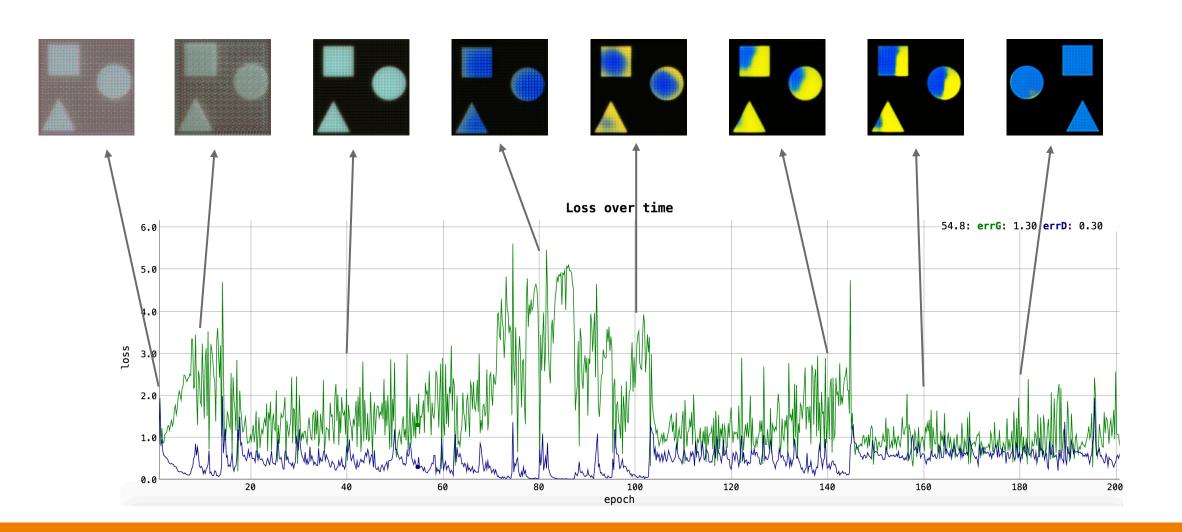


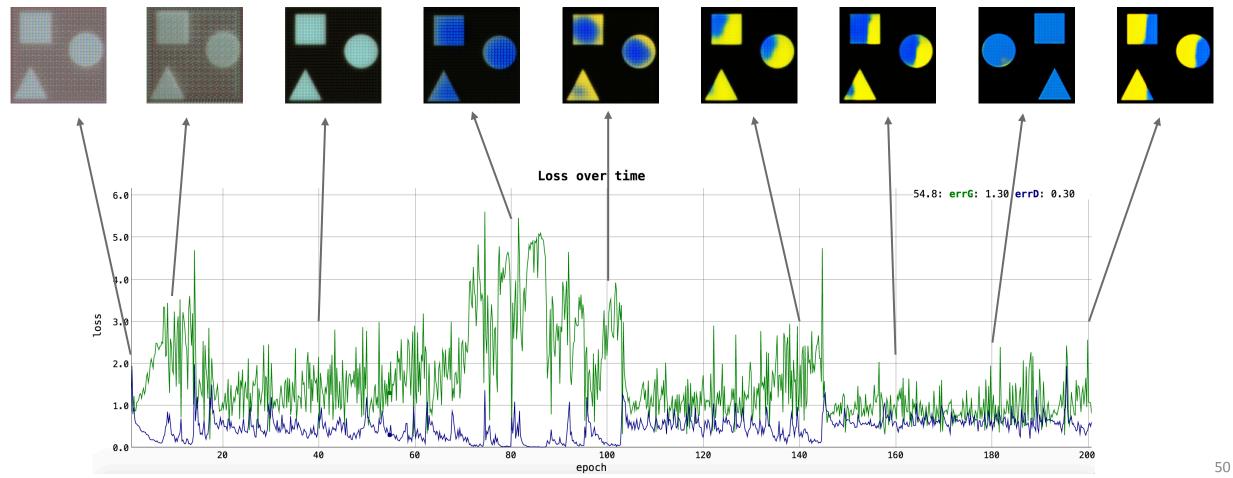




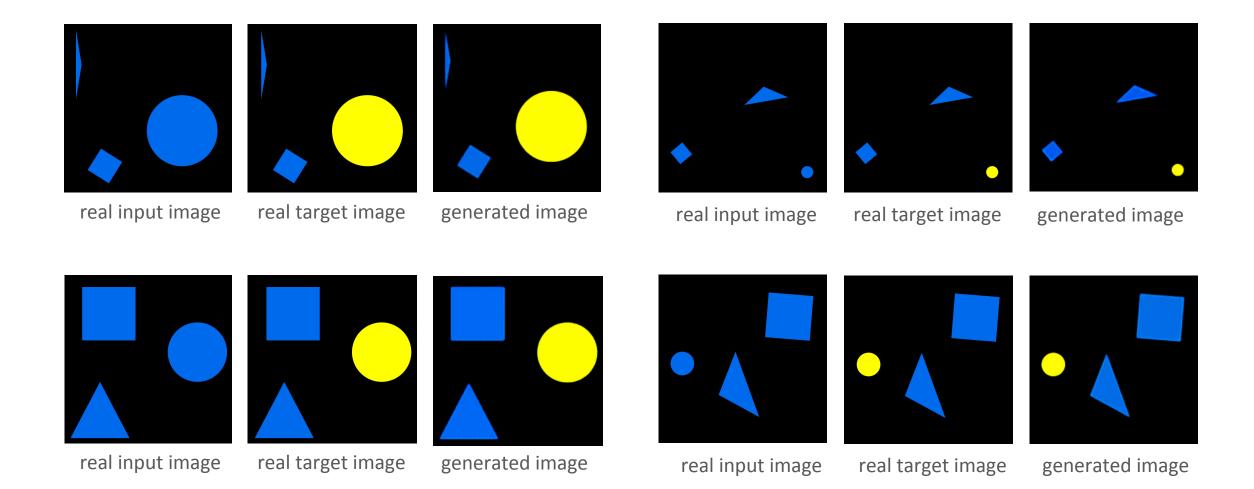




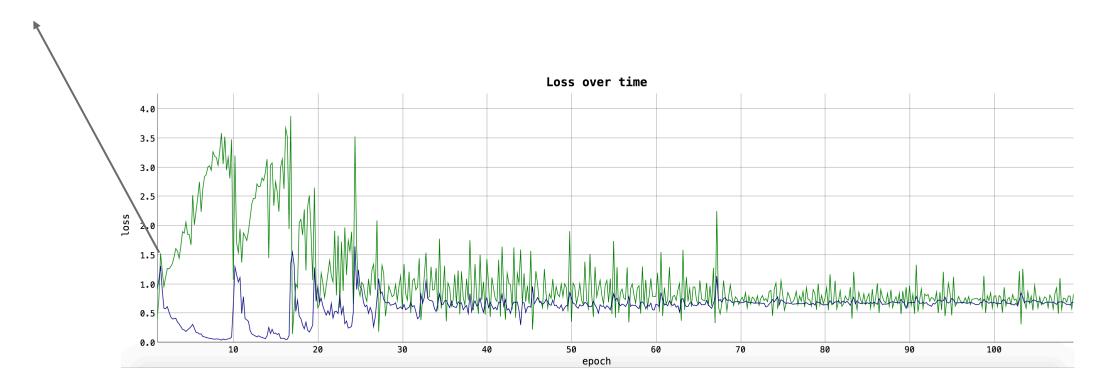




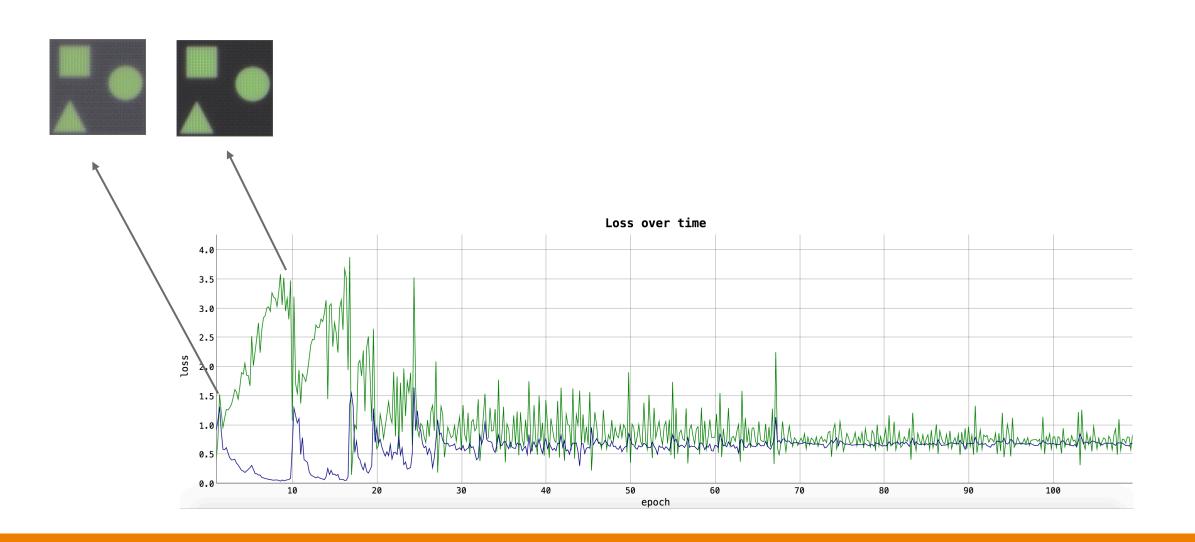
Using semantic-content aware filters



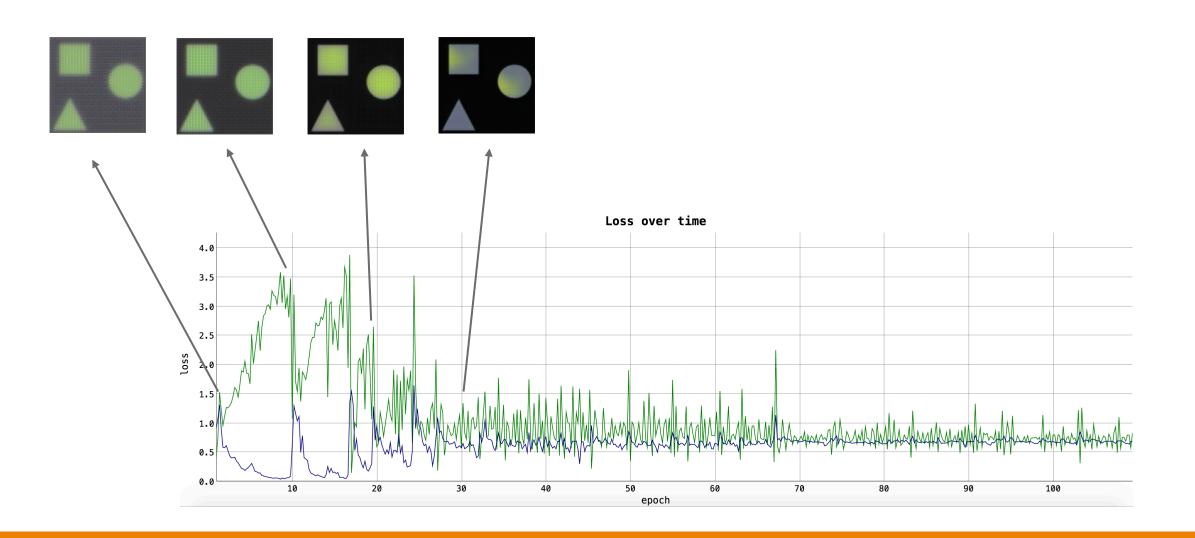
Suggestion: Generate Filters Dynamically

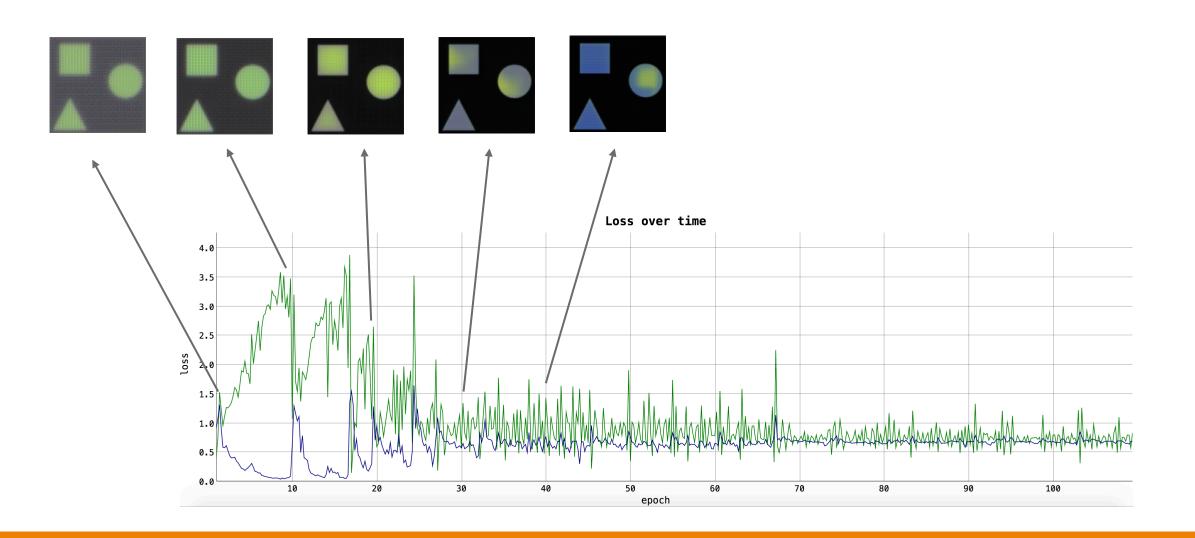


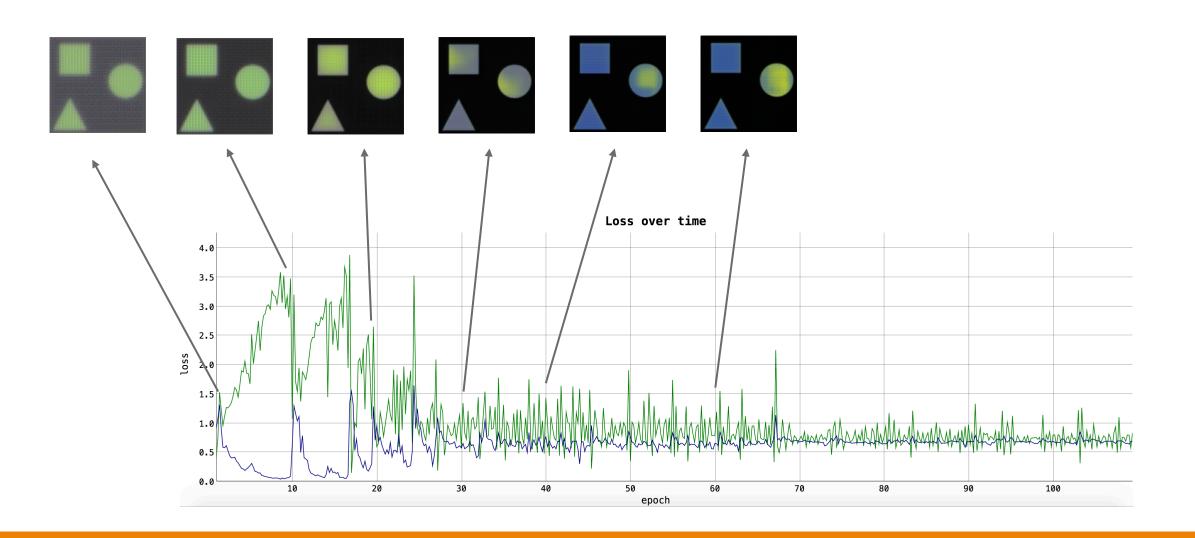
Suggestion: Generate Filters Dynamically

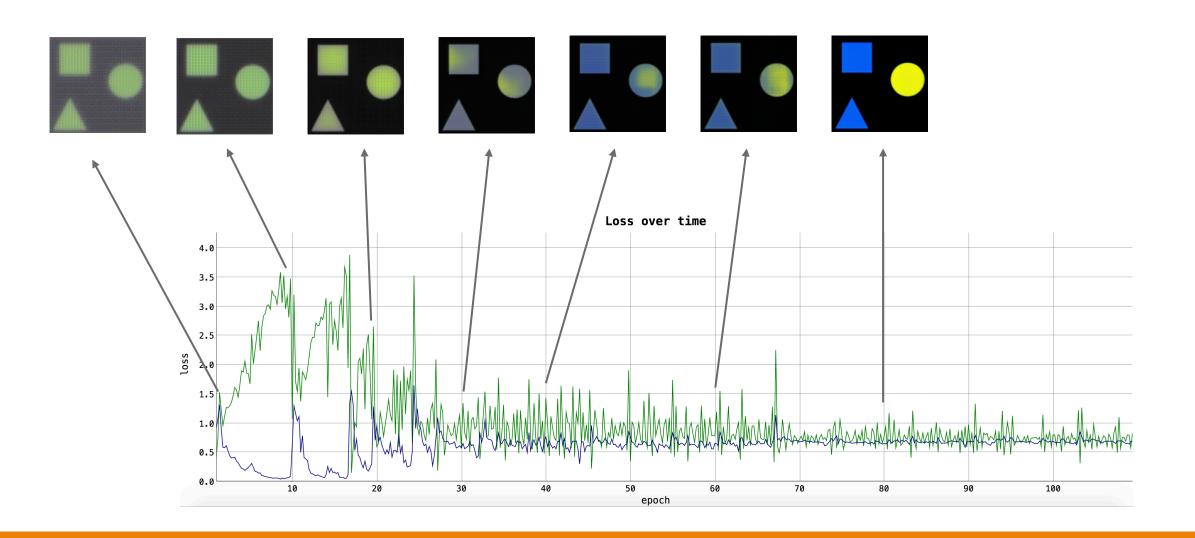


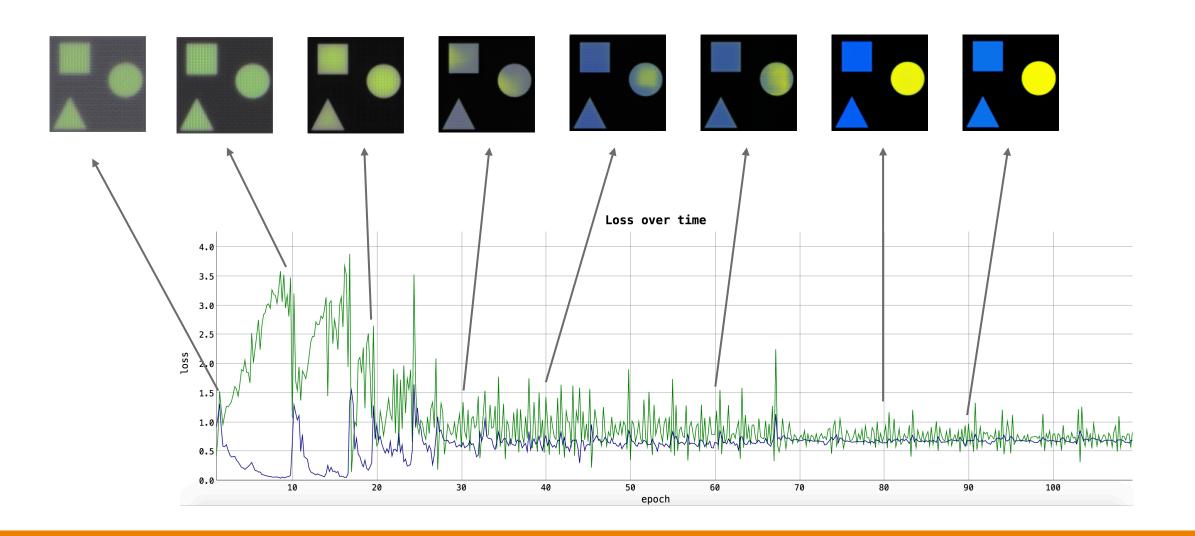


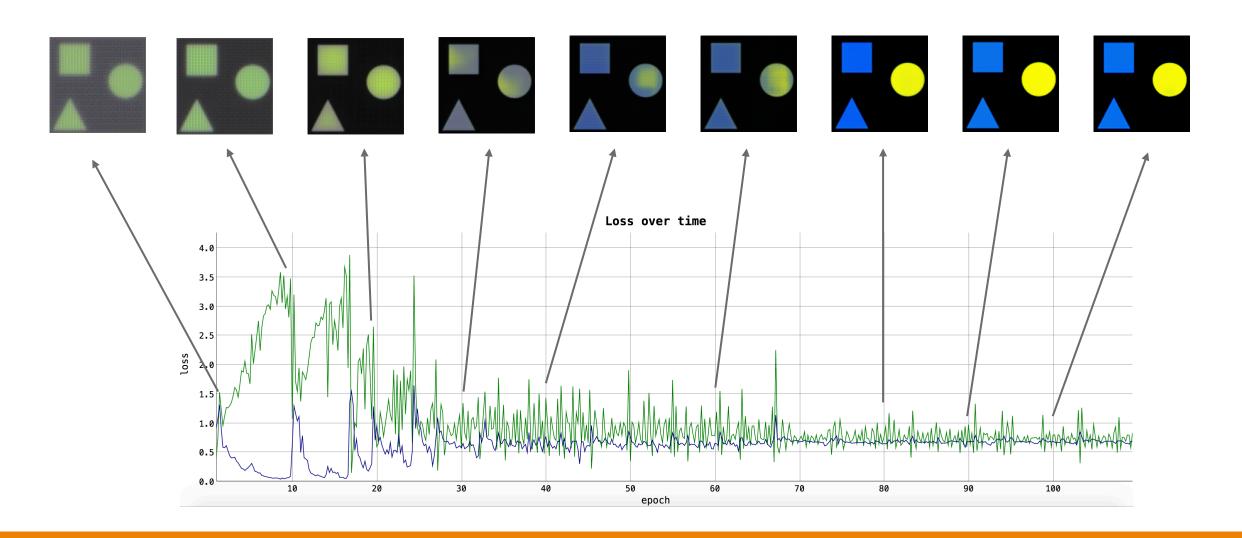










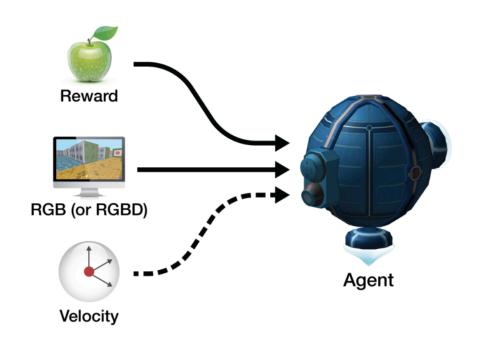


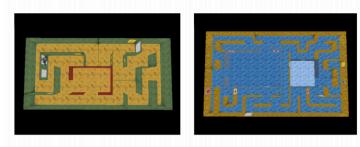
Implementation on real data: in progress for the tasks of summer-to-winter and day-to-night

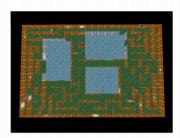
- Difficult, more complex transformations
- Multiscale image decomposition using a convolutional "image encoder", and then cross-convolution?
- Semantic-content aware filters in the earlier stages of generation, instead of final stage only?

Thank you.

Navigation in Complex Environments

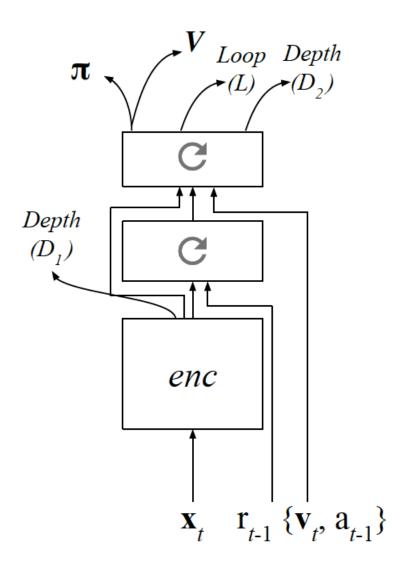






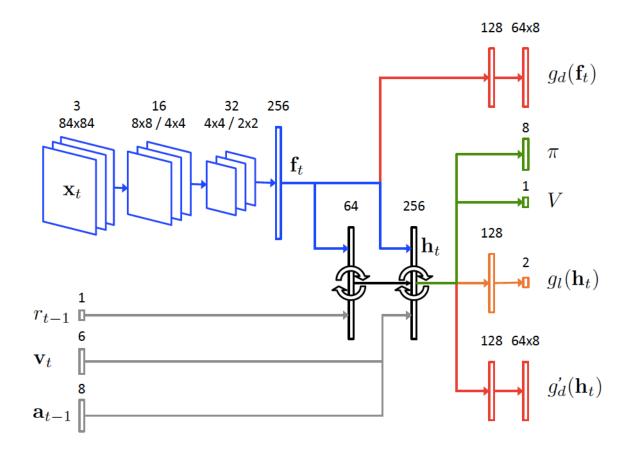
- 1. Learning to Navigate in Complex Environments. Mirowski et al.
- 2. DeepMind Lab. Beattie et al.

Architecture - A3C++



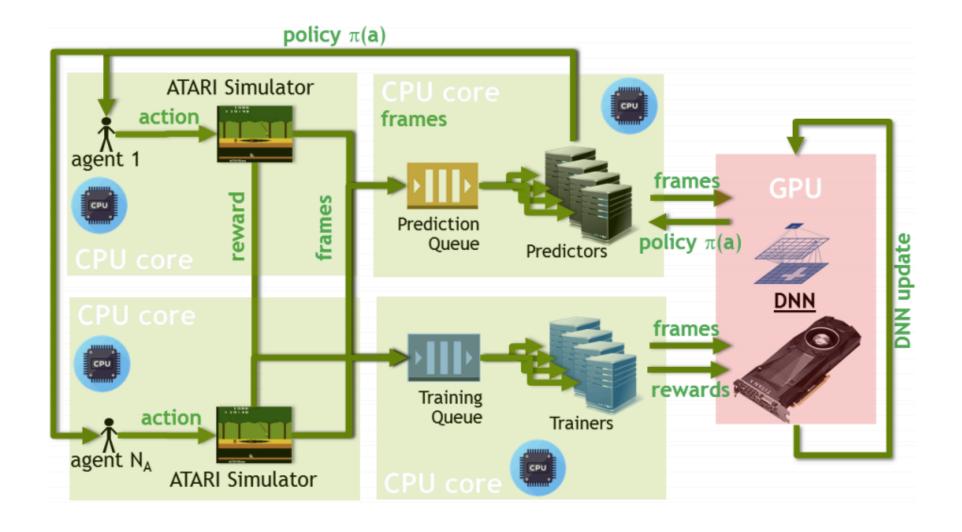
- Stacked LSTMs
- Velocity Input
- r_{t-1} , a_{t-1} Input
- Depth Prediction
- Loop Prediction

Architecture - A3C++



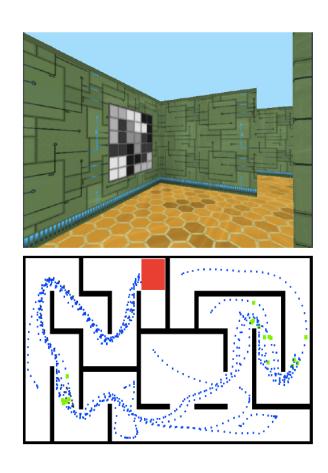
- Stacked LSTMs
- Velocity Input
- r_{t-1} , a_{t-1} Input
- Depth Prediction
- Loop Prediction

Base - GA3C*

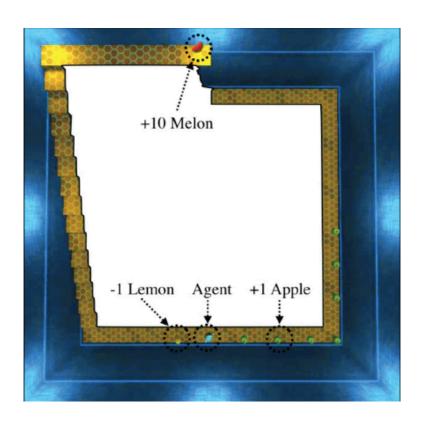


^{*}Reinforcement Learning through Asynchronous Advantage Actor-Critic on a GPU. Babaeizadeh et al.

Evaluation Mazes

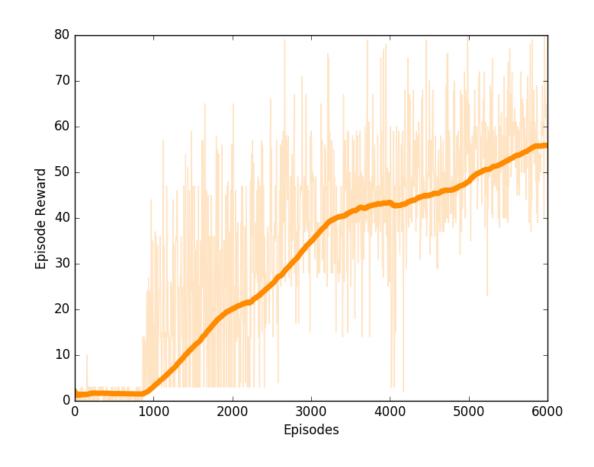


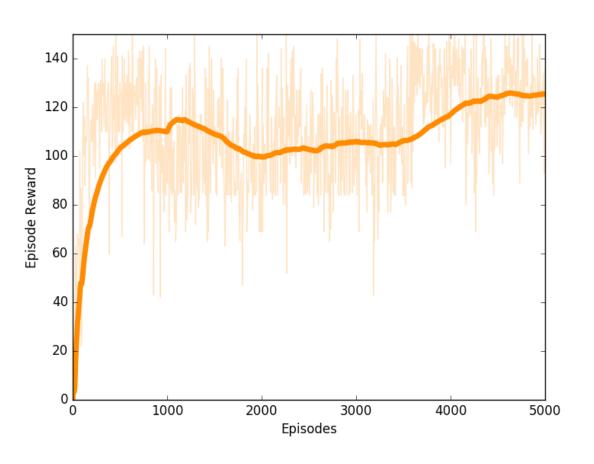
Static Maze



Stairway to Melon

Learning Curves

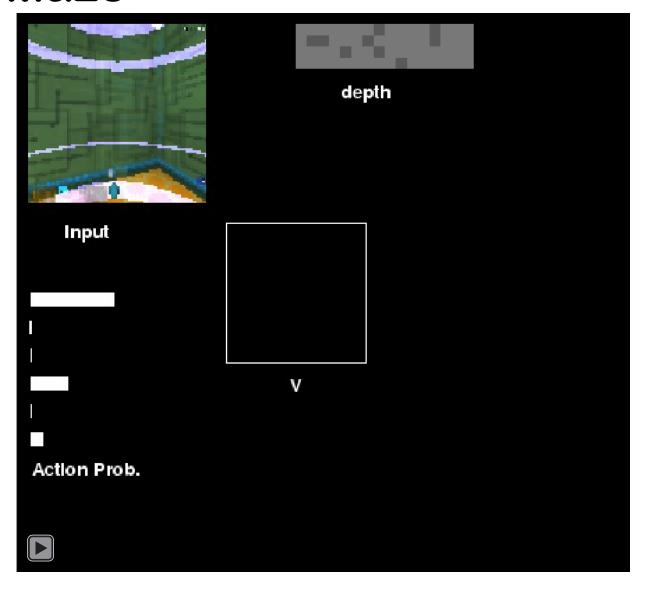




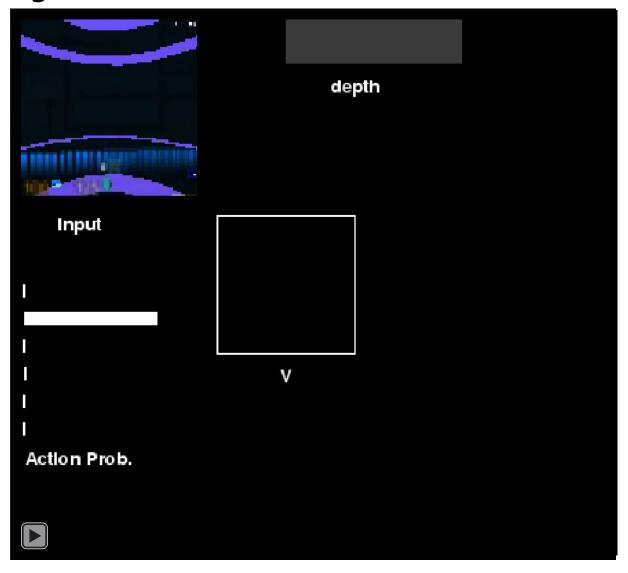
Static Maze

Stairway to Melon

Demo – Static Maze



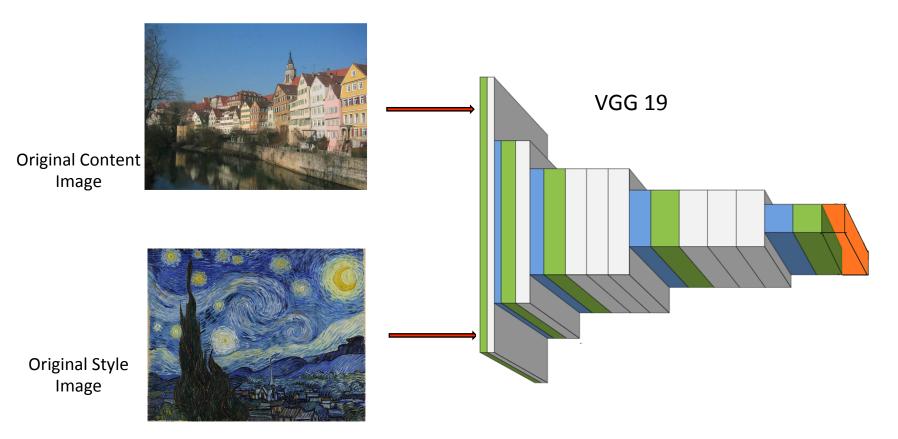
Demo - Stairway to Melon



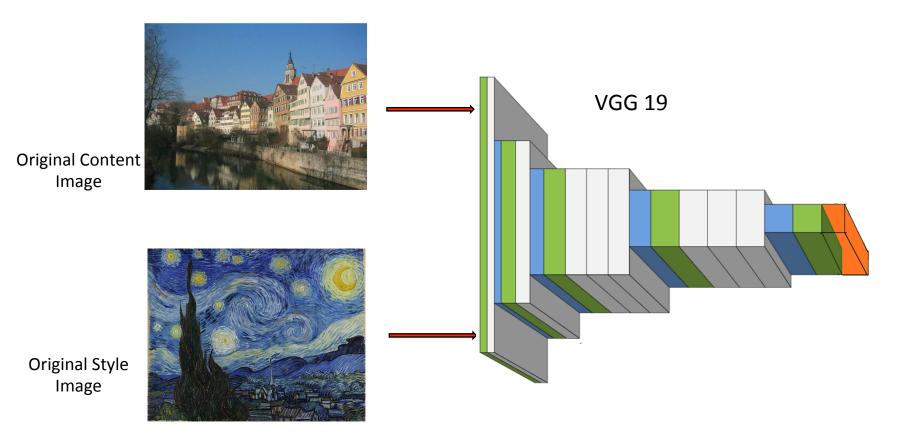
Neural Style Transfer

Anand Bhattad, Ameya Patil, Hsiao-Ching Chang

Where: Content and Style!



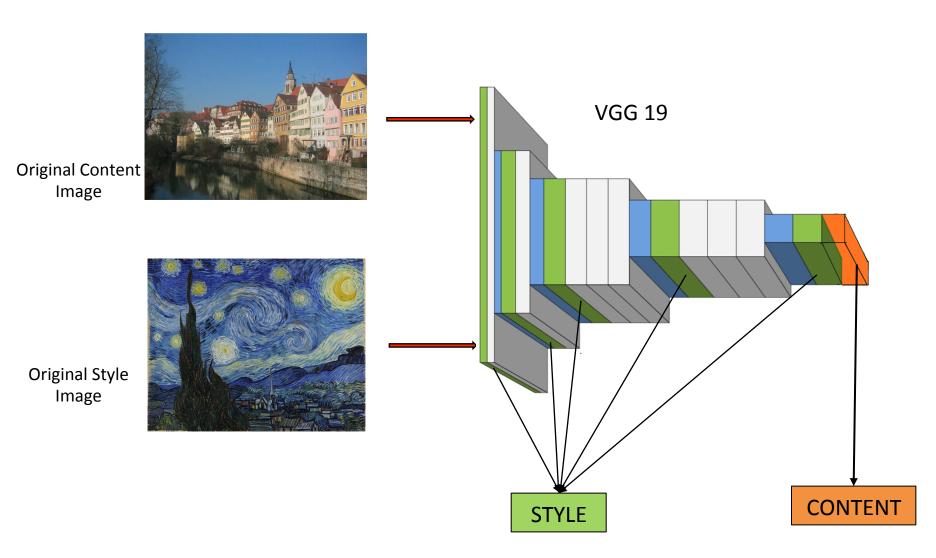
Where: Content and Style!



Extracted Content

Extracted Style

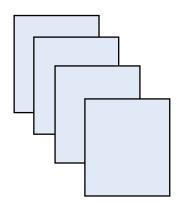
Where: Content and Style!

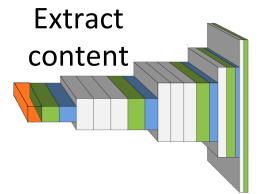


Extracted Content

Extracted Style

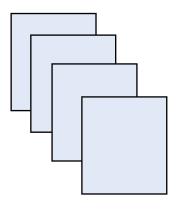
Content Transfer

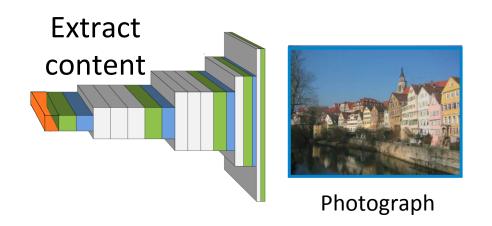




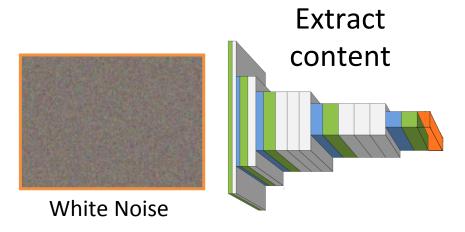
Photograph

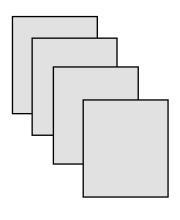
Content Transfer



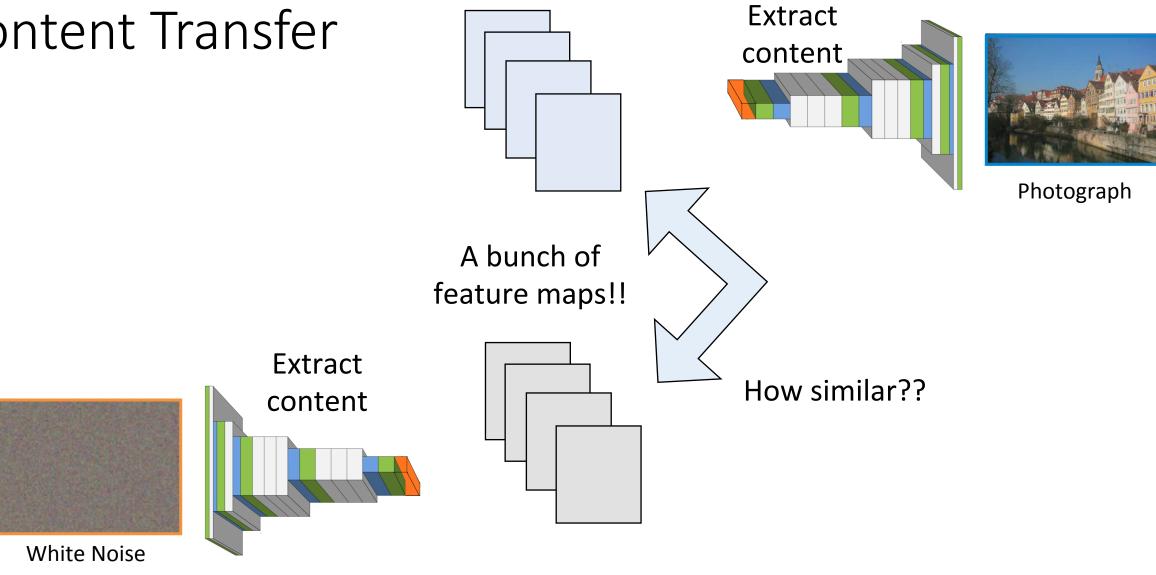


A bunch of feature maps!!



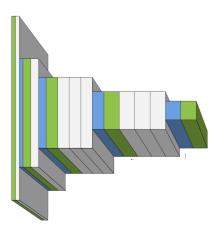


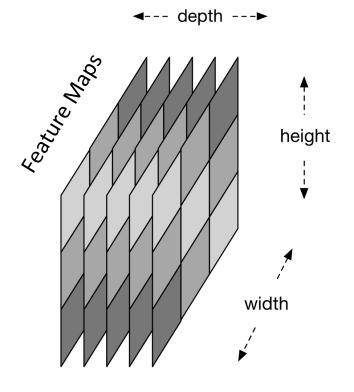
Content Transfer



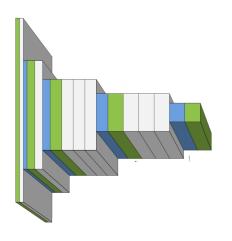
Extract Content Transfer content Photograph A bunch of feature maps!! **Extract** How similar?? content Update to minimize $\mathcal{L}2$ distance White Noise $\mathcal{L}_{ ext{content}}$

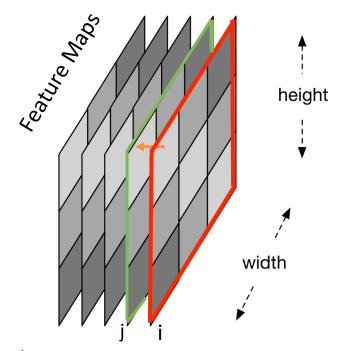
Style Intuition





Style Intuition

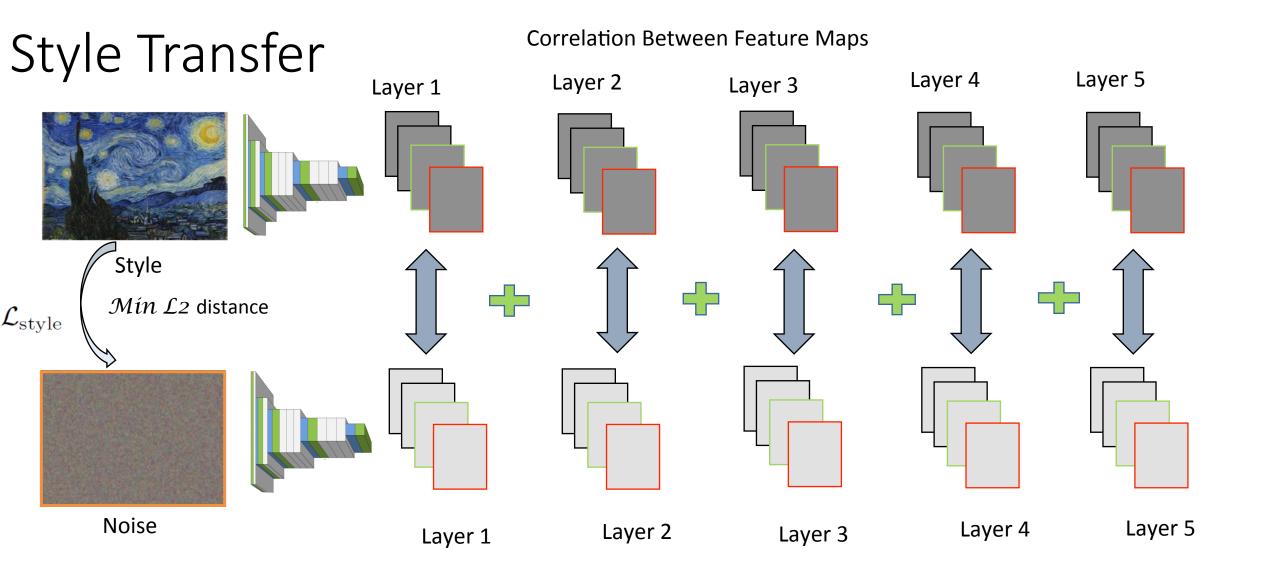




--- depth ---►

Correlation Between Feature Maps

◄--- depth ---► Style Intuition feature Maps height width Correlation Between Feature Maps



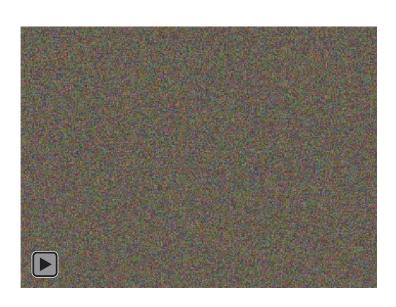
Correlation Between Feature Maps Style Transfer Layer 5 Layer 4 Layer 2 Layer 3 Layer 1 Style $\mathcal{M}in\ \mathcal{L}2$ distance $\mathcal{L}_{ ext{style}}$ Noise Layer 5 Layer 4 Layer 2 Layer 3 Layer 1 $\mathcal{M}in~\mathcal{L}2$ distance $\mathcal{L}_{\mathrm{content}}$

L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer using convolutional neural networks. CVPR 2010 Content

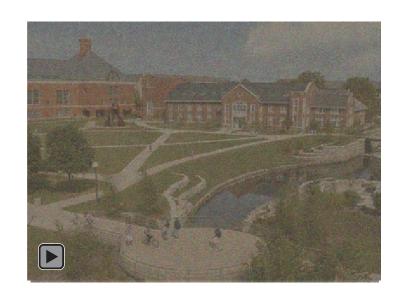
Our Implementation Results!!

Content Image

Style Image



Start with Only Noise Image



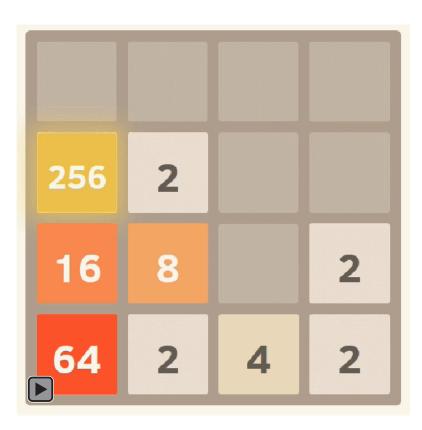
Start with High Noise + Content Image

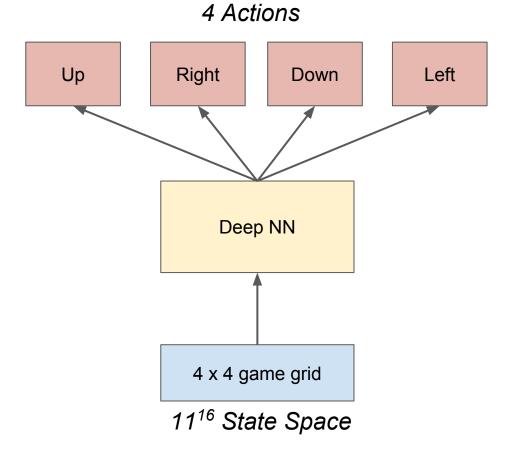
Little Noise + Content Image

Playing 2048 with deep reinforcement learning

Garima Lalwani Karan Ganju Unnat Jain

2048 Game





RL challenges

- Very sparse transitions of higher score grid -
- Unrecoverable mistakes

Naive Results

Model	Avg Max Tile	Avg Score	Avg Steps
Random Bot	1084.9	106.1	137.8
RL Agent	122.4	115.2	129.0

Our agent-environment for 2048

https://github.com/karanganju/2048RL

Playing 2048 with deep reinforcement learning

Garima Lalwani Karan Ganju Unnat Jain

Playing **512** with deep **supervised** learning

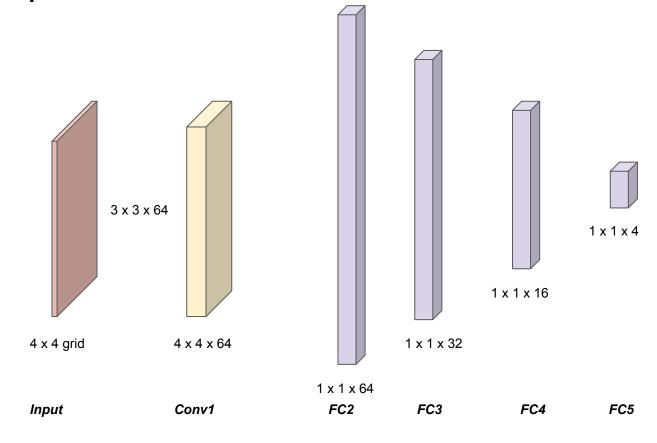
Garima Lalwani Karan Ganju Unnat Jain

First step to imitation learning - Supervision

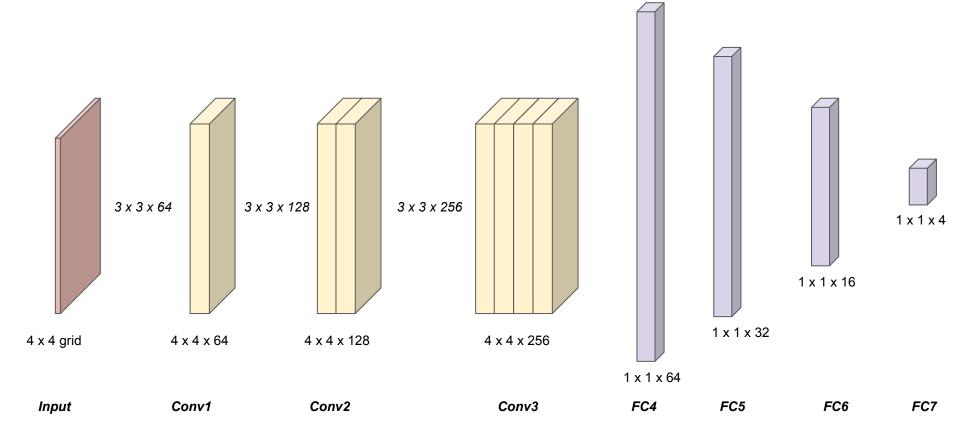
Steps implemented:-

- Rule based A* heuristic algorithm
- Populate a training set of ~300, 000 of X=state, Y=action
- Use deep neural nets to learn the algorithm
- Play around with type, depth of network and regularization
- Data augmentation: Tried → was slow → will try again :)

Our Deep Neural Network

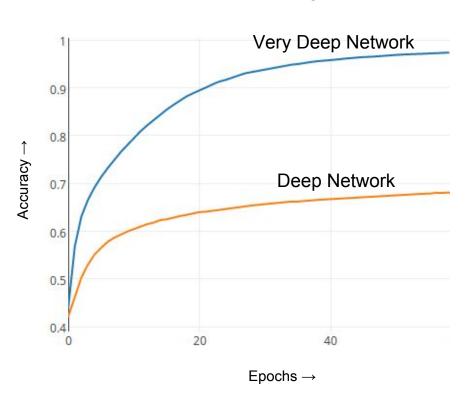


Our Very Deep Neural Network



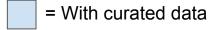
Results

Deep vs Very deep



Results - Gameplay

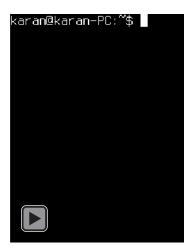
Model	Avg Max Tile	Avg Score	Avg Steps
Random Bot	1084.9	106.1	137.8
Deep Network	1132.2	103.4	123.4
Deep Network	1840.4	163.8	171.0
Very Deep Network	2029.2	186.6	181.2
Very Deep Network (with Batch Norm)	2884.8	248.3	235.1



More to Come (Hopefully...)

Next steps:

Data augmentation: We tried too late, time too less

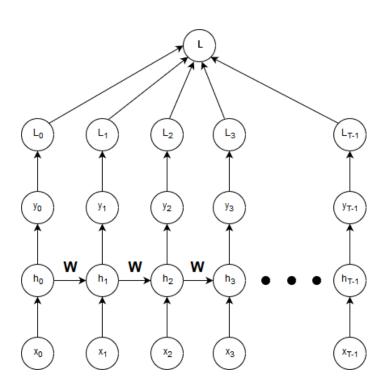


- Add extra layers and fine tune in DQN fashion (with experience replay)
- If RL doesn't start in the dark, should converge better

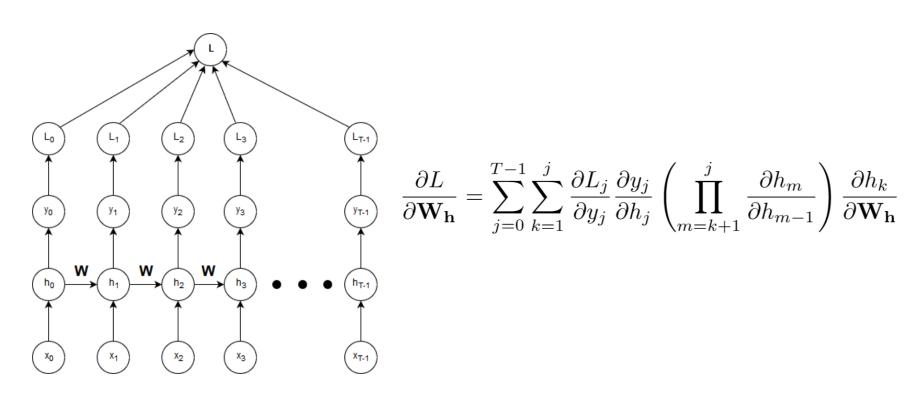
Initialization Methods for Recurrent Networks

Abhishek Narwekar Anusri Pampari

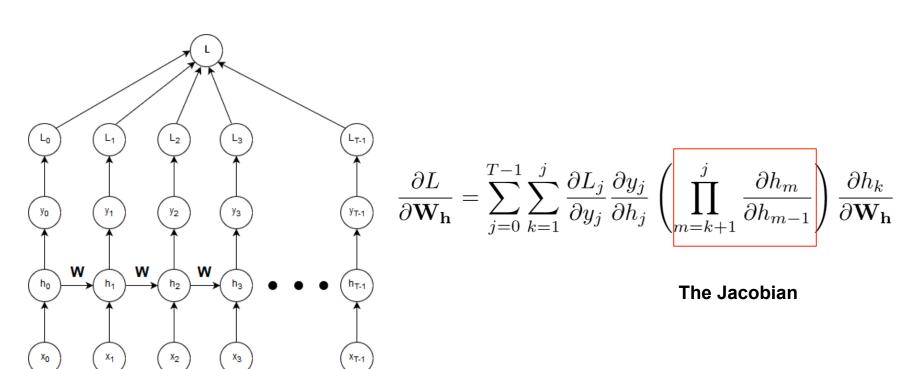
The Final Backpropagation Equation



The Final Backpropagation Equation



The Final Backpropagation Equation



• Input:

$$a_1 a_2 \dots a_{10} 0 0 0 0 0 \dots$$

• Input:

$$a_1 a_2 \dots a_{10} 0 0 0 0 0 \dots$$

Input:

$$a_1 a_2 \dots a_{10} 0 0 0 0 0 \dots$$
10 symbols T zeros

• Input:

$$a_1 a_2 \dots a_{10} 0 0 0 0 0 \dots$$
10 symbols T zeros

- Output: a₁ ... a₁₀
- Challenge: Remembering symbols over an arbitrarily large time gap

Input Structure

Train Input

Train Output

```
6,6,7,4,7,2,7,6,6,8
5,3,2,7,1,3,3,2,4,3
2,3,3,7,8,8,8,6,6,5
8,1,8,5,6,8,6,1,7,4
1,4,8,3,2,4,1,8,2,1
6,3,4,5,2,5,8,1,6,2
5,5,7,7,7,5,5,7,1,7
2,4,7,8,8,6,4,6,1,7
7,1,2,7,2,7,4,1,8,5
6,3,5,8,6,8,6,3,1,2
```

•••

Modular code: Can be extended to any general sequence modelling problem!

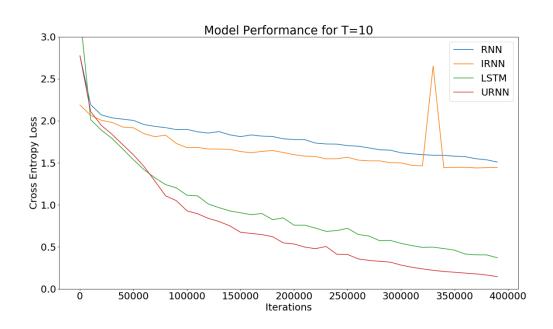
Experiments

Architectures compared:

Architecture	Hidden states	Parameters
Vanilla RNN	80	~6400
Identity RNN	80	~6400
LSTM	40	~6400
Unitary RNN	128	~6500

Length of Zero-padding: 10, 50, 100

Results: Zero-Gap = 10



Validation Performance

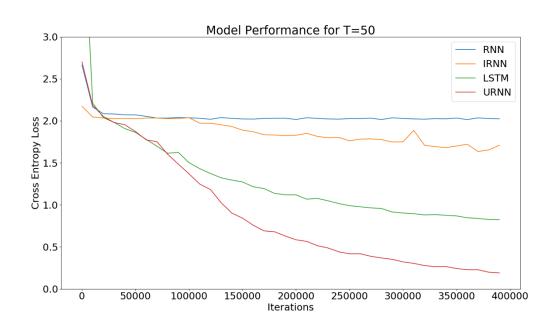
• RNN: 39.30 %

• IRNN: 43.11%

• LSTM: 92.87%

• URNN: 99.83%

Results: Zero-Gap = 50



Validation Performance

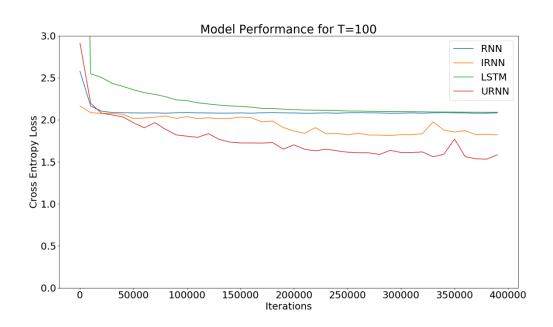
• RNN: 16.63%

• IRNN: 33.57%

• LSTM: 70.24%

• URNN: 99.43%

Results: Zero-Gap = 100



Validation Performance

• RNN: 12.67%

• IRNN: 25.50%

• LSTM: 12.47%

• URNN: 41.72%

Conclusion

- Unitary RNN's are the best at learning long-term dependencies
- Vanilla RNN performs reasonably well for short sequences, but falters for longer ones
- Identity RNN beats vanilla RNN and LSTM for longer sequences

Image Understanding with a Focus on Humans

Arun Mallya University of Illinois

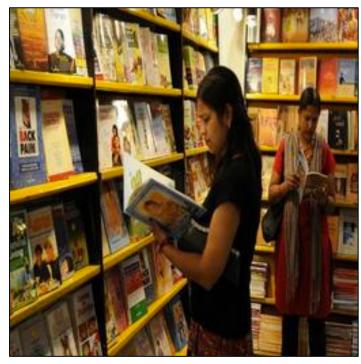
flying a kite

Human-Object Interaction Recognition

flying a kite

Human-Object Interaction Recognition

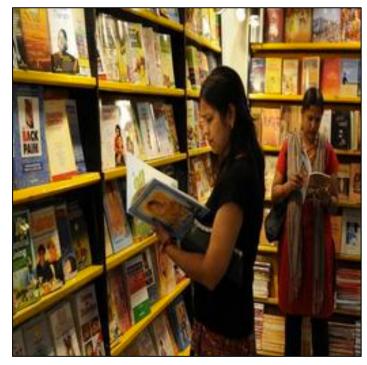
Human-Object Interaction Recognition



(woman) (browsing) (book) (in bookshop)

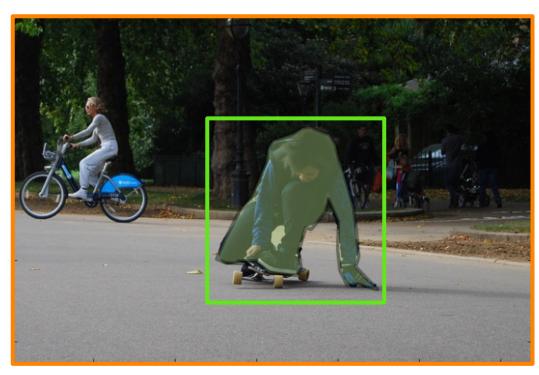
Human-Object Interaction Recognition

Situation Recognition



(woman) (browsing) (book) (in bookshop)

Human-Object Interaction Recognition



ride-skateboard, sit-on-skateboard

fly-kite, pull-kite

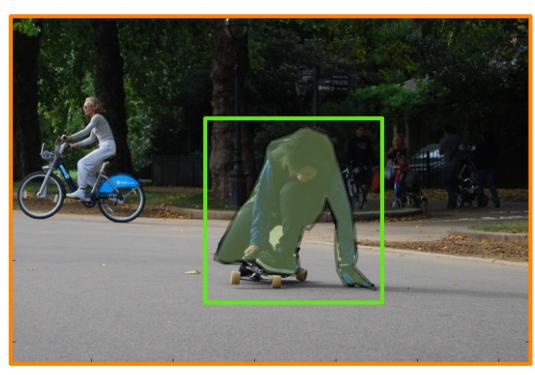
Bounding box contains all relevant information

Bounding box contains all relevant information

Bounding box contains all relevant information

Bounding box contains insufficient information

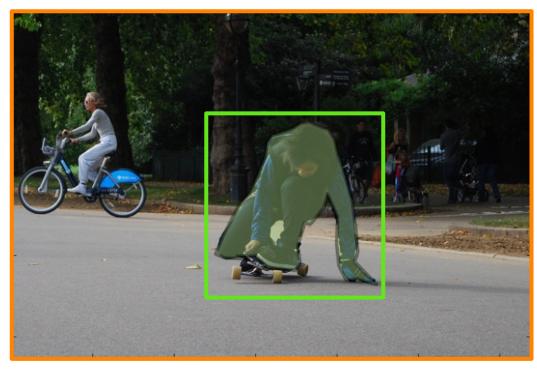
Context Matters



ride-skateboard, sit-on-skateboard

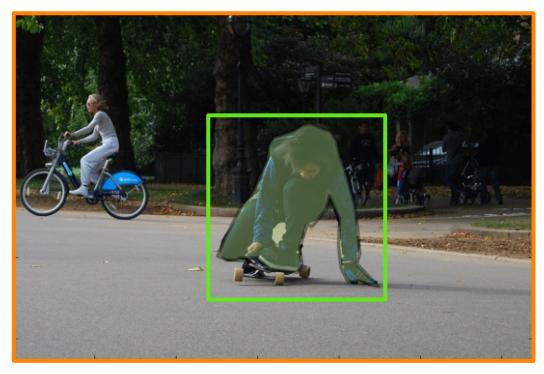
fly-kite, pull-kite

Context Matters



ride-skateboard, sit-on-skateboard fly-kite, pull-kite
There is a need to use both the full image and the person bounding box

Context Matters



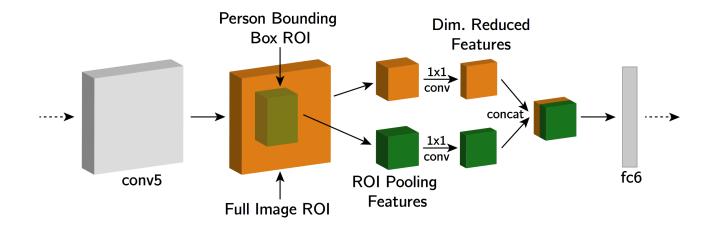
ride-skateboard, sit-on-skateboard

fly-kite, pull-kite

There is a need to use both the full image and the person bounding box

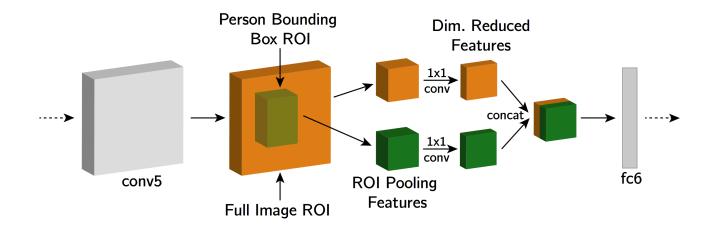
Learning Models for Actions and Person-Object Interactions with Transfer to Question Answering
Arun Mallya, Svetlana Lazebnik
ECCV 16

Global + Bounding Box Architecture



The Fusion Architecture

Global + Bounding Box Architecture



The **Fusion** Architecture

- Use ROI Pooling to obtain global and local features
- Separately reduce dimensions of each and then concatenate to give fc6 the expected number of flattened features

Dataset Summary

Dataset statistics and information

Dataset	#Labels	#Train	#Test	Labels per Image	Person Annotation
HICO	600	38,116	9,658	Multiple	X
MPII Human Pose	393	15,200	5,709	Single	✓ *

^{*} single dot inside selected person's bounding box provided

Dataset Summary

Dataset statistics and information

Dataset	#Labels	#Train	#Test	Labels per Image	Person Annotation
HICO	600	38,116	9,658	Multiple	X
MPII Human Pose	393	15,200	5,709	Single	✓ *

^{*} single dot inside selected person's bounding box provided

 Run the Faster-RCNN detector on images to obtain person bounding boxes, with default confidence threshold of 0.8

Multiple Instance Learning (MIL)

to handle latent assignment of action labels to persons in image

Multiple Instance Learning (MIL)

to handle latent assignment of action labels to persons in image

$$score(\alpha; I) = \max_{d \in D} score(\alpha; d, I)$$

 $\operatorname{score}(\alpha;d,I)$ is the score of action α for the person d in image I is the set of all person detections in image I

Multiple Instance Learning (MIL)

to handle latent assignment of action labels to persons in image

$$score(\alpha; I) = \max_{d \in D} score(\alpha; d, I)$$

 $\operatorname{score}(\alpha;d,I)$ is the score of action α for the person d in image I is the set of all person detections in image I

Weighted Loss

to handle imbalanced positive to negative ratio in dataset

Multiple Instance Learning (MIL)

to handle latent assignment of action labels to persons in image

$$score(\alpha; I) = \max_{d \in D} score(\alpha; d, I)$$

 $\operatorname{score}(\alpha;d,I)$ is the score of action α for the person d in image I is the set of all person detections in image I

Weighted Loss

to handle imbalanced positive to negative ratio in dataset

$$loss(I,D,y) = \sum_{i=1}^{C} w_{p}^{i} \cdot y^{i} \cdot log(\hat{y}^{i}) + w_{n}^{i} \cdot (1 - y^{i}) \cdot log(1 - \hat{y}^{i})$$

$$w_p = 10$$
 is the weight on positive examples

$$w_n = 1$$
 is the weight on negative examples

Results on HICO

Performance on the HICO dataset

Method	Full Image	Bounding Box	MIL	Wtd. Loss	mAP
AlexNet+SVM [1]	✓				19.4
VGG-16	✓				29.4
VGG-16, R*CNN [2]	✓	✓	✓		28.5

^[1] Chao, Y.W., et al.: Hico: A benchmark for recognizing human-object interactions in images, ICCV 2015

^[2] Gkioxari, G., et al.: Contextual action recognition with r*cnn, ICCV 2015

Results on HICO

Performance on the HICO dataset

Method	Full Image	Bounding Box	MIL	Wtd. Loss	mAP
AlexNet+SVM [1]	✓				19.4
VGG-16	✓				29.4
VGG-16, R*CNN [2]	✓	✓	✓		28.5
VGG-16, Fusion	/	√	1		33.8

^[1] Chao, Y.W., et al.: Hico: A benchmark for recognizing human-object interactions in images, ICCV 2015

^[2] Gkioxari, G., et al.: Contextual action recognition with r*cnn, ICCV 2015

Results on HICO

Performance on the HICO dataset

Method	Full Image	Bounding Box	MIL	Wtd. Loss	mAP
AlexNet+SVM [1]	✓				19.4
VGG-16	✓				29.4
VGG-16, R*CNN [2]	✓	✓	✓		28.5
VGG-16, Fusion	✓	\checkmark	✓		33.8
VGG-16, Fusion	✓	✓	✓	✓	36.1

^[1] Chao, Y.W., et al.: Hico: A benchmark for recognizing human-object interactions in images, ICCV 2015

^[2] Gkioxari, G., et al.: Contextual action recognition with r*cnn, ICCV 2015

Results on MPII

Performance on the MPII dataset

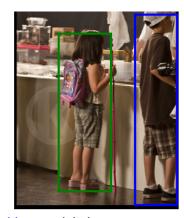
Method	Full Image	Bounding Box	MIL	mAP
Dense Trajectory + Pose [1]	✓			5.5
VGG-16, R*CNN [2]	✓	✓	✓	26.7
VGG-16, Fusion	✓	✓		32.2
VGG-16, Fusion	✓	✓	✓	31.9

^[1] Pishchulin, L., et al.: Fine-grained activity recognition with holistic and pose based features, GCPR 2014

^[2] Gkioxari, G., et al.: Contextual action recognition with rcnn, ICCV 2015

Qualitative Results on HICO

blue: no label green: hold, wield-knife



blue: no label green: wear, carry-backpack

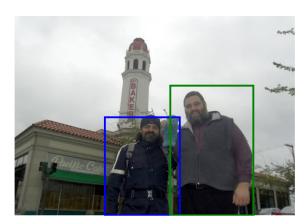
blue: straddle, ride, hold, sit-on-bicycle green: no-interaction-bicycle

Qualitative Results on HICO

blue: no label green: hold, wield-knife

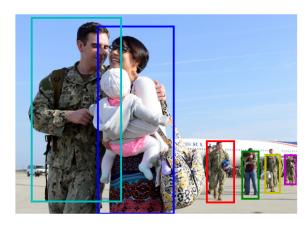
blue: no label green: wear, carry-backpack

blue: straddle, ride, hold, sit-on-bicycle green: no-interaction-bicycle



blue: carry, wear-backpack green: no-interaction-clock

green: carry, hold, drag-suitcase blue, red: no label



blue: hold, carry, hug-person, hold, carry-backpack cyan: hold, carry-person, carry-backpack red: carry-backpack green: hold-person

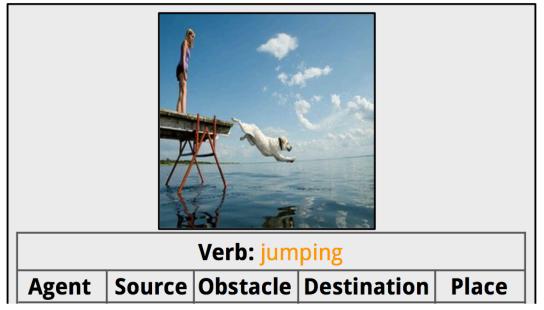
 $v \in V, R_v \subset R$ V - Verbs, R - Semantic Roles

 $v \in V, R_v \subset R$ V - Verbs, R - Semantic Roles

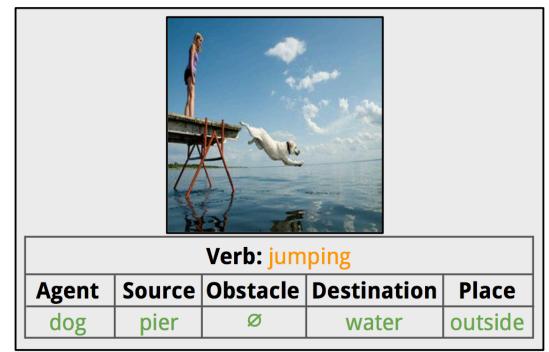
Verb: jumping					
Agent	Source	Obstacle	Destination	Place	

Verb: rearing
Agent Place

 $v \in V, R_v \subset R$ V - Verbs, R - Semantic Roles



 $v \in V, R_v \subset R$ V - Verbs, R - Semantic Roles



Conditional Random Field (CRF)

Factorize output over verb and (verb, role, noun) tuple predictions

Conditional Random Field (CRF)

Factorize output over verb and (verb, role, noun) tuple predictions

$$p(S \mid I; \theta) = \frac{1}{Z} \psi_{v}(v \mid I; \theta) \prod_{\substack{(r_i, n_i) \\ r_i \in R_v, n_i \in N \cup \{\emptyset\}}} \psi_{r}(v, r_i, n_i \mid I; \theta)$$

Conditional Random Field (CRF)

Factorize output over verb and (verb, role, noun) tuple predictions

$$p(S \mid I; \theta) = \frac{1}{Z} \psi_{v}(v \mid I; \theta) \prod_{\substack{(r_i, n_i) \\ r_i \in R_v, n_i \in N \cup \{\emptyset\}}} \psi_{r}(v, r_i, n_i \mid I; \theta)$$

The normalization constant is computed by summing over all training samples

Conditional Random Field (CRF)

Factorize output over verb and (verb, role, noun) tuple predictions

$$p(S \mid I; \theta) = \frac{1}{Z} \psi_{v}(v \mid I; \theta) \prod_{\substack{(r_i, n_i) \\ r_i \in R_v, n_i \in N \cup \{\emptyset\}}} \psi_{r}(v, r_i, n_i \mid I; \theta)$$

The normalization constant is computed by summing over all training samples

Sequential Prediction (RNN)

Factorize output over verb and nouns conditioned on previous predictions

Conditional Random Field (CRF)

Factorize output over verb and (verb, role, noun) tuple predictions

$$p(S \mid I; \theta) = \frac{1}{Z} \psi_{v}(v \mid I; \theta) \prod_{\substack{(r_i, n_i) \\ r_i \in R_v, n_i \in N \cup \{\emptyset\}}} \psi_{r}(v, r_i, n_i \mid I; \theta)$$

The normalization constant is computed by summing over all training samples

Sequential Prediction (RNN)

Factorize output over verb and nouns conditioned on previous predictions

$$p(S | I; \theta) = p(v, (r_1, n_1), \dots, (r_{|R_v|}, n_{|R_v|}) | I; \theta) = p(v, n_1, \dots, n_{|R_v|} | I; \theta)$$

Conditional Random Field (CRF)

Factorize output over verb and (verb, role, noun) tuple predictions

$$p(S \mid I; \theta) = \frac{1}{Z} \psi_{v}(v \mid I; \theta) \prod_{\substack{(r_i, n_i) \\ r_i \in R_v, n_i \in N \cup \{\emptyset\}}} \psi_{r}(v, r_i, n_i \mid I; \theta)$$

The normalization constant is computed by summing over all training samples

Sequential Prediction (RNN)

Factorize output over verb and nouns conditioned on previous predictions

$$p(S \mid I; \theta) = p(v, (r_1, n_1), \dots, (r_{|R_v|}, n_{|R_v|}) \mid I; \theta) = p(v, n_1, \dots, n_{|R_v|} \mid I; \theta)$$

$$p(S \mid I; \theta) = p(v \mid I; \theta) \prod_{t=1}^{|R_v|} p(n_t \mid v, n_1, \dots, n_{t-1}, I; \theta)$$

Conditional Random Field (CRF)

Factorize output over verb and (verb, role, noun) tuple predictions

$$p(S \mid I; \theta) = \frac{1}{Z} \psi_{v}(v \mid I; \theta) \prod_{\substack{(r_i, n_i) \\ r_i \in R_v, n_i \in N \cup \{\emptyset\}}} \psi_{r}(v, r_i, n_i \mid I; \theta)$$

The normalization constant is computed by summing over all training samples

Sequential Prediction (RNN)

Factorize output over verb and nouns conditioned on previous predictions

$$p(S \mid I; \theta) = p(v, (r_1, n_1), \dots, (r_{|R_v|}, n_{|R_v|}) \mid I; \theta) = p(v, n_1, \dots, n_{|R_v|} \mid I; \theta)$$

$$p(S \mid I; \theta) = p(v \mid I; \theta) \prod_{t=1}^{|R_v|} p(n_t \mid v, n_1, \dots, n_{t-1}, I; \theta)$$

Cross-entropy loss on verbs and on nouns (the usual RNN loss)

Conditional Random Field (CRF)

Factorize output over verb and (verb, role, noun) tuple predictions

$$p(S \mid I; \theta) = \frac{1}{Z} \psi_{v}(v \mid I; \theta) \prod_{\substack{(r_i, n_i) \\ r_i \in R_v, n_i \in N \cup \{\emptyset\}}} \psi_{r}(v, r_i, n_i \mid I; \theta)$$

The normalization constant is computed by summing over all training samples

Sequential Prediction (RNN)

Factorize output over verb and nouns conditioned on previous predictions

$$p(S \mid I; \theta) = p(v, (r_1, n_1), \dots, (r_{|R_v|}, n_{|R_v|}) \mid I; \theta) = p(v, n_1, \dots, n_{|R_v|} \mid I; \theta)$$

$$p(S \mid I; \theta) = p(v \mid I; \theta) \prod_{t=1}^{|R_v|} p(n_t \mid v, n_1, \dots, n_{t-1}, I; \theta)$$

Cross-entropy loss on verbs and on nouns (the usual RNN loss)

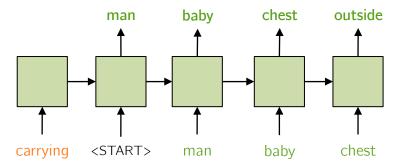
Recurrent Models for Situation Recognition

Arun Mallya, Svetlana Lazebnik *Under Review*

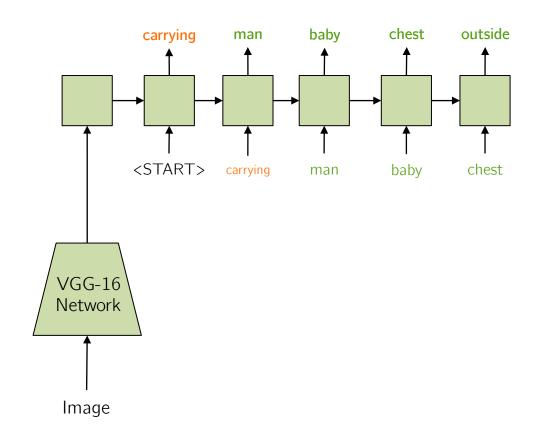
a) No-vision, RNN for nouns

Verb: carrying						
Agent	Item	AgentPart	Place			
man	baby	chest	outside			

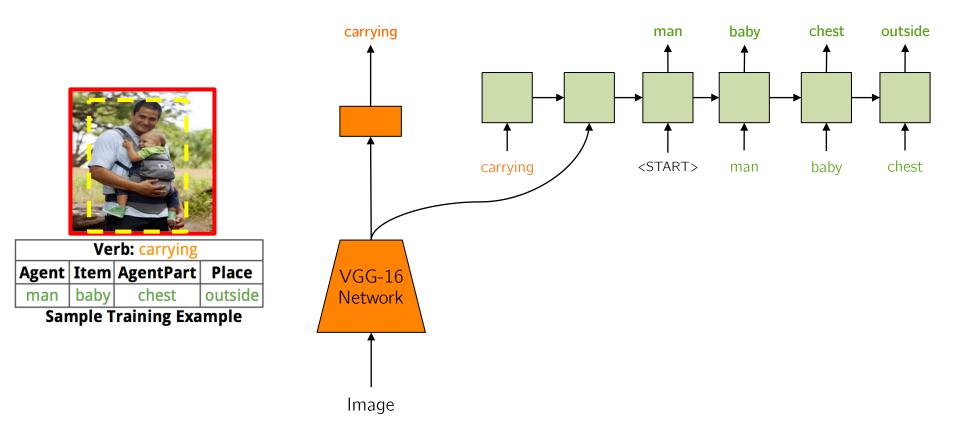
Sample Training Example



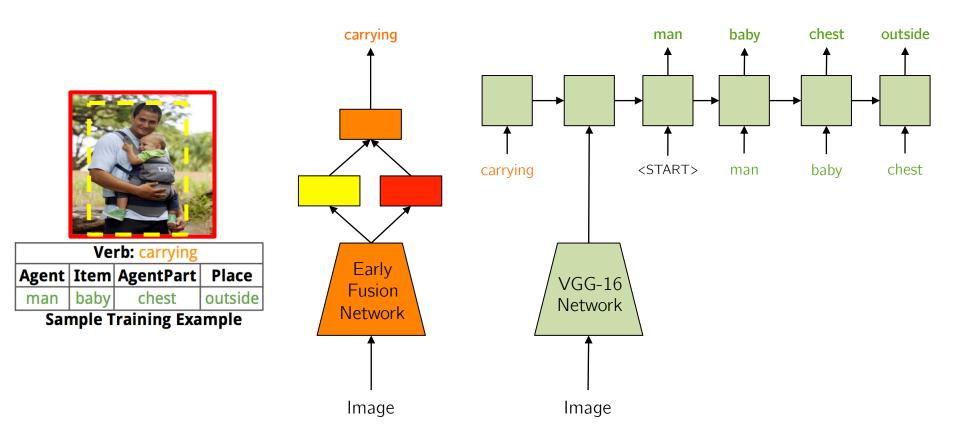
b) VGG, RNN for nouns & actions



c) VGG, Actions class., RNN for nouns



d) Fusion for actions, VGG+RNN for nouns



Model Comparison on Dev Set

Performance on the imSitu dev set

Method	Top-1 Pred	Top-1 Predicted Verb		
	Verb	Value	Value	
Baseline Classifier [1]	26.40	4.00	14.40	
Image Regression CRF [1]	32.25	24.56	65.90	
Tensor CRF + Above [2]	32.91	25.39	69.39	
Above + 5M extra samples [2]	34.20	26.56	70.80	

^[1] M. Yatskar, et al.: Situation recognition: Visual semantic role labeling for image understanding, CVPR 2016

^[2] M. Yatskar, et al.: Commonly uncommon: Semantic sparsity in situation recognition, CVPR 2017

Model Comparison on Dev Set

Performance on the imSitu dev set

	Method	Top-1 Pred	licted Verb	GT Verb
	ivietnod	Verb	Value	Value
	Baseline Classifier [1]	26.40	4.00	14.40
	Image Regression CRF [1]	32.25	24.56	65.90
	Tensor CRF + Above [2]	32.91	25.39	69.39
	Above + 5M extra samples [2]	34.20	26.56	70.80
a)	No Vision, RNN for nouns	-	-	52.12
b)	VGG, RNN for nouns & actions	26.52	20.08	68.27
	VGG, Actions class., RNN for nouns	35.35	26.80	68.44
c)	VGG, Actions class., RNN for nouns (reversed)	35.35	26.82	68.56
d)	Fusion for actions, VGG+RNN for nouns	36.11	27.74	70.48

^[1] M. Yatskar, et al.: Situation recognition: Visual semantic role labeling for image understanding, CVPR 2016

^[2] M. Yatskar, et al.: Commonly uncommon: Semantic sparsity in situation recognition, CVPR 2017

Test Set Performance

Performance on the imSitu test set (full)

Mathad	Top-1 Pre	Top-1 Predicted Verb		
Method	Verb	Value	Value	
Image Regression CRF [1]	32.34	24.64	65.66	
Tensor CRF + Above [2]	32.96	25.32	69.20	
Above + 5M extra samples [2]	34.12	26.45	70.44	
Fusion for actions, VGG+RNN for nouns	35.90	27.45	70.27	

^[1] M. Yatskar, et al.: Situation recognition: Visual semantic role labeling for image understanding, CVPR 2016

^[2] M. Yatskar, et al.: Commonly uncommon: Semantic sparsity in situation recognition, CVPR 2017

Test Set Performance

Performance on the imSitu test set (full)

Mathad	Top-1 Pre	Top-1 Predicted Verb		
Method	Verb	Value	Value	
Image Regression CRF [1]	32.34	24.64	65.66	
Tensor CRF + Above [2]	32.96	25.32	69.20	
Above + 5M extra samples [2]	34.12	26.45	70.44	
Fusion for actions, VGG+RNN for nouns	35.90	27.45	70.27	

Performance on the imSitu test set (rare)

Method	Top-1 Predicted Verb		GT Verb
	Verb	Value	Value
Image Regression CRF [1]	20.61	11.79	50.37
Tensor CRF + Above [2]	19.96	11.57	53.39
Above + 5M extra samples [2]	20.03	11.87	55.72
Fusion for actions, VGG+RNN for nouns	22.07	12.96	56.38

^[1] M. Yatskar, et al.: Situation recognition: Visual semantic role labeling for image understanding, CVPR 2016

^[2] M. Yatskar, et al.: Commonly uncommon: Semantic sparsity in situation recognition, CVPR 2017

Sample Predictions

GT) Verl	: glowing
Agent	Place
candle	Ø

Predictions

1) Verb: glowing		
Ag	gent	Place
ca	ndle	Ø

2) Verb: igniting			
Agent	Item	Tool	Place
person	candle	match	Ø

GT) Verb: browsing		
Agent	GoalItem	Place
woman	book	bookshop

Predictions

1) Verb: browsing		
Agent	GoalItem	Place
woman	book	bookshop

2) Verb: shelving			
Agent	Item	Destination	Place
woman	book	shelf	library

Agent Item Against Place

woman head hand office

Predictions

1)	1) Verb: studying		
Ag	ent	Place	
wo	man	desk	

2)	Verb: pho	ning
Agent	Tool	Place
woman	telephone	office

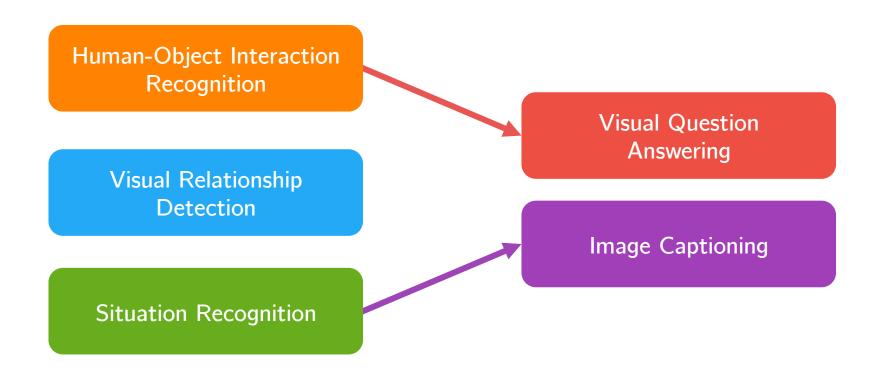
GT) Verb: misbehaving	
Agent	Place
boy	walkway

Predictions

1) Verb: arresting		
Agent	Suspect	Place
policeman	boy	sidewalk

2) Ve	rb: grieving
Agent	Place
child	cemetery

To Sum Up



- Use multiple cues for high-level reasoning tasks
- Target dataset might only have very sparse annotation
- Transfer knowledge from other specialized datasets through networks
- End Goal: Feature fusion to get as complete view of image as possible

References

- 1. Recurrent Models for Situation Recognition, Arun Mallya, Svetlana Lazebnik, *Under Review*
- 2. Phrase Localization and Visual Relationship Detection with Comprehensive Linguistic Cues, Bryan A. Plummer, Arun Mallya, Christopher M. Cervantes, Julia Hockenmaier, Svetlana Lazebnik, *Under Review*
- 3. Solving Visual Madlibs with Multiple Cues, Tatiana Tommasi, Arun Mallya, Bryan Plummer, Svetlana Lazebnik, Alexander Berg, Tamara Berg, BMVC 16, Submitted to IJCV
- 4. Learning Models for Actions and Person-Object Interactions with Transfer to Question Answering, Arun Mallya, Svetlana Lazebnik, ECCV 16