# BI-DIRECTIONAL ATTENTION FLOW FOR MACHINE COMPREHENSION

Presented By: Dongming Lei, Quan Wan, Ellen Wu

## Background

- Question Answering (QA) task is defined as taking a natural language question as input and producing a relevant answer from some information source
- Traditional work in text-based QAS focused on extracting facts from largescale corpora
- Reading comprehension task requires deeper reasoning to answer questions given a paragraph or short text (e.g. SAT questions)

## **Project Overview**

- Problem definition:
  - Given a question and its corresponding short text, find the answer as a snippet of the text
- Datasets:
  - SQuAD (100,000+ questions on a set of Wikipedia articles)
- Model:
  - BIDAF (Bi-Directional Attention Model)

#### **Model Architecture**



## **Error Analysis -- Syntactic complications and ambiguities**

#### Bi-directional Attention Flow Demo

for Stanford Question Answering Dataset (SQuAD)

Direction: Select a paragraph and write your own question. The answer is always a subphrase of the paragraph - remember it when you ask a question!



#### **Error Analysis -- Imprecise Boundary**

#### Bi-directional Attention Flow Demo

for Stanford Question Answering Dataset (SQuAD)

Direction: Select a paragraph and write your own question. The answer is always a subphrase of the paragraph - remember it when you ask a question!



## **Variation Analysis**

- The figure shows the performance of the model and its ablations
- Speculations
  - Word-level embedding vs Char-level embedding

|                   | EM   | F1   |
|-------------------|------|------|
| No char embedding | 65.0 | 75.4 |
| No word embedding | 55.5 | 66.8 |
| No C2Q attention  | 57.2 | 67.7 |
| No Q2C attention  | 63.6 | 73.7 |
| Dynamic attention | 63.5 | 73.6 |
| BIDAF (single)    | 67.7 | 77.3 |
| BIDAF (ensemble)  | 72.6 | 80.7 |

## **Variation Analysis: GRU Substitution**

- In the contextual layer, bidirectional LSTM was used to to model the temporal interactions between words
- We substitute the <u>LSTM</u> with <u>GRU</u>
- Observed <u>similar performance</u> but <u>faster</u> to converge

|      | EM    | F1    | Number of iterations to converge |
|------|-------|-------|----------------------------------|
| LSTM | 63.98 | 74.94 | 20000                            |
| GRU  | 65.57 | 75.75 | 9000                             |

## **Variation Analysis: GRU**

- In the contextual layer, bidirectio interactions between words
- We substitute the <u>LSTM</u> with <u>GRI</u>
- Observed <u>similar performance</u> b



|      | EM    | F1    | Number of iterations to converge |
|------|-------|-------|----------------------------------|
| LSTM | 63.98 | 74.94 | 20000                            |
| GRU  | 65.57 | 75.75 | 9000                             |

## Variation Analysis: Word Embedding Model Substitution

- With the observation that the word embedding layer contributes a lot to the final performance, we compared and analyzed the following word embedding:
  - Dependency Embedding
  - Word2Vec (Both 100 dimensions and 300 dimensions)
  - Mixture of Dependency Embedding and GloVe

|                                 | EM    | F1    |
|---------------------------------|-------|-------|
| Word2Vec (100-d)                | 55.67 | 66.24 |
| Word2Vec (300-d)                | 55.27 | 65.93 |
| GloVe (100-d)                   | 63.98 | 74.94 |
| Dependency<br>Embedding (100-d) | 64.85 | 74.41 |
| DM+GloVe (200-d)                | 67.31 | 76.84 |

## Revisiting the Visual Question Answering Models on the CLEVR Datasets

Liang-Wei Chen, Shuai Tang

## **Project Goal**

- Run state-of-the-arts VQA models on the CLEVR dataset
  - ☐ Implement and compare VQA baselines
  - ☐ Test the ncompositional VQA model
- Why CLEVR?
  - □ CLEVR minimizes question-answer biases
  - ☐ CLEVR has more complicated questions



#### Sample chain-structured question:



What color is the cube to the right of the yellow sphere?

## Experiment 1 - Implement and compare VQA baselines

- ☐ Image feautures: ResNet50, word embeddings: GloVe
- ☐ Two dimensions
  - ☐ Different question encoders (BOW v.s. LSTM)
  - ☐ Different question-image embeddings
- ☐ Accuracies on the validation set

|                    | Concatenation | Pointwise Multiplication | MCB   |
|--------------------|---------------|--------------------------|-------|
| Bag-of-words (BOW) | 48.04         | 53.66                    | 51.46 |
| LSTM               | 50.06         | 54.97                    | 46.44 |

#### BOW v.s. LSTM

- ☐ Generally, LSTM performs better than BOW
  - ☐ CLEVR questions are longer than VQA 1.0 (~18 words vs. ~6 words)
- ☐ However, LSTM with MCB converges only to 46.44% accuracy

|                    | Concatenation | Pointwise<br>Multiplication | MCB   |
|--------------------|---------------|-----------------------------|-------|
| Bag-of-words (BOW) | 48.04         | 53.66                       | 51.46 |
| LSTM               | 50.06         | 54.97                       | 46.44 |

## Concatenation v.s. Pointwise Multiplication v.s. MCB

- □ BOW : Pointwise Multiplication > MCB > Concatenation
  - ☐ Concatenation doesn't jointly embed the question and image into the same space
- ☐ LSTM Pointwise Multiplication > Concatenation > MCB
  - □ Consistent with the performances reported in the CLEVR paper: (LSTM +Concatenation) is better than (LSTM+MCB)

|                    | Concatenation | Pointwise Multiplication | MCB   |
|--------------------|---------------|--------------------------|-------|
| Bag-of-words (BOW) | 48.04         | 53.66                    | 51.46 |
| LSTM               | 50.06         | 54.97                    | 46.44 |

## Experiment 2: Dynamical Neural Module Net

- ☐ Question Parse Results between VQA and CLEVR train:
  - ☐ Avg. question length: 6.20 words vs. 18.38 words
  - ☐ Default layout "(what thing)" percentage : 4.5% VS 29.1%
  - ☐ Avg. candidate number per question: 2.35 vs 2.41
  - ☐ Avg. number of modules in a candidate : 2.54 vs 2.58

## Experiment 2: Dynamical Neural Module Net

#### □ DMNM parsing examples:

|       | Question                                                                                | Parse                                            |
|-------|-----------------------------------------------------------------------------------------|--------------------------------------------------|
| VQA   | What is the table made of?                                                              | (what table);(what make);(what (and table make)) |
|       | How is the floor made?                                                                  | (_what _thing)                                   |
| CLEVR | Are there any other things that are the same shape as the big metallic object?          | (is big);(is object);(is (and big object))       |
|       | There is another thing that is the same material as the gray object; what is its color? | (_what _thing)                                   |

- DNMN question parser can't handle very complex questions
- Some are questions in CLEVR that start with a statement.

## Experiment 2: Dynamical Neural Module Net

#### ☐ DMNM training:

|                               | VQA    | CLEVR  |
|-------------------------------|--------|--------|
| Num of open-ended questions   | 248349 | 699989 |
| Top-n answer cutoff           | 2002   | 31     |
| Number of predicates          | 877    | 55     |
| Vocabulary size               | 3591   | 92     |
| Validation Acc. at 10th epoch | 26.6%  | n/a*   |

<sup>\*</sup>Still Tuning learning parameters on CLEVR

# Deep Learning For Memory State Classification

SAFA MESSAOUD

## Motivation

- Given an electrophysiological recording of the brain (EEG/ECoG), can we infer the cognitive state of the patient
  - Memory Performance
  - Memory Workload
- OBenefits
  - Cognitive BCI
  - Electrical Brain Stimulation





## **ECoG Data**

#### **Free Recall Experiment**



Number of samples: 80k Number of patients: 140

Binary classification: recalled/forgotten

## **EEG Data**

#### **Memory Workload Experiment**



Number of samples: 2670 Number of patients: 13

Multi-class classification: Memory Workload 1-4

## DeepECoG





## DeepEEG





## Results

#### DeepECoG

F1-score ~0.125

#### DeepEEG



## Results

- DeepECoG
  - F1-score ~0.125

#### DeepEEG



## Conclusion

- ECoG data is hard to analyze because of the poor alignment across patients
- Attention did not work well for both ECoG and EEG data
  - The most salient features are not related to a single electrode, frequency or time points, it is a complex function of cross frequencies coupling, cross electrode coupling ...
- Spend time checking your data's quality, Deep Learning does not not solve all big data problems!

## Baseline





## Multi-Agent Meta RL

Prajit Ramachandran

## Method

## Player 2

| Player 1 | 2, 2 | 0, 3 |
|----------|------|------|
|          | 3, 0 | 1, 1 |



## Normal RL

## Meta RL





What behaviors are learned?

Do agents cooperate?

**Preliminary Results** 

## Chicken

|        | Swerve | Drive  |
|--------|--------|--------|
| Swerve | 0, 0   | -1, +1 |
| Drive  | +1, -1 | -5, -5 |

### 3 types of personalities

- Appeaser
  - Starts and continues with swerve
- Opportunistic
  - Starts with drive but falls back to swerve if opponent also drives
- Aggressor
  - Starts and continues with drive

### Matchups

- Aggressor > Opportunistic > Appeaser
- Appeaser vs Appeaser: eventually one agent starts to drive
- Aggressor vs Aggressor : eventually one agent starts to swerve
- Possible presence of a "count neuron"

### **Battle of Sexes**

|          | Football | Opera |
|----------|----------|-------|
| Football | 3, 2     | 1, 1  |
| Opera    | 0, 0     | 2, 3  |

#### Behavior

- Each agent alternates between football and opera
  - Invariant to which sex
  - Fair and maximal rewards for everyone

### **Stag Hunt**

|      | Stag | Hare |
|------|------|------|
| Stag | 2, 2 | 0, 1 |
| Hare | 1, 0 | 1, 1 |

#### Behavior

- At low discount factors, always choose stag
- At high discount factors, always choose hare





### Prisoner's Dilemma

|        | Silent | Betray |
|--------|--------|--------|
| Silent | 2, 2   | 0, 1   |
| Betray | 1, 0   | 1, 1   |

#### **Behavior**

- Every agent betrays each other
- Robustly reaches this solution
- Humans cooperate with each other in the same setting

### Can we induce different behavior?

- Train on multiple different environments at once
- Global learning of behaviors
- Possible application: reduce pathological behavior for Al safety (paperclip maximizer)

## SELF-SUPERVISED LEARNING WITH DEEP MODELS

Raymond Yeh, Junting Lou, Teck Yian Lim

### Background

```
Labeled Examples
(1, 1) (5, 5)
(9, 9)
```

Unlabeled Examples

1 1 5 4 3 7 5 3 5 3 6 3 5 3 0 0

### Background

Self-supervision --- Supervised learning technique which make use of unlabeled data.

In Deep Learning self-supervision is typically formulated as two tasks:

- Auxiliary Task: The task to use the unlabeled data.
- Main Task: The task that we care about (with labels).

**Pre-train** the deep network on the auxiliary task, then **fine-tune** the deep network on the main task.

### Background

Main Task: Image Classification

**Auxiliary Tasks:** 

Colorization



**Context Encoder** 



**Variational Autoencoder** 



**Angle Classification (Our proposed method)** 



### Training & Hyperparameters

"Optimization is easy when other people have found the hyper-parameter combination that works"

#### Issue:

- Hyper-parameter tuning matters A LOT
  - Expert tuned deep nets will outperform ones tuned by a novice.

#### Solution:

- Fix a hyper-parameter search scheme ahead of time, and do not change it.
  - You will be very tempted to change it!

### **Evaluation**

#### Fine-tune or fix the pre-trained weights?

Fine-tune, why not use all the labels?

### How to demonstrate effectiveness of pre-training?

Assume limited labeled data by withholding examples the training set.

## Result (MNIST)







## Result (SVHN)







VAE + CVAE

### What we have learned

- Pre-training hurts when you have enough training data.
- Pre-training helps when you have less than 1% of the training dataset (approx. <1000 samples).</li>
- Very difficult to evaluate fairly
  - Hyper-parameter sensitive.
  - Performance is not consistent across dataset.

# Improving Conditional GANs for Image-to-Image Translation?

M. I. Vasileva

### **Generative Adversarial Networks: Refresher**

#### **Standard GAN formulation:**

$$\min_{G} \max_{D} V(D,G)$$

$$V(D, G) := \mathbb{E}_{\mathbf{x} \sim p_{\mathbf{X}}} \left[ \log D(\mathbf{x}) \right] + \underbrace{\mathbb{E}_{\mathbf{x} \sim p_{G}} \left[ \log \left( 1 - D(\mathbf{x}) \right) \right]}_{\mathbb{E}_{\mathbf{z} \sim p_{\mathbf{Z}}} \left[ \log \left( 1 - D(G(\mathbf{z})) \right) \right]}$$

### **Generative Adversarial Networks: Refresher**

























"Image-to-Image Translation"







































































































real input image







horses-to-zebras



#### day-to-night



real input image

real target image

generated image



real input image

real target image

generated image

### **Suggestion: Generate Filters Dynamically**













































#### Using semantic-content aware filters



#### **Suggestion: Generate Filters Dynamically**





### **Suggestion: Generate Filters Dynamically**

















Implementation on real data: in progress for the tasks of summer-to-winter and day-to-night

- Difficult, more complex transformations
- Multiscale image decomposition using a convolutional "image encoder", and then cross-convolution?
- Semantic-content aware filters in the earlier stages of generation, instead of final stage only?

# Thank you.

#### **Navigation in Complex Environments**









- 1. Learning to Navigate in Complex Environments. Mirowski et al.
- 2. DeepMind Lab. Beattie et al.

#### **Architecture - A3C++**



- Stacked LSTMs
- Velocity Input
- $r_{t-1}$ ,  $a_{t-1}$  Input
- Depth Prediction
- Loop Prediction

#### **Architecture - A3C++**



- Stacked LSTMs
- Velocity Input
- $r_{t-1}$ ,  $a_{t-1}$  Input
- Depth Prediction
- Loop Prediction

#### Base - GA3C\*



<sup>\*</sup>Reinforcement Learning through Asynchronous Advantage Actor-Critic on a GPU. Babaeizadeh et al.

#### **Evaluation Mazes**



**Static Maze** 



Stairway to Melon

#### **Learning Curves**





**Static Maze** 

Stairway to Melon

#### **Demo – Static Maze**



#### Demo - Stairway to Melon



# Neural Style Transfer

Anand Bhattad, Ameya Patil, Hsiao-Ching Chang



#### Where: Content and Style!



#### Where: Content and Style!



**Extracted Content** 





**Extracted Style** 

#### Where: Content and Style!



**Extracted Content** 





**Extracted Style** 

#### Content Transfer







Photograph

#### Content Transfer





A bunch of feature maps!!





#### Content Transfer



# **Extract** Content Transfer content Photograph A bunch of feature maps!! **Extract** How similar?? content Update to minimize $\mathcal{L}2$ distance White Noise $\mathcal{L}_{ ext{content}}$

#### Style Intuition







#### Style Intuition







--- depth ---►

Correlation Between Feature Maps

# ◄--- depth ---► Style Intuition feature Maps height width Correlation Between Feature Maps



#### **Correlation Between Feature Maps** Style Transfer Layer 5 Layer 4 Layer 2 Layer 3 Layer 1 Style $\mathcal{M}in\ \mathcal{L}2$ distance $\mathcal{L}_{ ext{style}}$ Noise Layer 5 Layer 4 Layer 2 Layer 3 Layer 1 $\mathcal{M}in~\mathcal{L}2$ distance $\mathcal{L}_{\mathrm{content}}$

L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer using convolutional neural networks. CVPR 2010 Content

#### Our Implementation Results!!



Content Image



Style Image



Start with Only Noise Image



Start with High Noise + Content Image



Little Noise + Content Image

# Playing 2048 with deep reinforcement learning

Garima Lalwani Karan Ganju Unnat Jain

#### 2048 Game





#### RL challenges

- Very sparse transitions of higher score grid -
- Unrecoverable mistakes

#### **Naive Results**

| Model      | Avg Max Tile | Avg Score | Avg Steps |
|------------|--------------|-----------|-----------|
| Random Bot | 1084.9       | 106.1     | 137.8     |
| RL Agent   | 122.4        | 115.2     | 129.0     |

#### Our agent-environment for 2048

https://github.com/karanganju/2048RL

# Playing 2048 with deep reinforcement learning

Garima Lalwani Karan Ganju Unnat Jain

# Playing **512** with deep **supervised** learning

Garima Lalwani Karan Ganju Unnat Jain

### First step to imitation learning - Supervision

Steps implemented:-

- Rule based A\* heuristic algorithm
- Populate a training set of ~300, 000 of X=state, Y=action
- Use deep neural nets to learn the algorithm
- Play around with type, depth of network and regularization
- Data augmentation: Tried → was slow → will try again :)

### Our Deep Neural Network



### Our Very Deep Neural Network



### Results

#### Deep vs Very deep



### Results - Gameplay

| Model                               | Avg Max Tile | Avg Score | Avg Steps |
|-------------------------------------|--------------|-----------|-----------|
| Random Bot                          | 1084.9       | 106.1     | 137.8     |
| Deep Network                        | 1132.2       | 103.4     | 123.4     |
| Deep Network                        | 1840.4       | 163.8     | 171.0     |
| Very Deep Network                   | 2029.2       | 186.6     | 181.2     |
| Very Deep Network (with Batch Norm) | 2884.8       | 248.3     | 235.1     |



### More to Come (Hopefully...)

#### Next steps:

Data augmentation: We tried too late, time too less



- Add extra layers and fine tune in DQN fashion (with experience replay)
- If RL doesn't start in the dark, should converge better

# Initialization Methods for Recurrent Networks

Abhishek Narwekar Anusri Pampari

### The Final Backpropagation Equation



### The Final Backpropagation Equation



### The Final Backpropagation Equation



• Input:

$$a_1 a_2 \dots a_{10} 0 0 0 0 0 \dots$$

• Input:

$$a_1 a_2 \dots a_{10} 0 0 0 0 0 \dots$$

Input:

$$a_1 a_2 \dots a_{10} 0 0 0 0 0 \dots$$
10 symbols T zeros

• Input:

$$a_1 a_2 \dots a_{10} 0 0 0 0 0 \dots$$
10 symbols T zeros

- Output: a<sub>1</sub> ... a<sub>10</sub>
- Challenge: Remembering symbols over an arbitrarily large time gap

### **Input Structure**

#### **Train Input**

#### **Train Output**

```
6,6,7,4,7,2,7,6,6,8
5,3,2,7,1,3,3,2,4,3
2,3,3,7,8,8,8,6,6,5
8,1,8,5,6,8,6,1,7,4
1,4,8,3,2,4,1,8,2,1
6,3,4,5,2,5,8,1,6,2
5,5,7,7,7,5,5,7,1,7
2,4,7,8,8,6,4,6,1,7
7,1,2,7,2,7,4,1,8,5
6,3,5,8,6,8,6,3,1,2
```

•••

**Modular code:** Can be extended to any general sequence modelling problem!

### **Experiments**

#### **Architectures compared**:

| Architecture | Hidden states | Parameters |
|--------------|---------------|------------|
| Vanilla RNN  | 80            | ~6400      |
| Identity RNN | 80            | ~6400      |
| LSTM         | 40            | ~6400      |
| Unitary RNN  | 128           | ~6500      |

Length of Zero-padding: 10, 50, 100

### **Results: Zero-Gap = 10**



#### **Validation Performance**

• RNN: 39.30 %

• IRNN: 43.11%

• LSTM: 92.87%

• URNN: 99.83%

### **Results: Zero-Gap = 50**



#### **Validation Performance**

• RNN: 16.63%

• IRNN: 33.57%

• LSTM: 70.24%

• URNN: 99.43%

### **Results: Zero-Gap = 100**



#### **Validation Performance**

• RNN: 12.67%

• IRNN: 25.50%

• LSTM: 12.47%

• URNN: 41.72%

### **Conclusion**

- Unitary RNN's are the best at learning long-term dependencies
- Vanilla RNN performs reasonably well for short sequences, but falters for longer ones
- Identity RNN beats vanilla RNN and LSTM for longer sequences

# Image Understanding with a Focus on Humans

Arun Mallya University of Illinois



flying a kite

Human-Object Interaction Recognition



flying a kite

Human-Object Interaction Recognition



Human-Object Interaction Recognition



(woman) (browsing) (book) (in bookshop)

Human-Object Interaction Recognition

Situation Recognition



(woman) (browsing) (book) (in bookshop)

# Human-Object Interaction Recognition







ride-skateboard, sit-on-skateboard



fly-kite, pull-kite







Bounding box contains all relevant information





Bounding box contains all relevant information





Bounding box contains all relevant information



Bounding box contains insufficient information

### **Context Matters**



ride-skateboard, sit-on-skateboard



fly-kite, pull-kite

### **Context Matters**





ride-skateboard, sit-on-skateboard fly-kite, pull-kite
There is a need to use both the full image and the person bounding box

### **Context Matters**





ride-skateboard, sit-on-skateboard

fly-kite, pull-kite

There is a need to use both the full image and the person bounding box

Learning Models for Actions and Person-Object Interactions with Transfer to Question Answering
Arun Mallya, Svetlana Lazebnik
ECCV 16

## Global + Bounding Box Architecture



The Fusion Architecture

## Global + Bounding Box Architecture



#### The **Fusion** Architecture

- Use ROI Pooling to obtain global and local features
- Separately reduce dimensions of each and then concatenate to give fc6 the expected number of flattened features

# Dataset Summary

#### Dataset statistics and information

| Dataset         | #Labels | #Train | #Test | Labels per<br>Image | Person<br>Annotation |
|-----------------|---------|--------|-------|---------------------|----------------------|
| HICO            | 600     | 38,116 | 9,658 | Multiple            | X                    |
| MPII Human Pose | 393     | 15,200 | 5,709 | Single              | <b>✓</b> *           |

<sup>\*</sup> single dot inside selected person's bounding box provided

# Dataset Summary

#### Dataset statistics and information

| Dataset         | #Labels | #Train | #Test | Labels per<br>Image | Person<br>Annotation |
|-----------------|---------|--------|-------|---------------------|----------------------|
| HICO            | 600     | 38,116 | 9,658 | Multiple            | X                    |
| MPII Human Pose | 393     | 15,200 | 5,709 | Single              | <b>✓</b> *           |

<sup>\*</sup> single dot inside selected person's bounding box provided

 Run the Faster-RCNN detector on images to obtain person bounding boxes, with default confidence threshold of 0.8

### Multiple Instance Learning (MIL)

to handle latent assignment of action labels to persons in image

#### Multiple Instance Learning (MIL)

to handle latent assignment of action labels to persons in image

$$score(\alpha; I) = \max_{d \in D} score(\alpha; d, I)$$

 $\operatorname{score}(\alpha;d,I)$  is the score of action  $\alpha$  for the person d in image I is the set of all person detections in image I

### Multiple Instance Learning (MIL)

to handle latent assignment of action labels to persons in image

$$score(\alpha; I) = \max_{d \in D} score(\alpha; d, I)$$

 $\operatorname{score}(\alpha;d,I)$  is the score of action  $\alpha$  for the person d in image I is the set of all person detections in image I

#### Weighted Loss

to handle imbalanced positive to negative ratio in dataset

### Multiple Instance Learning (MIL)

to handle latent assignment of action labels to persons in image

$$score(\alpha; I) = \max_{d \in D} score(\alpha; d, I)$$

 $\operatorname{score}(\alpha;d,I)$  is the score of action  $\alpha$  for the person d in image I is the set of all person detections in image I

#### **Weighted Loss**

to handle imbalanced positive to negative ratio in dataset

$$loss(I,D,y) = \sum_{i=1}^{C} w_{p}^{i} \cdot y^{i} \cdot log(\hat{y}^{i}) + w_{n}^{i} \cdot (1 - y^{i}) \cdot log(1 - \hat{y}^{i})$$

$$w_p = 10$$
 is the weight on positive examples

$$w_n = 1$$
 is the weight on negative examples

## Results on HICO

Performance on the HICO dataset

| Method            | Full<br>Image | Bounding<br>Box | MIL | Wtd.<br>Loss | mAP  |
|-------------------|---------------|-----------------|-----|--------------|------|
| AlexNet+SVM [1]   | ✓             |                 |     |              | 19.4 |
| VGG-16            | ✓             |                 |     |              | 29.4 |
| VGG-16, R*CNN [2] | ✓             | ✓               | ✓   |              | 28.5 |

<sup>[1]</sup> Chao, Y.W., et al.: Hico: A benchmark for recognizing human-object interactions in images, ICCV 2015

<sup>[2]</sup> Gkioxari, G., et al.: Contextual action recognition with r\*cnn, ICCV 2015

## Results on HICO

Performance on the HICO dataset

| Method            | Full<br>Image | Bounding<br>Box | MIL | Wtd.<br>Loss | mAP  |
|-------------------|---------------|-----------------|-----|--------------|------|
| AlexNet+SVM [1]   | ✓             |                 |     |              | 19.4 |
| VGG-16            | ✓             |                 |     |              | 29.4 |
| VGG-16, R*CNN [2] | ✓             | ✓               | ✓   |              | 28.5 |
| VGG-16, Fusion    | /             | <b>√</b>        | 1   |              | 33.8 |

<sup>[1]</sup> Chao, Y.W., et al.: Hico: A benchmark for recognizing human-object interactions in images, ICCV 2015

<sup>[2]</sup> Gkioxari, G., et al.: Contextual action recognition with r\*cnn, ICCV 2015

## Results on HICO

Performance on the HICO dataset

| Method            | Full<br>Image | Bounding<br>Box | MIL | Wtd.<br>Loss | mAP  |
|-------------------|---------------|-----------------|-----|--------------|------|
| AlexNet+SVM [1]   | ✓             |                 |     |              | 19.4 |
| VGG-16            | ✓             |                 |     |              | 29.4 |
| VGG-16, R*CNN [2] | ✓             | ✓               | ✓   |              | 28.5 |
| VGG-16, Fusion    | ✓             | $\checkmark$    | ✓   |              | 33.8 |
| VGG-16, Fusion    | ✓             | ✓               | ✓   | ✓            | 36.1 |

<sup>[1]</sup> Chao, Y.W., et al.: Hico: A benchmark for recognizing human-object interactions in images, ICCV 2015

<sup>[2]</sup> Gkioxari, G., et al.: Contextual action recognition with r\*cnn, ICCV 2015

## Results on MPII

Performance on the MPII dataset

| Method                         | Full<br>Image | Bounding<br>Box | MIL | mAP  |
|--------------------------------|---------------|-----------------|-----|------|
| Dense Trajectory +<br>Pose [1] | ✓             |                 |     | 5.5  |
| VGG-16, R*CNN [2]              | ✓             | ✓               | ✓   | 26.7 |
| VGG-16, Fusion                 | ✓             | ✓               |     | 32.2 |
| VGG-16, Fusion                 | ✓             | ✓               | ✓   | 31.9 |

<sup>[1]</sup> Pishchulin, L., et al.: Fine-grained activity recognition with holistic and pose based features, GCPR 2014

<sup>[2]</sup> Gkioxari, G., et al.: Contextual action recognition with rcnn, ICCV 2015

## Qualitative Results on HICO



blue: no label green: hold, wield-knife



blue: no label green: wear, carry-backpack



blue: straddle, ride, hold, sit-on-bicycle green: no-interaction-bicycle

## Qualitative Results on HICO



blue: no label green: hold, wield-knife



blue: no label green: wear, carry-backpack



blue: straddle, ride, hold, sit-on-bicycle green: no-interaction-bicycle



blue: carry, wear-backpack green: no-interaction-clock



green: carry, hold, drag-suitcase blue, red: no label



blue: hold, carry, hug-person, hold, carry-backpack cyan: hold, carry-person, carry-backpack red: carry-backpack green: hold-person

 $v \in V, R_v \subset R$  V - Verbs, R - Semantic Roles

 $v \in V, R_v \subset R$  V - Verbs, R - Semantic Roles

| Verb: jumping |        |          |             |       |  |
|---------------|--------|----------|-------------|-------|--|
| Agent         | Source | Obstacle | Destination | Place |  |

Verb: rearing
Agent Place

 $v \in V, R_v \subset R$  V - Verbs, R - Semantic Roles





 $v \in V, R_v \subset R$  V - Verbs, R - Semantic Roles





### Conditional Random Field (CRF)

Factorize output over verb and (verb, role, noun) tuple predictions

#### Conditional Random Field (CRF)

Factorize output over verb and (verb, role, noun) tuple predictions

$$p(S \mid I; \theta) = \frac{1}{Z} \psi_{v}(v \mid I; \theta) \prod_{\substack{(r_i, n_i) \\ r_i \in R_v, n_i \in N \cup \{\emptyset\}}} \psi_{r}(v, r_i, n_i \mid I; \theta)$$

### Conditional Random Field (CRF)

Factorize output over verb and (verb, role, noun) tuple predictions

$$p(S \mid I; \theta) = \frac{1}{Z} \psi_{v}(v \mid I; \theta) \prod_{\substack{(r_i, n_i) \\ r_i \in R_v, n_i \in N \cup \{\emptyset\}}} \psi_{r}(v, r_i, n_i \mid I; \theta)$$

The normalization constant is computed by summing over all training samples

### Conditional Random Field (CRF)

Factorize output over verb and (verb, role, noun) tuple predictions

$$p(S \mid I; \theta) = \frac{1}{Z} \psi_{v}(v \mid I; \theta) \prod_{\substack{(r_i, n_i) \\ r_i \in R_v, n_i \in N \cup \{\emptyset\}}} \psi_{r}(v, r_i, n_i \mid I; \theta)$$

The normalization constant is computed by summing over all training samples

### Sequential Prediction (RNN)

Factorize output over verb and nouns conditioned on previous predictions

### Conditional Random Field (CRF)

Factorize output over verb and (verb, role, noun) tuple predictions

$$p(S \mid I; \theta) = \frac{1}{Z} \psi_{v}(v \mid I; \theta) \prod_{\substack{(r_i, n_i) \\ r_i \in R_v, n_i \in N \cup \{\emptyset\}}} \psi_{r}(v, r_i, n_i \mid I; \theta)$$

The normalization constant is computed by summing over all training samples

### Sequential Prediction (RNN)

Factorize output over verb and nouns conditioned on previous predictions

$$p(S | I; \theta) = p(v, (r_1, n_1), \dots, (r_{|R_v|}, n_{|R_v|}) | I; \theta) = p(v, n_1, \dots, n_{|R_v|} | I; \theta)$$

### Conditional Random Field (CRF)

Factorize output over verb and (verb, role, noun) tuple predictions

$$p(S \mid I; \theta) = \frac{1}{Z} \psi_{v}(v \mid I; \theta) \prod_{\substack{(r_i, n_i) \\ r_i \in R_v, n_i \in N \cup \{\emptyset\}}} \psi_{r}(v, r_i, n_i \mid I; \theta)$$

The normalization constant is computed by summing over all training samples

### Sequential Prediction (RNN)

Factorize output over verb and nouns conditioned on previous predictions

$$p(S \mid I; \theta) = p(v, (r_1, n_1), \dots, (r_{|R_v|}, n_{|R_v|}) \mid I; \theta) = p(v, n_1, \dots, n_{|R_v|} \mid I; \theta)$$

$$p(S \mid I; \theta) = p(v \mid I; \theta) \prod_{t=1}^{|R_v|} p(n_t \mid v, n_1, \dots, n_{t-1}, I; \theta)$$

### Conditional Random Field (CRF)

Factorize output over verb and (verb, role, noun) tuple predictions

$$p(S \mid I; \theta) = \frac{1}{Z} \psi_{v}(v \mid I; \theta) \prod_{\substack{(r_i, n_i) \\ r_i \in R_v, n_i \in N \cup \{\emptyset\}}} \psi_{r}(v, r_i, n_i \mid I; \theta)$$

The normalization constant is computed by summing over all training samples

### Sequential Prediction (RNN)

Factorize output over verb and nouns conditioned on previous predictions

$$p(S \mid I; \theta) = p(v, (r_1, n_1), \dots, (r_{|R_v|}, n_{|R_v|}) \mid I; \theta) = p(v, n_1, \dots, n_{|R_v|} \mid I; \theta)$$

$$p(S \mid I; \theta) = p(v \mid I; \theta) \prod_{t=1}^{|R_v|} p(n_t \mid v, n_1, \dots, n_{t-1}, I; \theta)$$

Cross-entropy loss on verbs and on nouns (the usual RNN loss)

### Conditional Random Field (CRF)

Factorize output over verb and (verb, role, noun) tuple predictions

$$p(S \mid I; \theta) = \frac{1}{Z} \psi_{v}(v \mid I; \theta) \prod_{\substack{(r_i, n_i) \\ r_i \in R_v, n_i \in N \cup \{\emptyset\}}} \psi_{r}(v, r_i, n_i \mid I; \theta)$$

The normalization constant is computed by summing over all training samples

### Sequential Prediction (RNN)

Factorize output over verb and nouns conditioned on previous predictions

$$p(S \mid I; \theta) = p(v, (r_1, n_1), \dots, (r_{|R_v|}, n_{|R_v|}) \mid I; \theta) = p(v, n_1, \dots, n_{|R_v|} \mid I; \theta)$$

$$p(S \mid I; \theta) = p(v \mid I; \theta) \prod_{t=1}^{|R_v|} p(n_t \mid v, n_1, \dots, n_{t-1}, I; \theta)$$

Cross-entropy loss on verbs and on nouns (the usual RNN loss)

#### Recurrent Models for Situation Recognition

Arun Mallya, Svetlana Lazebnik *Under Review* 

### a) No-vision, RNN for nouns



| Verb: carrying |      |           |         |  |  |  |
|----------------|------|-----------|---------|--|--|--|
| Agent          | Item | AgentPart | Place   |  |  |  |
| man            | baby | chest     | outside |  |  |  |

**Sample Training Example** 



### b) VGG, RNN for nouns & actions





### c) VGG, Actions class., RNN for nouns



### d) Fusion for actions, VGG+RNN for nouns



# Model Comparison on Dev Set

#### Performance on the imSitu dev set

| Method                       | Top-1 Pred | Top-1 Predicted Verb |       |  |
|------------------------------|------------|----------------------|-------|--|
|                              | Verb       | Value                | Value |  |
| Baseline Classifier [1]      | 26.40      | 4.00                 | 14.40 |  |
| Image Regression CRF [1]     | 32.25      | 24.56                | 65.90 |  |
| Tensor CRF + Above [2]       | 32.91      | 25.39                | 69.39 |  |
| Above + 5M extra samples [2] | 34.20      | 26.56                | 70.80 |  |

<sup>[1]</sup> M. Yatskar, et al.: Situation recognition: Visual semantic role labeling for image understanding, CVPR 2016

<sup>[2]</sup> M. Yatskar, et al.: Commonly uncommon: Semantic sparsity in situation recognition, CVPR 2017

# Model Comparison on Dev Set

#### Performance on the imSitu dev set

|    | Method                                        | Top-1 Pred | licted Verb | GT Verb |
|----|-----------------------------------------------|------------|-------------|---------|
|    | ivietnod                                      | Verb       | Value       | Value   |
|    | Baseline Classifier [1]                       | 26.40      | 4.00        | 14.40   |
|    | Image Regression CRF [1]                      | 32.25      | 24.56       | 65.90   |
|    | Tensor CRF + Above [2]                        | 32.91      | 25.39       | 69.39   |
|    | Above + 5M extra samples [2]                  | 34.20      | 26.56       | 70.80   |
| a) | No Vision, RNN for nouns                      | -          | -           | 52.12   |
| b) | VGG, RNN for nouns & actions                  | 26.52      | 20.08       | 68.27   |
|    | VGG, Actions class., RNN for nouns            | 35.35      | 26.80       | 68.44   |
| c) | VGG, Actions class., RNN for nouns (reversed) | 35.35      | 26.82       | 68.56   |
| d) | Fusion for actions, VGG+RNN for nouns         | 36.11      | 27.74       | 70.48   |

<sup>[1]</sup> M. Yatskar, et al.: Situation recognition: Visual semantic role labeling for image understanding, CVPR 2016

<sup>[2]</sup> M. Yatskar, et al.: Commonly uncommon: Semantic sparsity in situation recognition, CVPR 2017

## Test Set Performance

#### Performance on the imSitu test set (full)

| Mathad                                | Top-1 Pre | Top-1 Predicted Verb |       |  |
|---------------------------------------|-----------|----------------------|-------|--|
| Method                                | Verb      | Value                | Value |  |
| Image Regression CRF [1]              | 32.34     | 24.64                | 65.66 |  |
| Tensor CRF + Above [2]                | 32.96     | 25.32                | 69.20 |  |
| Above + 5M extra samples [2]          | 34.12     | 26.45                | 70.44 |  |
| Fusion for actions, VGG+RNN for nouns | 35.90     | 27.45                | 70.27 |  |

<sup>[1]</sup> M. Yatskar, et al.: Situation recognition: Visual semantic role labeling for image understanding, CVPR 2016

<sup>[2]</sup> M. Yatskar, et al.: Commonly uncommon: Semantic sparsity in situation recognition, CVPR 2017

## Test Set Performance

Performance on the imSitu test set (full)

| Mathad                                | Top-1 Pre | Top-1 Predicted Verb |       |  |
|---------------------------------------|-----------|----------------------|-------|--|
| Method                                | Verb      | Value                | Value |  |
| Image Regression CRF [1]              | 32.34     | 24.64                | 65.66 |  |
| Tensor CRF + Above [2]                | 32.96     | 25.32                | 69.20 |  |
| Above + 5M extra samples [2]          | 34.12     | 26.45                | 70.44 |  |
| Fusion for actions, VGG+RNN for nouns | 35.90     | 27.45                | 70.27 |  |

Performance on the imSitu test set (rare)

| Method                                | Top-1 Predicted Verb |       | GT Verb |
|---------------------------------------|----------------------|-------|---------|
|                                       | Verb                 | Value | Value   |
| Image Regression CRF [1]              | 20.61                | 11.79 | 50.37   |
| Tensor CRF + Above [2]                | 19.96                | 11.57 | 53.39   |
| Above + 5M extra samples [2]          | 20.03                | 11.87 | 55.72   |
| Fusion for actions, VGG+RNN for nouns | 22.07                | 12.96 | 56.38   |

<sup>[1]</sup> M. Yatskar, et al.: Situation recognition: Visual semantic role labeling for image understanding, CVPR 2016

<sup>[2]</sup> M. Yatskar, et al.: Commonly uncommon: Semantic sparsity in situation recognition, CVPR 2017

# Sample Predictions



| GT) Verl | : glowing |
|----------|-----------|
| Agent    | Place     |
| candle   | Ø         |

#### **Predictions**

| 1) Verb: glowing |      |       |
|------------------|------|-------|
| Ag               | gent | Place |
| ca               | ndle | Ø     |

| 2) Verb: igniting |        |       |       |
|-------------------|--------|-------|-------|
| Agent             | Item   | Tool  | Place |
| person            | candle | match | Ø     |



| GT) Verb: browsing |          |          |
|--------------------|----------|----------|
| Agent              | GoalItem | Place    |
| woman              | book     | bookshop |

#### **Predictions**

| 1) Verb: browsing |          |          |
|-------------------|----------|----------|
| Agent             | GoalItem | Place    |
| woman             | book     | bookshop |

| 2) Verb: shelving |      |             |         |
|-------------------|------|-------------|---------|
| Agent             | Item | Destination | Place   |
| woman             | book | shelf       | library |



Agent Item Against Place

woman head hand office

#### **Predictions**

| 1) | 1) Verb: studying |       |  |
|----|-------------------|-------|--|
| Ag | ent               | Place |  |
| wo | man               | desk  |  |

| 2)    | Verb: pho | ning   |
|-------|-----------|--------|
| Agent | Tool      | Place  |
| woman | telephone | office |



| GT) Verb: misbehaving |         |
|-----------------------|---------|
| Agent                 | Place   |
| boy                   | walkway |

#### **Predictions**

| 1) Verb: arresting |         |          |
|--------------------|---------|----------|
| Agent              | Suspect | Place    |
| policeman          | boy     | sidewalk |

| 2) Ve | rb: grieving |
|-------|--------------|
| Agent | Place        |
| child | cemetery     |

## To Sum Up



- Use multiple cues for high-level reasoning tasks
- Target dataset might only have very sparse annotation
- Transfer knowledge from other specialized datasets through networks
- End Goal: Feature fusion to get as complete view of image as possible

### References

- 1. Recurrent Models for Situation Recognition, Arun Mallya, Svetlana Lazebnik, *Under Review*
- 2. Phrase Localization and Visual Relationship Detection with Comprehensive Linguistic Cues, Bryan A. Plummer, Arun Mallya, Christopher M. Cervantes, Julia Hockenmaier, Svetlana Lazebnik, *Under Review*
- 3. Solving Visual Madlibs with Multiple Cues, Tatiana Tommasi, Arun Mallya, Bryan Plummer, Svetlana Lazebnik, Alexander Berg, Tamara Berg, BMVC 16, Submitted to IJCV
- 4. Learning Models for Actions and Person-Object Interactions with Transfer to Question Answering, Arun Mallya, Svetlana Lazebnik, ECCV 16