Linear filtering
Motivation: Image denoising

- How can we reduce noise in a photograph?
Moving average

• Let’s replace each pixel with a weighted average of its neighborhood
• The weights are called the filter kernel
• What are the weights for the average of a 3x3 neighborhood?

\[
\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{array}
\]

“box filter”

Source: D. Lowe
Defining convolution

- Let f be the image and g be the kernel. The output of convolving f with g is denoted $f \ast g$.

\[(f \ast g)[m, n] = \sum_{k,l} f[m-k, n-l] g[k, l]\]

Convention: kernel is “flipped”

- MATLAB functions: `conv2`, `filter2`, `imfilter`

Source: F. Durand
Key properties

- **Shift invariance**: same behavior regardless of pixel location:
 \[\text{filter(shift}(f)) = \text{shift(filter}(f)) \]

- **Linearity**:
 \[\text{filter}(f_1 + f_2) = \text{filter}(f_1) + \text{filter}(f_2) \]

- Theoretical result: any linear shift-invariant operator can be represented as a convolution
Properties in more detail

- **Commutative**: $a * b = b * a$
 - Conceptually no difference between filter and signal

- **Associative**: $a * (b * c) = (a * b) * c$
 - Often apply several filters one after another: $(((a * b_1) * b_2) * b_3)$
 - This is equivalent to applying one filter: $a * (b_1 * b_2 * b_3)$

- **Distributes over addition**: $a * (b + c) = (a * b) + (a * c)$

- **Scalars factor out**: $ka * b = a * kb = k (a * b)$

- **Identity**: unit impulse $e = [\ldots, 0, 0, 1, 0, 0, \ldots]$, $a * e = a$
Dealing with edges

What is the size of the output?

- **MATLAB**: `filter2(g, f, shape)`
 - `shape = 'full'`: output size is sum of sizes of f and g
 - `shape = 'same'`: output size is same as f
 - `shape = 'valid'`: output size is difference of sizes of f and g
Dealing with edges

What about missing pixel values?

- the filter window falls off the edge of the image
- need to extrapolate
- methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge

Source: S. Marschner
Dealing with edges

What about missing pixel values?

• the filter window falls off the edge of the image
• need to extrapolate
• methods (MATLAB):
 – clip filter (black): \texttt{imfilter(f, g, 0)}
 – wrap around: \texttt{imfilter(f, g, 'circular')}
 – copy edge: \texttt{imfilter(f, g, 'replicate')}
 – reflect across edge: \texttt{imfilter(f, g, 'symmetric')}

Source: S. Marschner
Practice with linear filters

Original

\[
\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
\end{array}
\]

Source: D. Lowe
Practice with linear filters

Original

Filtered
(no change)

Source: D. Lowe
Practice with linear filters

Original

\[
\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0 \\
\end{array}
\]

Source: D. Lowe
Practice with linear filters

Original

Shifted left
By 1 pixel

Source: D. Lowe
Practice with linear filters

Original

\[
\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{array}
\]

\[
\frac{1}{9}
\]

Source: D. Lowe
Practice with linear filters

Original

Blur (with a box filter)

\[
\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}
\]

Source: D. Lowe
Practice with linear filters

Original

(Note that filter sums to 1)

Source: D. Lowe
Practice with linear filters

Original

Sharpening filter
- Accentuates differences with local average

Source: D. Lowe
Sharpening

before

after

Source: D. Lowe
Sharpening

What does blurring take away?

Let’s add it back:
Smoothing with box filter revisited

• What’s wrong with this picture?
• What’s the solution?

Source: D. Forsyth
Smoothing with box filter revisited

- What’s wrong with this picture?
- What’s the solution?
 - To eliminate edge effects, weight contribution of neighborhood pixels according to their closeness to the center

“fuzzy blob”
Gaussian Kernel

\[G_\sigma = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}} \]

- Constant factor at front makes volume sum to 1 (can be ignored when computing the filter values, as we should renormalize weights to sum to 1 in any case)

Source: C. Rasmussen
Gaussian Kernel

\[G_\sigma = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}} \]

- Standard deviation \(\sigma \): determines extent of smoothing

Source: K. Grauman
Choosing kernel width

- The Gaussian function has infinite support, but discrete filters use finite kernels

Source: K. Grauman
Choosing kernel width

- Rule of thumb: set filter half-width to about 3σ
Gaussian vs. box filtering
Gaussian filters

- Remove high-frequency components from the image (*low-pass filter*)
- Convolution with self is another Gaussian
 - So can smooth with small-\(\sigma\) kernel, repeat, and get same result as larger-\(\sigma\) kernel would have
 - Convolving two times with Gaussian kernel with std. dev. \(\sigma\) is same as convolving once with kernel with std. dev. \(\sigma\sqrt{2}\)

- **Separable** kernel
 - Factors into product of two 1D Gaussians
 - Discrete example:

\[
\begin{bmatrix}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1 \\
\end{bmatrix}
= 2 \begin{bmatrix}
1 & 2 & 1 \\
1 \\
\end{bmatrix}
\]

Source: K. Grauman
Separability of the Gaussian filter

\[G_\sigma(x, y) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right) \]

\[= \left(\frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{x^2}{2\sigma^2}\right) \right) \left(\frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{y^2}{2\sigma^2}\right) \right) \]

The 2D Gaussian can be expressed as the product of two functions, one a function of \(x \) and the other a function of \(y \)

In this case, the two functions are the (identical) 1D Gaussian

Source: D. Lowe
Why is separability useful?

- Separability means that a 2D convolution can be reduced to two 1D convolutions (one along rows and one along columns)
- What is the complexity of filtering an $n \times n$ image with an $m \times m$ kernel?
 - $O(n^2 m^2)$
- What if the kernel is separable?
 - $O(n^2 m)$
Noise

- **Salt and pepper noise**: contains random occurrences of black and white pixels
- **Impulse noise**: contains random occurrences of white pixels
- **Gaussian noise**: variations in intensity drawn from a Gaussian normal distribution

Source: S. Seitz
Gaussian noise

- Mathematical model: sum of many independent factors
- Good for small standard deviations
- Assumption: independent, zero-mean noise

\[f(x, y) = \tilde{f}(x, y) + \eta(x, y) \]

Gaussian i.i.d. (“white”) noise:
\[\eta(x, y) \sim \mathcal{N}(\mu, \sigma) \]

Source: M. Hebert
Smoothing with larger standard deviations suppresses noise, but also blurs the image.
Reducing salt-and-pepper noise

What’s wrong with the results?
Alternative idea: Median filtering

• A **median filter** operates over a window by selecting the median intensity in the window

- Is median filtering linear?

Source: K. Grauman
Median filter

- Is median filtering linear?
- Let’s try filtering

\[
\begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 2 \\
2 & 2 & 2 \\
\end{bmatrix}
+ \begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
\end{bmatrix}
\]
Median filter

- What advantage does median filtering have over Gaussian filtering?
 - Robustness to outliers

Source: K. Grauman
Median filter

Salt-and-pepper noise

Median filtered

MATLAB: `medfilt2(image, [h w])`

Source: M. Hebert
Gaussian vs. median filtering

3x3 5x5 7x7

Gaussian

Median
Sharpening revisited

before

after

Source: D. Lowe
Sharpening revisited

What does blurring take away?

Let's add it back:
Unsharp mask filter

\[f + \alpha (f - f * g) = (1 + \alpha) f - \alpha f * g = f * ((1 + \alpha)e - g) \]
Application: Hybrid Images

A. Oliva, A. Torralba, P.G. Schyns, Hybrid Images, SIGGRAPH 2006
Changing expression

Sad Surprised
Application: Hybrid Images

Gaussian Filter

Laplacian Filter

A. Oliva, A. Torralba, P.G. Schyns,

Hybrid Images, SIGGRAPH 2006
Review: Image filtering

• Convolution
• Box vs. Gaussian filter
• Separability
• Median filter