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Background

= Question Answering (QA) task is defined as taking a natural language
qguestion as input and producing a relevant answer from some

information source

» Traditional work in text-based QAS focused on extracting facts from large-
scale corpora

= Reading comprehension task requires deeper reasoning to answer
questions given a paragraph or short text (e.g. SAT questions)



Project Overview

* Problem definition:
o Given a question and its corresponding short text, find the answer as
a snippet of the text

= Datasets:
= SQUAD (100,000+ questions on a set of Wikipedia articles)

= Model:
= BIDAF (Bi-Directional Attention Model)
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Error Analysis -- Syntactic complications and ambiguities

Bi-directional Attention Flow Demo
for Stanford Question Answering Dataset (SQUAD)

Direction : Select a paragraph and write your own question. The answer is always a subphrase of the paragraph - remember it when you ask a question!

| Write own paragraph v
A piece of paper was later found on which Luther What was later discovered written by Luther?

had written his last statement. )
new question!

A piece of paper




Error Analysis -- Imprecise Boundary

Bi-directional Attention Flow Demo
for Stanford Question Answering Dataset (SQuAD)

Direction : Select a paragraph and write your own question. The answer is always a subphrase of the paragraph - remember it when you ask a question!

Select Paragraph

Write own paragraph
Paragraph
The Free Movement of Workers Regulation articles 1 to 7 set out the main provisions Which articles of the Free Movement of Workers Regulation set out the primary provi:

on equal treatment of workers. .
new question!

1to7



Variation Analysis

* The figure shows the performance of the
model and its ablations

= Speculations
= Word-level embedding vs Char-level
embedding

EM FlI
No char embedding 65.0 754
No word embedding 55.5 66.8
No C2Q attention 572 67.7
No Q2C attention 63.6 73.7
Dynamic attention 63.5 73.6
BIDAF (single) 67.7 71.3
BIDAF (ensemble) 72.6 80.7




Variation Analysis: GRU Substitution

* In the contextual layer, bidirectional LSTM was used to to model the temporal
interactions between words

*  We substitute the LSTM with GRU

* Observed similar performance but faster to converge

Number of iterations to
converge

EM F1

LSTM 63.98 74.94 20000

GRU 65.57 75.75 9000
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Variation Analysis: Word Embedding Model Substitution

=  With the observation that the word embedding layer contributes a lot to the final
performance, we compared and analyzed the following word embedding:
= Dependency Embedding
= Word2Vec (Both 100 dimensions and 300 dimensions)
= Mixture of Dependency Embedding and GloVe

EM F1
Word2Vec (100-d) 55.67 66.24
Word2Vec (300-d) 55.27 65.93
GloVe (100-d) 63.98 74.94
Embedaing (100-0) 64.85 7441
DM+GloVe (200-d) 67.31 76.84




Revisiting the Visual Question Answering
Models on the CLEVR Datasets

Liang-Wei Chen, Shuai Tang



Project Goal

> Run state-of-the-arts VQA models on the CLEVR dataset
1 Implement and compare VQA baselines

1 Test the ncompositional VQA model
> Why CLEVR?

1 CLEVR minimizes question-answer biases
1 CLEVR has more complicated questions

Sizes, colors, shapes, and materials

G Sample chain-structured question:
arge re

Large gray metal cube Small green
metal

TS Filter - _ Filter Filter . Query

X metal sphere

sphere wlor} } Unique} Relate} sha Unique o >
Small blue

metal cylinder

yellow sphere

right cube
Small yellow . .
ool What color is the cube to the right of the yellow sphere?
sphere cylinder cube sphere

Johnson, Justin, et al._"

easoning." arXiv preprint arXiv:1612.06890 (2016).




d Image feautures : ResNet50 , word embeddings: GloVe
J Two dimensions

[ Different question encoders (BOW v.s. LSTM)
1 Different question-image embeddings

[ Accuracies on the validation set

Concatenation Pointwise MCB

Multiplication
Bag-of-words (BOW) | 48.04 53.66 51.46
LSTM 50.06 54.97 46.44



1 Generally, LSTM performs better than BOW
1 CLEVR questions are longer than VQA 1.0 (~18 words vs. ~6 words)
1 However, LSTM with MCB converges only to 46.44% accuracy

Concatenation Pointwise MCB
Multiplication
Bag-of-words (BOW) | 48.04 53.66 51.46

LSTM 50.06 54.97 46.44




1 BOW : Pointwise Multiplication > MCB > Concatenation
(1 Concatenation doesn't jointly embed the question and image into the
same space
1 LSTM Pointwise Multiplication > Concatenation > MCB
1 Consistent with the performances reported in the CLEVR paper: (LSTM
+Concatenation) is better than (LSTM+MCB)

Concatenation Pointwise MCB

Multiplication
Bag-of-words (BOW) | 48.04 53.66 51.46
LSTM 50.06 5497 46.44



1 Question Parse Results between VQA and CLEVR train:
4 Avg. question length: 6.20 words vs. 18.38 words
d Default layout “(what thing)” percentage : 4.5% VS 29.1%
1 Avg. candidate number per question: 2.35 vs 2.41
(1 Avg. number of modules in a candidate : 2.54 vs 2.58



Experiment 2: Dynamical Neural Module Net

1 DMNM parsing examples:

as the big metallic object?

Question Parse

VQ A What is the table made of? (what table);(what make);(what (and table make))
How 18 the floor made? (_what _thing)

CLEVR Are there any other things that are the same shape (1s big);(is object);(s (and big object))

There 1s another thing that is the same material as
the gray object; what 1s its color?

(_what _thing)

e DNMN question parser can’t handle very complex questions
e Some are questions in CLEVR that start with a statement.




Experiment 2: Dynamical Neural Module Net
(1 DMNM training:

VQA CLEVR
Num of open-ended questions 248349 699989
Top-n answer cutoff 2002 31
Number of predicates 877 55
Vocabulary size 3591 92
Validation Acc. at 10th epoch 26.6% n/a*

*Still Tuning learning parameters on CLEVR



Deep Learning For
Memory State
Classification

SAFA MESSAOUD




Motivation

o Given an electrophysiological recording of the brain (EEG/EC0G), can we infer the cognitive
state of the patient

o Memory Performance

o Memory Workload

oBenefits
o Cognitive BCI

o Electrical Brain Stimulation

Electroencephalogram (EEG) Motor area

Electrodes

Brain —s




ECoG Data

Free Recall Experiment

Encoding Phase Recall Phase

Number of samples: 80k
Number of patients: 140
Binary classification: recalled/forgotten

A
v

A
v

Tree Sun Juice




EEG Data

Memory Workload Experiment

Response -+

TEST

-— -

- =J

Number of samples: 2670
Number of patients: 13
Multi-class classification: Memory Workload 1-4

t =500 ms




DeepECoG

RNN

Brain Area Attention
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DeepEEG

4

Max-pool/Conv 1D/Conv 2D/Attention

Max-pool
Conv 1D

Max-pool
Conv 1D

Max-pool
Conv 1D
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Results

o DeepECoG
o F1-score ~0.125

o DeepEEG
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Results

o DeepECoG
o F1-score ~0.125

o DeepEEG
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Conclusion

o ECoG data is hard to analyze because of the poor alignment across patients

o Attention did not work well for both ECoG and EEG data

o The most salient features are not related to a single electrode, frequency or time points, it is a complex
function of cross frequencies coupling, cross electrode coupling ...

o Spend time checking your data’s quality, Deep Learning does not not solve all big data
problems!
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Multi-Agent Meta RL

Prajit Ramachandran



Method



Player 2
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Player 1
3,0 1, 1
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What behaviors are learned?
Do agents cooperate?



Preliminary Results



Swerve

Drive

Chicken

Swerve Drive
0,0 -1, +1
+1, -1 -5, -5




3 types of personalities

 Appeaser

« Starts and continues with swerve

« Starts with drive but falls back to swerve if opponent
also drives

« Aggressor
e Starts and continues with drive



Matchups

« Aggressor > Opportunistic > Appeaser

 Appeaser vs Appeaser: eventually one agent starts to
drive

» Aggressor vs Aggressor : eventually one agent starts to
swerve

« Possible presence of a “count neuron”



Football

Battle of Sexes

Football
3, 2

0,0

1,1

2,3



Behavior

« Each agent alternates between football and
* |nvariant to which sex

« Fair and maximal rewards for everyone



Stag Hunt

Stag Hare

Stag 2,2 0, 1

Hare 1,0 1,1




Behavior

« At low discount factors, always choose stag
At high discount factors, always choose hare






Prisoner’s Dilemma

Silent Betray
Silent 2, 2 0,1
1,0 1, 1

Betray



Behavior

* Every agent betrays each other
* Robustly reaches this solution
 Humans cooperate with each other in the same setting



Can we induce different behavior?

« Train on multiple different environments at once
* Global learning of behaviors

* Possible application: reduce pathological behavior for Al
safety (paperclip maximizer)



SELF-SUPERVISED LEARNING WITH
DEEP MODELS

Raymond Yeh, Junting Lou, Teck Yian Lim



Background

Unlabeled

Labeled
Examples

(4. 1)

(9.9)




Background

Self-supervision —-- Supervised learning technique which
make use of unlabeled data.

In Deep Learning self-supervision is typically formulated as
two tasks:

- Auxiliary Task: The task to use the unlabeled data.
- Main Task: The task that we care about (with labels).

Pre-train the deep network on the auxiliary task, then fine-
tune the deep network on the main task.



Background

Main Task: Image Classification
Auxiliary Tasks :
Colorization

o

Context Encoder

Variational Autoencoder

Angle Classification (Our proposed method)

90 degrees.




Training & Hyperparameters

“Optimization is easy when other people have found the
hyper-parameter combination that works”

Issue:
- Hyper-parameter tuning matters ALOT

- Expert tuned deep nets will outperform ones tuned by a novice.
Solution:

- Fix a hyper-parameter search scheme ahead of time, and
do not change it.
- You will be very tempted to change it!



Evaluation

Fine-tune or fix the pre-trained weights?
- Fine-tune, why not use all the labels?

How to demonstrate effectiveness of pre-training?

Assume limited labeled data by withholding examples the training
set.



Result (MNIST)
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Result (SVHN)
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\What we have learned

- Pre-training hurts when you have enough training data.

- Pre-training helps when you have less than 1% of the
training dataset (approx. <1000 samples).

- Very difficult to evaluate fairly
- Hyper-parameter sensitive.
- Performance is not consistent across dataset.



Improving Conditional GANs for
Image-to-Image Translation?

M. I. Vasileva




Generative Adversarial Networks: Refresher

Standard GAN formulation: min max V(D,G)

V(D,G) := Ex~px [log D(x)] + LEXNPG log (1 -D (x))l

Exrpy [log(1—D(G(2)))]

lan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, et al. Generative adversarial nets. In NIPS, 2014.



Generative Adversarial Networks: Refresher

D tries to make

D(G(z)) near 0,

D(x) tries to be G tries to make
near 1 D(G(z)) near 1

leferentlable
function D
57 sampled from 53 sampled from
data model
Differentlable
function G

*

C Input noise 2 )

lan Goodfellow. NIPS 2016 Tutorial: Generative Adversarial Networks. arXiv preprint arXiv:1701.00160 (2016).



Conditional Generative
Adversarial Networks




Conditional Generative
Adversarial Networks

generated image




Conditional Generative
Adversarial Networks

generated image real input image




Conditional Generative
Adversarial Networks

generated image real input image




Conditional Generative
Adversarial Networks

generated image real input image

Real or fake pair?




Conditional Generative
Adversarial Networks

real target image real input image generated image real input image

Real or fake pair?




Conditional Generative
Adversarial Networks

real target image real input image generated image real input image

Real or fake pair?
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Conditional Generative
Adversarial Networks

real target image real input image generated image real input image

Real or fake pair? Real or fake pair?

11




Conditional Generative
Adversarial Networks

4

“Image-to-Image Translation’

12

Isola, Phillip, Zhu, Jun-Yan, Zhou, Tinghui, and Efros, Alexei A. Image-to-image translation with conditional adversarial networks. arXiv preprint arXiv:1611.07004, 2016.



Image-to-Image Translation Networks:
Problem I




Image-to-Image Translation Networks:
Problem |




Image-to-Image Translation Networks:
Problem I




Image-to-Image Translation Networks:
Problem I




Image-to-Image Translation Networks:
Problem I




Image-to-Image Translation Networks:
Problem I




Image-to-Image Translation Networks:
Problem I




Image-to-Image Translation Networks:
Problem I
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Image-to-Image Translation real
input

Networks: Problem | image




Image-to-Image Translation real
input

Networks: Problem | image




Image-to-Image Translation real
input

Networks: Problem | image

T Loss over time




Image-to-Image Translation
Networks: Problem |




Image-to-Image Translation
Networks: Problem |




real

Wasserstein GAN -

image

Loss over time
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M. Arjovsky, S. Chintala, L. Bottou. Wasserstein GAN. arXiv preprint arXiv:1701.07875 (2017).
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M. Arjovsky, S. Chintala, L. Bottou. Wasserstein GAN. arXiv preprint arXiv:1701.07875 (2017).



Wasserstein GAN -

Loss over time
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M. Arjovsky, S. Chintala, L. Bottou. Wasserstein GAN. arXiv preprint arXiv:1701.07875 (2017).



real

Wasserstein GAN -
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/ Loss over time
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Image-to-Image Translation Networks:
Problem I

horses-to-zebras

34

Zhu et al, Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. arXiv preprint arXiv:1 0593 (2017).



Image-to-Image Translation Networks:
Problem I

day-to-night

real input image real target image generated image

35

Isola, Phillip, Zhu, Jun-Yan, Zhou, Tinghui, and Efros, Alexei A. Image-to-image translation with conditional adversarial networks. arXiv preprint arXiv:1611.07004, 2016.



Image-to-Image Translation Networks:
Problem Il

No knowledge of semantic classes.

36




Suggestion: Generate Filters Dynamically

input image and binary
segmentation masks

semantic regiori dependent
generated filter kernels

filter generating network generated image real input image

v

Real or fake pair?

Negative examples

real target image real input image

v

Real or fake pair?

Positive examples

37




Testing image-to-image translation on toy
data

real input image real target image generated image

38




Testing image-to-image translation on toy
data

O

real input image real target image generated image

real input image real target image generated image

39



real input image real target image generated image
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real input image real target image generated image




Testing image-to-image translation on toy
data
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Testing image-to-image translation on toy
data




Testing image-to-image translation on toy
data

LY

Inl

oo
s

'MN‘ M\uaw M) N W ‘IA

F




Testing image-to-image translation on toy
data
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Testing image-to-image translation on toy
data
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Testing image-to-image translation on toy
data

Loss over| time
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Testing image-to-image translation on toy
data
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Testing image-to-image translation on toy
data

JWWW«W! «WWWM.m.uudbm .

0
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Testing image-to-image translation on toy
data
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realinputimage  real targetimage  generated image real inputimage  real targetimage  generated image

real inputimage  real targetimage  generated image real inputimage  real targetimage  generated image




Suggestion: Generate Filters Dynamically
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Suggestion: Generate Filters Dynamically
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Suggestion: Generate Filters Dynamically

Implementation on real data: in progress for the tasks of
summer-to-winter and day-to-night

e Difficult, more complex transformations

 Multiscale image decomposition using a convolutional
“image encoder”, and then cross-convolution?

 Semantic-content aware filters in the earlier stages of
generation, instead of final stage only?

61




Thank you.




Navigation in Complex Environments

Q DeepMind

’
4
l< - Agent

Velocity

1. Learning to Navigate in Complex Environments. Mirowski et al.
2. DeepMind Lab. Beattie et al.



Architecture - A3C++
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Architecture - A3C++
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Base - GA3C*

policy n(a)

ATARI Simulator
action frames

ai0

Prediction
Queue

frames

s
Training rewards iRgg

Queue Trainers

*Reinforcement Learning through Asynchronous Advantage Actor-Critic on a GPU. Babaeizadeh et al.

ATARI Simulator

DNN update



Evaluation Mazes
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Learning Curves
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Demo - Static Maze

g s
=T T

I
|
Actlon Prob.

(»]







Demo - Stairway to Melon

Actlon Prob.

(»]






Neural Style Transfer

Anand Bhattad, Ameya Patil, Hsiao-Ching Chang

L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer using convolutional neural networks. CVPR 2016



Where: Content and Style!

Original Content
Image

Original Style
Image

L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer using convolutional neural networks. CVPR 2016



Where: Content and Style!

Extracted Content

Original Content
Image

Original Style
Image

Extracted Style

L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer using convolutional neural networks. CVPR 2016



Where: Content and Style!

Original Content
Image

Original Style
Image

L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer using convolutional neural networks. CVPR 2016

STYLE

Extracted Content

Extracted Style



Content Transfer —

Photograph

L. A. Gatvs. A. S. Ecker. and M. Bethge. Image stvle transfer using convolutional neural networks. CVPR 2016



Content Transfer —

Photograph

A bunch of
feature maps!!

]

Extract
content

White Noise

L. A. Gatvs. A. S. Ecker. and M. Bethge. Image stvle transfer using convolutional neural networks. CVPR 2016



Content Transfer —

Photograph

A bunch of
feature maps!!

]

Extract
content

How similar??

White Noise

L. A. Gatvs. A. S. Ecker. and M. Bethge. Image stvle transfer using convolutional neural networks. CVPR 2016



Content Transfer ]

Photograph
A bunch of
feature maps!!
Extract | o
content How similar??
s Update to minimize L2 distance
White Noise
Lcontent

~/

L. A. Gatvs. A. S. Ecker. and M. Bethge. Image stvle transfer using convolutional neural networks. CVPR 2016



<--- depth ---»

Style Intuition

L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer using convolutional neural networks. CVPR 2016
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L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer using convolutional neural networks. CVPR 2016
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Correlation Between Feature Maps

Style Transfer

Layer 2 Layer 3

Style
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L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer using convolutional neural networks. CVPR 201



Correlation Between Feature Maps

Style Transfer

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5
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L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer using convolutional neural networks. CVPR 201
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Our Implementation Results!!

Content Image Style Image
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Start with Only Noise Image Start with High Noise + Content Image Little Noise + Content Image












Playing 2048 with deep
reinforcement learning

Garima Lalwani Karan Ganju Unnat Jain



2048 Game 4 Actions

Deep NN

|

4 x 4 game grid

117% State Space






RL challenges

e \ery sparse transitions of higher score grid -
e Unrecoverable mistakes

Naive Results

Model Avg Max Tile Avg Score | Avg Steps
Random Bot 1084.9 106.1 137.8
RL Agent 122.4 115.2 129.0

Our agent-environment for 2048
e https://github.com/karanganju/2048RL



https://github.com/karanganju/2048RL
https://github.com/karanganju/2048RL

Playing ZM with deep
reinfopdement learning

Garima Lalwani Karan Ganju Unnat Jain



Playing 512 with deep
supervised learning

Garima Lalwani Karan Ganju Unnat Jain



First step to imitation learning - Supervision

Steps implemented:-

e Rule based A* heuristic algorithm

e Populate a training set of ~300, 000 of X=state, Y=action
e Use deep neural nets to learn the algorithm

e Play around with type, depth of network and regularization

e Data augmentation: Tried — was slow — will try again :)



Our Deep Neural Network

L

3x3x64

1x1x4

/ 1x1x16

4 x 4 grid 4 x4 x64 1x1x32

1x1x64
Input Conv1 FC2 FC3 FC4 FC5



Our Very Deep Neural Network

3x3x64

/L

4 x 4 grid 4x4x64

Input

Conv1

3x3x128

3x3x256

4x4x128

Conv2

1x1x16

4 x4 %256 1x1x32

1x1x64
Conv3 FC4 FC5 FC6

1x1x4

FC7



Results

Accuracy —

Deep vs Very deep

1 Very Deep Network
0.9

0.8

0.7 Deep Network

0.6

0.5 /

0 20 40

Epochs —



Results - Gameplay

Model Avg Max Tile | Avg Score | Avg Steps
Random Bot 1084.9 106.1 137.8
Deep Network 1132.2 103.4 123.4
Deep Network 1840.4 163.8 171.0
Very Deep Network 2029.2 186.6 181.2
Very Deep Network (with Batch Norm) 2884.8 248.3 2351

= With curated data




karan@karan-PC: %

More to Come (Hopefully...)

Next steps:

e Data augmentation: We tried too late, time too less

e Add extra layers and fine tune in DQN fashion (with experience replay)

e If RL doesn’t start in the dark, should converge better






Initialization Methods for
Recurrent Networks

Abhishek Narwekar
Anusri Pampari




The Final Backpropagation Equation
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The Final Backpropagation Equation

Ohy
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The Jacobian
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The Copying Memory Problem

e Input:

a;a,...... a,;0 000000...

Arjovsky, Martin, Amar Shah, and Yoshua Bengio. "Unitary evolution recurrent neural networks." 2015).
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The Copying Memory Problem

e Input:

a;a,...... a,;p 000000|.

10 symbols T zeros

e QOutput: a, ... a4,

e Challenge: Remembering symbols over an arbitrarily large time gap

Arjovsky, Martin, Amar Shah, and Yoshua Bengio. "Unitary evolution recurrent neural networks." 2015).



Input Structure
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Modular code: Can be extended to any general sequence modelling problem!



Experiments

Architectures compared:

Architecture Hidden states Parameters
Vanilla RNN 80 ~6400
|dentity RNN 80 ~6400
LSTM 40 ~6400
Unitary RNN 128 ~6500

Length of Zero-padding: 10, 50, 100




Results: Zero-Gap = 10

Model Performance for T=10
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2.5
e RNN: 39.30 %
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g 1.5
3 o LSTM: 92.87%
G 1.0
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Results: Zero-Gap = 50

3.0

2.5

Cross Entropy Loss
= N
5 =}

g
o
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Model Performance for T=50

—— RNN
—— IRNN
—— LSTM
—— URNN
0 50000 100000 150000 200000 250000 300000 350000 400000
Iterations

Validation Performance

e RNN:

e [RNN:
e LSTM:
e URNN:

16.63%

33.57%

70.24%

99.43%



Results: Zero-Gap = 100
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Model Performance for T=100

—— RNN
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—— LSTM
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e RNN:
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e LSTM:
e URNN:

12.67%

25.50%

12.47%

41.72%



Conclusion

« Unitary RNN's are the best at learning long-term dependencies

« Vanilla RNN performs reasonably well for short sequences, but falters for
longer ones

 |dentity RNN beats vanilla RNN and LSTM for longer sequences



Image Understanding
with a Focus on Humans



Overview




Overview

flying a kite



Overview

Human-Object Interaction
Recognition

flying a kite



Overview

Human-Object Interaction
Recognition




Overview

Human-Object Interaction
Recognition

(woman) (browsing) (book) (in bookshop)



Overview

Human-Object Interaction
Recognition

Situation Recognition (woman) (browsing) (book) (in bookshop)




Human-Object Interaction Recognition
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Global v/s Bounding Box Information

Bounding box
contains all relevant
information

Bounding box
contains insufficient
Information
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Context Matters

ride-skateboard, sit-on-skateboard fly-kite, pull-kite
There is a need to use both the full image and the person bounding box

Learning Models for Actions and Person-Object Interactions with Transfer to Question Answering
Arun Mallya, Svetlana Lazebnik
ECCV 16




Global + Bounding Box Architecture

Person Bounding Dim. Reduced
Box ROI Features
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Full Image ROI Features

The Fusion Architecture



Global + Bounding Box Architecture

Person Bounding Dim. Reduced
Box ROI Features
1x1 ]
conv
..... > concat -_> RS
1x1
COI‘IV ||
convd ROI Pooling fc6
Full Image ROI Features

The Fusion Architecture

* Use ROI Pooling to obtain global and local features
» Separately reduce dimensions of each and then concatenate to give
fco the expected number of flattened features



Dataset Summary

Dataset statistics and information

Labels per Person

Dataset #Labels #Train #Test Image Annotation
HICO 600 38,116 9,658 Multiple X
MPIl Human Pose 393 15,200 5,709 Single e

*single dot inside selected person’s bounding box provided



Dataset Summary

Dataset statistics and information

Labels per Person

Dataset #Labels #Train #Test Image Annotation
HICO 600 38,116 9,658 Multiple X
MPIl Human Pose 393 15,200 5,709 Single e

*single dot inside selected person’s bounding box provided

* Run the Faster-RCNN detector on images to obtain person bounding
boxes, with default confidence threshold of 0.8
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Other Tricks

Multiple Instance Learning (MIL)
to handle latent assignment of action labels to persons in image

score(o; )= max score(c; d,l)

eD

SCOI'e(OC; d,]) is the score of action @ for the person d in image [

D is the set of all person detections in image [

Weighted Loss
to handle imbalanced positive to negative ratio in dataset

C
loss(1,D,y)= Y, w' -y -log(3") +w - (1= y')-log(1- ")

i=1

Wp =10 Is the weight on positive examples

w, = 1 Is the weight on negative examples



Results on HICO

Performance on the HICO dataset

Full Bounding MIL Wid. mAP

Method Image Box Loss

AlexNet+SVM [1] v 19.4
VGG-16 v 29.4
VGG-16, R"CNN [2] v v v 28.5

[1] Chao, Y.W., et al.: Hico: A benchmark for recognizing human-object interactions in images, ICCV 2015
[2] Gkioxari, G., et al.: Contextual action recognition with r'cnn, ICCV 2015
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Results on HICO

Performance on the HICO dataset

Full Bounding MIL Wid.

Method Image Box Loss mAP
AlexNet+SVM [1] v 19.4
VGG-16 v 29.4
VGG-16, R"CNN [2] v v v 28.5
VGG-16, Fusion v v v 33.8
VGG-16, Fusion v v v v 36.1

[1] Chao, Y.W., et al.: Hico: A benchmark for recognizing human-object interactions in images, ICCV 2015
[2] Gkioxari, G., et al.: Contextual action recognition with r'cnn, ICCV 2015



Results on MPII

Performance on the MPII dataset

Method Ir::ge B°Er:ii"9 MIL mAP
Ilé);egese[ 1';'ra jectory + v 55
VGG-16, R*CNN [2] v v v 267
VGG-16, Fusion v v 32.2
VGG-16, Fusion v v v 319

[1] Pishchulin, L., et al.: Fine-grained activity recognition with holistic and pose based features, GCPR 2014
[2] Gkioxari, G., et al.: Contextual action recognition with rcnn, ICCV 2015



Qualitative Results on HICO
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Qualitative Results

blue: no label blue: no label blue: straddle, ride, hold, sit-on-bicycle
green: hold, wield-knife green: wear, carry-backpack green: no-interaction-bicycle

blue: carry, wear-backpack green: carry, hold, drag-suitcase blue: hold, carry, hug-person, hold, carry-backpack
green: no-interaction-clock blue, red: no label cyan: hold, carry-person, carry-backpack
red: carry-backpack green: hold-person
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Situation Recognition

veV,R CR
V —Verbs, R— Semantic Roles

Verb: jumping

Agent

Source

Obstacle

Destination

Place

Verb: rearing

dog

pier

7]

water

outside

Agent

Place

horse

outside
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Model Formulations

Conditional Random Field (CRF)
Factorize output over verb and (verb, role, noun) tuple predictions

p(S11;0)= % y,016) [l v (.rnl10)

(r;1;)
r.eR, n,eNU{J}

The normalization constant i1s computed by summing over all training samples

Sequential Prediction (RNN)
Factorize output over verb and nouns conditioned on previous predictions

p(S11,0)= P(V,(’E /DKL 'a(’ivaanvl) | 1;6) = p("a”l" "l | 1;9)

IR,

p(S11;0)=pvII;0) H p(nt Iv,nl,---,nt_l,I;O)
=1

Cross-entropy loss on verbs and on nouns (the usual RNN loss)

Recurrent Models for Situation Recognition
Arun Mallya, Svetlana Lazebnik
Under Review



Various Approaches

a) No-vision, RNN for nouns

man baby chest outside
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Verb: carrying
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Various Approaches

b) VGG, RNN for nouns & actions

Verb: carrying

Agent | Item|AgentPart| Place

man | baby| chest |outside

Sample Training Example

carrying man baby chest outside

ottt 1

A 4
A 4
A 4
A 4
A\ 4

VGG-16
Network

et ot T

<START>  carrying man baby chest

|

Image



Various Approaches

c) VGG, Actions class., RNN for nouns

Verb: carrying

Agent | Item|AgentPart| Place

man | baby| chest |outside

Sample Training Example

carrying
A

Image

man baby chest outside

ot 1

A 4

A 4
A 4
A 4
A\ 4

1

carrying

T 1

<START> man baby chest



Various Approaches

d) Fusion for actions, VGG+RNN for nouns

carrying

Verb: carrying

Agent |Item|AgentPart

Place

man | baby| chest

outside

Sample Training Example

Image

man

!

baby

!

chest

!

outside

1

A 4
A 4

A 4

A 4

A\ 4

(I

carrying <START>

VGG-16
Network

|

Image

f

man

I

baby

!

chest



Model Comparison on Dev Set

Performance on the imSitu dev set

Top-1 Predicted Verb GT Verb

Method

Verb Value Value
Baseline Classifier [1] 26.40 4.00 14.40
Image Regression CRF [1] 32.25 24.56 65.90
Tensor CRF + Above [2] 32.91 25.39 69.39
Above + 5M extra samples [2] 34.20 26.56 70.80

[1] M. Yatskar, et al.: Situation recognition: Visual semantic role labeling for image understanding, CVPR 2016
[2] M. Yatskar, et al.: Commonly uncommon: Semantic sparsity in situation recognition, CVPR 2017



Model Comparison on Dev Set

Performance on the imSitu dev set

Top-1 Predicted Verb GT Verb

Method

Verb Value Value

Baseline Classifier [1] 26.40 4.00 14.40
Image Regression CRF [1] 32.25 24.56 65.90
Tensor CRF + Above [2] 32.91 25.39 69.39
Above + 5M extra samples [2] 34.20 26.56 70.80

a) No Vision, RNN for nouns - - 52.12
b) VGG, RNN for nouns & actions 26.52 20.08 68.27
VGG, Actions class., RNN for nouns 35.35 26.80 68.44

2 VGG, Actions class., RNN for nouns (reversed)  35.35 26.82 68.56
d) Fusion for actions, VGG+RNN for nouns 36.11 27.74 70.48

[1] M. Yatskar, et al.: Situation recognition: Visual semantic role labeling for image understanding, CVPR 2016
[2] M. Yatskar, et al.: Commonly uncommon: Semantic sparsity in situation recognition, CVPR 2017



Test Set Performance

Performance on the imSitu test set (full)

Top-1 Predicted Verb GT Verb

Method

Verb Value Value
Image Regression CRF [1] 32.34 24.64 65.66
Tensor CRF + Above [2] 32.96 25.32 69.20
Above + 5M extra samples [2] 34.12 26.45 70.44
Fusion for actions, VGG+RNN for nouns 35.90 27.45 70.27

[1] M. Yatskar, et al.: Situation recognition: Visual semantic role labeling for image understanding, CVPR 2016
[2] M. Yatskar, et al.: Commonly uncommon: Semantic sparsity in situation recognition, CVPR 2017



Test Set Performance

Performance on the imSitu test set (full)

Top-1 Predicted Verb GT Verb

Method
Verb Value Value
Image Regression CRF [1] 32.34 24.64 65.66
Tensor CRF + Above [2] 32.96 25.32 69.20
Above + 5M extra samples [2] 34.12 26.45 70.44
Fusion for actions, VGG+RNN for nouns 35.90 27.45 70.27
Performance on the imSitu test set (rare)
Method Top-1 Predicted Verb GT Verb
Verb Value Value
Image Regression CRF [1] 20.61 11.79 50.37
Tensor CRF + Above [2] 19.96 11.57 53.39
Above + 5M extra samples [2] 20.03 11.87 55.72
Fusion for actions, VGG+RNN for nouns 22.07 12.96 56.38

[1] M. Yatskar, et al.: Situation recognition: Visual semantic role labeling for image understanding, CVPR 2016
[2] M. Yatskar, et al.: Commonly uncommon: Semantic sparsity in situation recognition, CVPR 2017



Sample Predictions

GT) Verb: glowing GT) Verb: browsing
Agent Place Agent | Goalltem | Place
candle %) woman book bookshop

Predictions Predictions

1) Verb: glowing 1) Verb: browsing
Agent | Place Agent | Goalltem | Place
candle %) woman book bookshop

2) Verb: igniting 2) Verb:shelving

Agent | Item | Tool | Place Agent | Item | Destination | Place
person | candle | match %) woman | book shelf library

GT) Verb: lcaning GT) Verb: misbehaving

Agent | Item | Against | Place Agent Place
woman | head | hand | office boy walkway
Predictions Predictions

1) Verb: studying 1) Verb:arresting
Agent Place Agent | Suspect| Place

woman desk policeman boy sidewalk

2) Verb: phoning ; - 2) Verb: grieving

Agent Tool Place £ Wil Agent Place
woman | telephone | office child cemetery




Human-Object Interaction
Recognition
Visual Question
Answering

Visual Relationship
Detection

Image Captioning

Situation Recognition

Use multiple cues for high-level reasoning tasks

Target dataset might only have very sparse annotation

Transfer knowledge from other specialized datasets through networks
End Goal: Feature fusion to get as complete view of image as possible
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