“Traditional” image segmentation

http://optical-illusions.wikia.com/wiki/Emergence
What is segmentation for?

Superpixel segmentation

Foreground/background segmentation

Semantic segmentation
Outline

• Bottom-up segmentation
 • Superpixel segmentation
 • Normalized cuts

• Interactive segmentation
 • CRF energy functions, graph cut optimization

• Supervised or top-down segmentation
 • CRFs
 • Deep networks (next time)
Superpixel segmentation

• Group together similar-looking pixels as an intermediate stage of processing
 • “Bottom-up” process
 • Typically unsupervised
 • Should be fast
 • Typically aims to produce an over-segmentation

Graph-based segmentation

- **Node** = pixel
- **Edge** = pair of neighboring pixels
- **Edge weight** = similarity or dissimilarity of the respective nodes

Source: S. Seitz
Efficient graph-based segmentation

- Runs in time nearly linear in the number of edges
- Easy to control coarseness of segmentations
- Results can be unstable

P. Felzenszwalb and D. Huttenlocher, Efficient Graph-Based Image Segmentation, IJCV 2004
Felzenszwalb & Huttenlocher algorithm

• Graph definition:
 • Vertices are pixels, edges connect neighboring pixels, weights correspond to dissimilarity in (x,y,r,g,b) space

• The algorithm:
 • Start with each vertex in its own component
 • For each edge in increasing order of weight:
 – If the edge is between vertices in two different components A and B, merge if the edge weight is lower than the internal dissimilarity within either of the components
 – Threshold is the minimum of the following values, computed on A and B:
 » (Highest-weight edge in minimum spanning tree of the component) + (k / size of component)
Example results

http://www.cs.brown.edu/~pff/segment/
Other superpixel algorithms

• **Watershed segmentation**

• **Simple linear iterative clustering (SLIC)**
Segmentation by graph cuts

- Break graph into segments
 - Delete links that cross between segments
 - Easiest to break links that have low affinity
 - similar pixels should be in the same segments
 - dissimilar pixels should be in different segments

Source: S. Seitz
Segmentation by graph cuts

- A graph cut is a set of edges whose removal disconnects the graph
- Cost of a cut: sum of weights of cut edges
- Two-way minimum cuts can be found efficiently

Affinity matrix
Segmentation by graph cuts

- A graph cut is a set of edges whose removal disconnects the graph
- Cost of a cut: sum of weights of cut edges
- Two-way minimum cuts can be found efficiently

Affinity matrix
Normalized cut

- Minimum cut tends to cut off very small, isolated components

Ideal Cut

Cuts with lesser weight than the ideal cut
Normalized cut

- To encourage larger segments, normalize the cut by the total weight of edges incident to the segment
- The *normalized cut* cost is:

\[
ncut(A, B) = \frac{w(A, B)}{w(A, V)} + \frac{w(A, B)}{w(B, V)}
\]

\[w(A, B) = \text{sum of weights of all edges between } A \text{ and } B\]

- Intuition: big segments will have a large \(w(A, V)\), thus decreasing \(ncut(A, B)\)
- Finding the globally optimal cut is NP-complete, but a relaxed version can be solved using a generalized eigenvalue problem

Normalized cut: Algorithm

- Let \mathbf{W} be the affinity matrix of the graph ($n \times n$ for n pixels)
- Let \mathbf{D} be the diagonal matrix with entries $D(i, i) = \sum_j W(i, j)$
- Solve *generalized eigenvalue problem* $(\mathbf{D} - \mathbf{W})\mathbf{y} = \lambda \mathbf{D}\mathbf{y}$ for the eigenvector with the second smallest eigenvalue
 - The ith entry of \mathbf{y} can be viewed as a “soft” indicator of the component membership of the ith pixel
 - Use 0 or median value of the entries of \mathbf{y} to split the graph into two components
- To find more than two components:
 - Recursively bipartition the graph
 - Run k-means clustering on values of several eigenvectors
Example result

Original image

Eigenvalues for 2^{nd} and 3^{rd} smallest eigenvalues

More eigenvectors
Normalized cuts: Pro and con

• **Pro**
 - Generic framework, can be used with many different features and affinity formulations

• **Con**
 - High storage requirement and time complexity: involves solving a generalized eigenvalue problem of size $n \times n$, where n is the number of pixels
Segmentation as labeling

- Suppose we want to segment an image into foreground and background
- Binary pixel labeling problem
Segmentation as labeling

- Suppose we want to segment an image into foreground and background
 - Binary pixel labeling problem
 - Naturally arises in interactive settings

User scribbles
Labeling by energy minimization

• Define a labeling c as an assignment of each pixel to a class (foreground or background)

• Find the labeling that minimizes a global energy function:

$$E(c \mid x) = \sum_{i} f_{i}(c_{i}, x) + \sum_{i,j \in \varepsilon} g_{ij}(c_{i}, c_{j}, x)$$

- **Unary potential** (local data term): score for pixel i and label c_{i}
- **Pairwise potential** (context or smoothing term): neighboring pixels

• These are known as Markov Random Field (MRF) or Conditional Random Field (CRF) functions
Segmentation by energy minimization

\[E(c \mid x) = \sum_i f_i(c_i, x) + \sum_{i,j \in \varepsilon} g_{ij}(c_i, c_j, x) \]

- **Unary potentials:**
 \[f_i(c, x) = -\log P(c \mid x_i) \]
 - Cost is infinity if label does not match the user scribble
 - Otherwise, it is computed based on a color model of user-labeled pixels

User scribbles \hspace{1cm} P(\text{foreground} \mid x_i)
Segmentation by energy minimization

\[E(c \mid x) = \sum_i f_i(c_i, x) + \sum_{i,j \in \mathcal{E}} g_{ij}(c_i, c_j, x) \]

- **Unary potentials:** \[f_i(c, x) = -\log P(c \mid x_i) \]
- **Pairwise potentials:** \[g_{ij}(c, c', x) = w_{ij} |c - c'| \]

- Neighboring pixels should have the same label unless they look very different.
Segmentation by energy minimization

\[E(c \mid x) = \sum_{i} f_i(c_i, x) + \sum_{i,j \in \epsilon} g_{ij}(c_i, c_j, x) \]

- Can be optimized efficiently by finding the minimum cut in the following graph:

Y. Boykov and M. Jolly, *Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images*, ICCV 2001
Recall: Stereo as energy minimization

\[E(D) = \sum_{i} \left(W_1(i) - W_2(i + D(i)) \right)^2 + \lambda \sum_{\text{neighbors } i, j} \rho \left(D(i) - D(j) \right) \]

- **data term**
- **smoothness term**
Semantic segmentation

- Problem: label each pixel by one of C classes
- Define an energy function where unaries correspond to local classifier responses and smoothing potentials correspond to contextual terms
- Solve a *multi-class* graph cut problem
Example: TextonBoost

\[
\log P(c | x, \theta) =
\]

\[
\sum_i \psi_i(c_i, x; \theta_\psi) + \pi(c_i, x_i; \theta_\pi) + \lambda(c_i, i; \theta_\lambda)
\]

\[
+ \sum_{(i,j) \in \mathcal{E}} \phi(c_i, c_j, g_{ij}(x); \theta_\phi)
\]

J. Shotton, J. Winn, C. Rother, and A. Criminisi,
TextonBoost: Joint Appearance, Shape And Context Modeling For Multi-class Object Recognition And Segmentation, ECCV 2006
Review: segmentation

• Unsupervised segmentation
 • Superpixel segmentation
 • Normalized cuts

• Interactive segmentation
 • CRF energy functions, graph cut optimization

• How to evaluate segmentation?