Fitting
Fitting

• We’ve learned how to detect edges, corners, blobs. Now what?
• We would like to form a higher-level, more compact representation of the features in the image by grouping multiple features according to a simple model
Fitting

• Choose a *parametric model* to represent a set of features
Fitting: Challenges

Case study: Line detection

- **Noise** in the measured feature locations
- **Extraneous data**: clutter (outliers), multiple lines
- **Missing data**: occlusions
Fitting: Overview

• If we know which points belong to the line, how do we find the “optimal” line parameters?
 • Least squares

• What if there are outliers?
 • Robust fitting, RANSAC

• What if there are many lines?
 • Voting methods: RANSAC, Hough transform

• What if we’re not even sure it’s a line?
 • Model selection (not covered)
Least squares line fitting

Data: \((x_1, y_1), \ldots, (x_n, y_n)\)
Line equation: \(y_i = mx_i + b\)
Find \((m, b)\) to minimize

\[
E = \sum_{i=1}^{n} (y_i - mx_i - b)^2
\]

\[
E = \|Y - XB\|^2 \quad \text{where} \quad Y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \quad X = \begin{bmatrix} x_1 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{bmatrix} \quad B = \begin{bmatrix} m \\ b \end{bmatrix}
\]

\[
E = \|Y - XB\|^2 = (Y - XB)^T (Y - XB) = Y^T Y - 2(XB)^T Y + (XB)^T (XB)
\]

\[
\frac{dE}{dB} = 2X^T XB - 2X^T Y = 0
\]

\[
X^T XB = X^T Y
\]

Normal equations: least squares solution to
\(XB = Y\)
Problem with “vertical” least squares

- Not rotation-invariant
- Fails completely for vertical lines
Total least squares

Distance between point \((x_i, y_i)\) and line \(ax + by = d\) \((a^2 + b^2 = 1)\): \[|ax_i + by_i - d|\]

Unit normal: \(N = (a, b)\)
Total least squares

Distance between point \((x_i, y_i)\) and line \(ax + by = d \ (a^2 + b^2 = 1): \ |ax_i + by_i - d|\)

Find \((a, b, d)\) to minimize the sum of squared perpendicular distances

\[
E = \sum_{i=1}^{n} (ax_i + by_i - d)^2
\]
Total least squares

Distance between point \((x_i, y_i)\) and line \(ax+by=d\) \((a^2+b^2=1)\):

\[|ax_i + by_i - d|\]

Find \((a, b, d)\) to minimize the sum of squared perpendicular distances

\[E = \sum_{i=1}^{n} (ax_i + by_i - d)^2\]

\[
\frac{\partial E}{\partial d} = \sum_{i=1}^{n} -2(ax_i + by_i - d) = 0
\]

\[E = \sum_{i=1}^{n} (a(x_i - \bar{x}) + b(y_i - \bar{y}))^2 = \left\| \begin{bmatrix} x_1 - \bar{x} & y_1 - \bar{y} \\ \vdots & \vdots \\ x_n - \bar{x} & y_n - \bar{y} \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} \right\|^2 = (UN)^T (UN)\]

\[
\frac{dE}{dN} = 2(U^T U)N = 0
\]

Solution to \((U^T U)N = 0\), subject to \(||N||^2 = 1\): eigenvector of \(U^T U\) associated with the smallest eigenvalue (least squares solution to homogeneous linear system \(UN = 0\))
Total least squares

\[U = \begin{bmatrix} x_1 - \bar{x} & y_1 - \bar{y} \\ \vdots & \vdots \\ x_n - \bar{x} & y_n - \bar{y} \end{bmatrix} \quad U^T U = \begin{bmatrix} \sum_{i=1}^{n} (x_i - \bar{x})^2 & \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) \\ \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) & \sum_{i=1}^{n} (y_i - \bar{y})^2 \end{bmatrix} \]

second moment matrix
Total least squares

\[U = \begin{bmatrix} x_1 - \bar{x} & y_1 - \bar{y} \\ \vdots & \vdots \\ x_n - \bar{x} & y_n - \bar{y} \end{bmatrix} \quad U^T U = \begin{bmatrix} \sum_{i=1}^{n} (x_i - \bar{x})^2 & \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) \\ \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) & \sum_{i=1}^{n} (y_i - \bar{y})^2 \end{bmatrix} \]

second moment matrix

\[N = (a, b) \]

F&P (2nd ed.) sec. 22.1
Least squares as likelihood maximization

- **Generative model**: line points are sampled independently and corrupted by Gaussian noise in the direction perpendicular to the line

\[
\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} u \\ v \end{pmatrix} + \varepsilon \begin{pmatrix} a \\ b \end{pmatrix}
\]

Point on the line sampled from zero-mean Gaussian with std. dev. \(\sigma \)

Noise: normal direction

\(ax + by = d \)
Least squares as likelihood maximization

- **Generative model**: line points are sampled independently and corrupted by Gaussian noise in the direction perpendicular to the line

\[
\begin{pmatrix}
 x \\
 y
\end{pmatrix} = \begin{pmatrix}
 u \\
 v
\end{pmatrix} + \varepsilon \begin{pmatrix}
 a \\
 b
\end{pmatrix}
\]

Likelihood of points given line parameters \((a, b, d)\):

\[
P(x_1, y_1, \ldots, x_n, y_n \mid a, b, d) = \prod_{i=1}^{n} P(x_i, y_i \mid a, b, d) \propto \prod_{i=1}^{n} \exp\left(-\frac{(ax_i + by_i - d)^2}{2\sigma^2}\right)
\]

Log-likelihood:

\[
L(x_1, y_1, \ldots, x_n, y_n \mid a, b, d) = -\frac{1}{2\sigma^2} \sum_{i=1}^{n} (ax_i + by_i - d)^2
\]
Least squares: Robustness to noise

Least squares fit to the red points:
Least squares: Robustness to noise

Least squares fit with an outlier:

Problem: squared error heavily penalizes outliers
Robust estimators

• General approach: find model parameters θ that minimize

$$\sum_i \rho(r_i(x_i, \theta); \sigma)$$

$r_i(x_i, \theta)$ – residual of ith point w.r.t. model parameters θ

ρ – robust function with scale parameter σ

The robust function ρ behaves like squared distance for small values of the residual u but saturates for larger values of u
Robust estimators

• General approach: find model parameters θ that minimize

$$\sum_i \rho(r_i(x_i, \theta); \sigma)$$

$r_i(x_i, \theta)$ – residual of ith point w.r.t. model parameters θ
ρ – robust function with scale parameter σ

• Robust fitting is a nonlinear optimization problem that must be solved iteratively
• Least squares solution can be used for initialization
• Scale of robust function should be chosen carefully
Choosing the scale: Just right

The effect of the outlier is minimized
The error value is almost the same for every point and the fit is very poor
Choosing the scale: Too large

Behaves much the same as least squares
RANSAC

• Robust fitting can deal with a few outliers – what if we have very many?
• Random sample consensus (RANSAC): Very general framework for model fitting in the presence of outliers
• Outline
 • Choose a small subset of points uniformly at random
 • Fit a model to that subset
 • Find all remaining points that are “close” to the model and reject the rest as outliers
 • Do this many times and choose the best model

M. A. Fischler, R. C. Bolles.
RANSAC for line fitting example

Source: R. Raguram
RANSAC for line fitting example

Least-squares fit

Source: R. Raguram
RANSAC for line fitting example

1. Randomly select minimal subset of points

Source: R. Raguram
RANSAC for line fitting example

1. Randomly select minimal subset of points
2. Hypothesize a model

Source: R. Raguram
RANSAC for line fitting example

1. Randomly select minimal subset of points
2. Hypothesize a model
3. Compute error function

Source: R. Raguram
RANSAC for line fitting example

1. Randomly select minimal subset of points
2. Hypothesize a model
3. Compute error function
4. Select points consistent with model

Source: R. Raguram
1. Randomly select minimal subset of points
2. Hypothesize a model
3. Compute error function
4. Select points consistent with model
5. Repeat hypothesize-and-verify loop
RANSAC for line fitting example

1. Randomly select minimal subset of points
2. Hypothesize a model
3. Compute error function
4. Select points consistent with model
5. Repeat `hypothesize-and-verify` loop

Source: R. Raguram
RANSAC for line fitting example

1. Randomly select minimal subset of points
2. Hypothesize a model
3. Compute error function
4. Select points consistent with model
5. Repeat hypothesize-and-verify loop

Source: R. Raguram
RANSAC for line fitting example

1. Randomly select minimal subset of points
2. Hypothesize a model
3. Compute error function
4. Select points consistent with model
5. Repeat *hypothesize-and-verify* loop

Source: R. Raguram
RANSAC for line fitting

Repeat N times:

- Draw s points uniformly at random
- Fit line to these s points
- Find *inliers* to this line among the remaining points (i.e., points whose distance from the line is less than t)
- If there are d or more inliers, accept the line and refit using all inliers
Choosing the parameters

- **Initial number of points** \(s \)
 - Typically minimum number needed to fit the model

- **Distance threshold** \(t \)
 - Choose \(t \) so probability for inlier is \(p \) (e.g. 0.95)
 - Zero-mean Gaussian noise with std. dev. \(\sigma \): \(t^2 = 3.84 \sigma^2 \)

- **Number of samples** \(N \)
 - Choose \(N \) so that, with probability \(p \), at least one random sample is free from outliers (e.g. \(p = 0.99 \)) (outlier ratio: \(e \))

Source: M. Pollefeys
Choosing the parameters

• Initial number of points \(s \)
 • Typically minimum number needed to fit the model

• Distance threshold \(t \)
 • Choose \(t \) so probability for inlier is \(p \) (e.g. 0.95)
 • Zero-mean Gaussian noise with std. dev. \(\sigma \): \(t^2 = 3.84 \sigma^2 \)

• Number of samples \(N \)
 • Choose \(N \) so that, with probability \(p \), at least one random sample is free from outliers (e.g. \(p = 0.99 \)) (outlier ratio: \(e \))

\[
\left(1 - \left(1 - e\right)^s\right)^N = 1 - p
\]

\[
N = \log(1 - p) / \log\left(1 - \left(1 - e\right)^s\right)
\]

<table>
<thead>
<tr>
<th>(s)</th>
<th>5%</th>
<th>10%</th>
<th>20%</th>
<th>25%</th>
<th>30%</th>
<th>40%</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>11</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>19</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>13</td>
<td>17</td>
<td>34</td>
<td>72</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>6</td>
<td>12</td>
<td>17</td>
<td>26</td>
<td>57</td>
<td>146</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>7</td>
<td>16</td>
<td>24</td>
<td>37</td>
<td>97</td>
<td>293</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>8</td>
<td>20</td>
<td>33</td>
<td>54</td>
<td>163</td>
<td>588</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>9</td>
<td>26</td>
<td>44</td>
<td>78</td>
<td>272</td>
<td>1177</td>
</tr>
</tbody>
</table>

Source: M. Pollefeys
Choosing the parameters

- **Initial number of points** s
 - Typically minimum number needed to fit the model
- **Distance threshold** t
 - Choose t so probability for inlier is p (e.g. 0.95)
 - Zero-mean Gaussian noise with std. dev. σ: $t^2=3.84\sigma^2$
- **Number of samples** N
 - Choose N so that, with probability p, at least one random sample is free from outliers (e.g. $p=0.99$) (outlier ratio: e)

\[
\left(1 - (1 - e)^s\right)^N = 1 - p
\]

\[
N = \log(1 - p) / \log\left(1 - (1 - e)^s\right)
\]

Source: M. Pollefeys
Choosing the parameters

- **Initial number of points** s
 - Typically minimum number needed to fit the model

- **Distance threshold** t
 - Choose t so probability for inlier is p (e.g. 0.95)
 - Zero-mean Gaussian noise with std. dev. σ: $t^2 = 3.84\sigma^2$

- **Number of samples** N
 - Choose N so that, with probability p, at least one random sample is free from outliers (e.g. $p=0.99$) (outlier ratio: e)

- **Consensus set size** d
 - Should match expected inlier ratio
Adaptively determining the number of samples

- Outlier ratio e is often unknown a priori, so pick worst case, e.g. 50%, and adapt if more inliers are found, e.g. 80% would yield $e=0.2$

- Adaptive procedure:
 - $N=\infty$, $\text{sample_count}=0$
 - While $N > \text{sample_count}$
 - Choose a sample and count the number of inliers
 - If inlier ratio is highest of any found so far, set $e = 1 – (\text{number of inliers})/(\text{total number of points})$
 - Recompute N from e:
 $$N = \log\left(1 - p\right)/\log\left(1 - (1 - e)^s\right)$$
 - Increment the sample_count by 1

Source: M. Pollefeys
RANSAC pros and cons

• **Pros**
 • Simple and general
 • Applicable to many different problems
 • Often works well in practice

• **Cons**
 • Lots of parameters to tune
 • Doesn’t work well for low inlier ratios (too many iterations, or can fail completely)
 • Can’t always get a good initialization of the model based on the minimum number of samples
Fitting: Review

- Least squares
- Robust fitting
- RANSAC
Fitting: Review

✓ If we know which points belong to the line, how do we find the “optimal” line parameters?
 ✓ Least squares

✓ What if there are outliers?
 ✓ Robust fitting, RANSAC

• What if there are many lines?
 • Voting methods: RANSAC, Hough transform