The Gory Details of Neural Network Training: A Gentle Overview
Outline

• Optimization
 • Mini-batch SGD
 • Learning rate decay
 • Adaptive methods

• Massaging the numbers
 • Data augmentation
 • Data preprocessing
 • Weight initialization
 • Batch normalization

• Regularization
 • Dropout
 • Label smoothing

• Test time: ensembles, averaging predictions
An overview of optimization techniques

Caspar David Friedrich, *Wanderer above a sea of fog*, 1817
Mini-batch SGD

• Iterate over epochs
 • Group data into mini-batches of size b
 • Compute gradient of the loss for the mini-batch $(x_1, y_1), ..., (x_b, y_b)$:
 \[\nabla \hat{L} = \frac{1}{b} \sum_{i=1}^{b} \nabla l(w, x_i, y_i) \n\]
 • Update parameters:
 \[w \leftarrow w - \eta \nabla \hat{L} \n\]
 • Check for convergence, decide whether to decay learning rate

• What are the hyperparameters?
 • Mini-batch size, learning rate decay schedule, deciding when to stop
Setting the mini-batch size

• Larger mini-batches: more expensive and less frequent updates, lower gradient variance, more parallelizable

• SGD with larger batches may generalize more poorly (e.g., Keskar et al., 2017)

• But can be made to work well by carefully controlling learning rate and addressing other optimization issues (Goyal et al., 2018)
Setting the learning rate

Source: Stanford CS231n

Figure source
Learning rate decay

• Decay formulas
 • Exponential: $\eta_t = \eta_0 e^{-kt}$, where η_0 and k are hyperparameters, t is the iteration or epoch number
 • Inverse: $\eta_t = \eta_0/(1 + kt)$
 • Inverse sqrt: $\eta_t = \eta_0/\sqrt{t}$
 • Linear: $\eta_t = \eta_0(1 + t/T)$, where T is the total number of epochs
 • Cosine: $\eta_t = \frac{1}{2}\eta_0(1 + \cos(t\pi/T))$
Learning rate decay

• Decay formulas

• Most common in practice:
 • **Step decay**: reduce rate by a constant factor every few epochs, e.g., by 0.5 every 5 epochs, 0.1 every 20 epochs
 • **Manual**: watch validation error and reduce learning rate whenever it stops improving
 • “Patience” hyperparameter: number of epochs without improvement before reducing learning rate
A typical phenomenon

![Graph showing loss over epochs with learning rate decay](Image source: Stanford CS231n)

Possible explanation

![Graph showing loss with good and large learning rates](Image source)
Learning rate decay

• Decay formulas

• Most common in practice:
 • **Step decay**: reduce rate by a constant factor every few epochs, e.g., by 0.5 every 5 epochs, 0.1 every 20 epochs
 • **Manual**: watch validation error and reduce learning rate whenever it stops improving
 • “Patience” hyperparameter: number of epochs without improvement before reducing learning rate
 • **Warmup**: train with a low learning rate for a first few epochs, or linearly increase learning rate before transitioning to normal decay schedule (Goyal et al., 2018)
Diagnosing learning curves: Obvious problems

Not training
Bug in update calculation?

Error increasing
Bug in update calculation?

Get NaNs in the loss after a number of iterations:
Numerical instability

Weird cyclical patterns in loss:
Data not shuffled

Source: Stanford CS231n
Diagnosing learning curves: Subtler behaviors

- Not converged yet
 - Keep training, possibly increase learning rate

- Slow start
 - Bad initialization?

- Possible overfitting

- Definite overfitting

Source: Stanford CS231n
When to stop training?

• Monitor validation error to decide when to stop
 • “Patience” hyperparameter: number of epochs without improvement before stopping
 • *Early stopping* can be viewed as a kind of regularization

Figure from *Deep Learning Book*
Advanced optimizers

- SGD with momentum
- RSMProp
- Adam
SGD with momentum

What will SGD do?
SGD with momentum

- Introduce a “momentum” variable m and associated “friction” coefficient β:

\[m \leftarrow \beta m - \eta \nabla L \]
\[w \leftarrow w + m \]

- Typically start with $\beta = 0.5$, gradually increase over time
SGD with momentum

- Introduce a “momentum” variable m and associated “friction” coefficient β:

$$m \leftarrow \beta m - \eta \nabla L$$
$$w \leftarrow w + m$$

- Move faster in directions with consistent gradient
- Avoid oscillating in directions with large but inconsistent gradients
SGD with momentum

- Introduce a “momentum” variable m and associated “friction” coefficient β:

 $$m \leftarrow \beta m - \eta \nabla L$$

 $$w \leftarrow w + m$$

- Nesterov momentum: evaluate gradient at “lookahead” position $w + \beta m$
Adagrad: Adaptive per-parameter learning rates

- Keep track of history of gradient magnitudes, scale the learning rate for each parameter based on this history
- For each dimension k of the weight vector:

\[v^{(k)} \leftarrow v^{(k)} + \left(\frac{\partial L}{\partial w^{(k)}} \right)^2 \]

\[w^{(k)} \leftarrow w^{(k)} - \frac{\eta}{\sqrt{v^{(k)}} + \epsilon} \frac{\partial L}{\partial w^{(k)}} \]

- Parameters with small gradients get large updates and vice versa
- Problem: long-ago gradient magnitudes are not “forgotten” so learning rate decays too quickly

J. Duchi, Adaptive subgradient methods for online learning and stochastic optimization, JMLR 2011
RMSProp

- Introduce decay factor β (typically ≥ 0.9) to downweight past history exponentially:

$$
\nu^{(k)} \leftarrow \beta \nu^{(k)} + (1 - \beta) \left(\frac{\partial L}{\partial w^{(k)}} \right)^2
$$

$$
w^{(k)} \leftarrow w^{(k)} - \frac{\eta}{\sqrt{\nu^{(k)}} + \epsilon} \frac{\partial L}{\partial w^{(k)}}
$$

Adam: Combine RMSProp with momentum

- Update momentum:
 \[m \leftarrow \beta_1 m + (1 - \beta_1) \nabla L \]

- For each dimension \(k \) of the weight vector:
 \[
 v^{(k)} \leftarrow \beta_2 v^{(k)} + (1 - \beta_2) \left(\frac{\partial L}{\partial w^{(k)}} \right)^2 \\
 w^{(k)} \leftarrow w^{(k)} - \frac{\eta}{\sqrt{v^{(k)}} + \epsilon} m^{(k)}
 \]

- Full algorithm includes bias correction to account for \(m \) and \(v \) starting at 0: \(\hat{m} = \frac{m}{1 - \beta_1^t}, \hat{v} = \frac{v}{1 - \beta_2^t} \) (\(t \) is the timestep)

- Default parameters from paper are reputed to work well for many models: \(\beta_1 = 0.9, \beta_2 = 0.999, \eta = 1e - 3, \epsilon = 1e - 8 \)

 D. Kingma and J. Ba, Adam: A method for stochastic optimization, ICLR 2015
Which optimizer to use in practice?

- Adaptive methods tend to reduce initial training error faster than SGD and are “safer”
 - **Andrej Karpathy**: “In the early stages of setting baselines I like to use Adam with a learning rate of 3e-4. In my experience Adam is much more forgiving to hyperparameters, including a bad learning rate. For ConvNets a well-tuned SGD will almost always slightly outperform Adam, but the optimal learning rate region is much more narrow and problem-specific.”
 - Use Adam at first, then switch to SGD?
- However, some literature reports problems with adaptive methods, such as failing to converge or generalizing poorly ([Wilson et al. 2017](#), [Reddi et al. 2018](#))
 - YMMV!
Outline

- Optimization
 - Mini-batch SGD
 - Learning rate decay
 - Adaptive methods
- Massaging the numbers
 - Data augmentation
 - Data preprocessing
 - Weight initialization
 - Batch normalization
- Regularization
 - Dropout
 - Label smoothing
- Test time: ensembles, averaging predictions
Data augmentation

- Introduce transformations not adequately sampled in the training data
 - Geometric: flipping, rotation, shearing, multiple crops
Data augmentation

- Introduce transformations not adequately sampled in the training data
 - Geometric: flipping, rotation, shearing, multiple crops
 - Photometric: color transformations
Data augmentation

• Introduce transformations not adequately sampled in the training data
 • Geometric: flipping, rotation, shearing, multiple crops
 • Photometric: color transformations
 • Other: add noise, compression artifacts, lens distortions, etc.
Data augmentation

- Introduce transformations not adequately sampled in the training data
- Limited only by your imagination and time/memory constraints!
- Avoid introducing artifacts
Data augmentation

- Introduce transformations not adequately sampled in the training data
- Limited only by your imagination and time/memory constraints!
- Avoid introducing artifacts
- Automatic augmentation strategies: AutoAugment, RandAugment
Data preprocessing

- Zero centering
 - Subtract \textit{mean image} – all input images need to have the same resolution
 - Subtract \textit{per-channel means} – images don’t need to have the same resolution
- Optional: rescaling – divide each value by (per-pixel or per-channel) standard deviation

- Be sure to apply the same transformation at training and test time!
 - Save training set statistics and apply to test data
Weight initialization

• What’s wrong with initializing all weights to the same number (e.g., zero)?
Weight initialization

• Typically: initialize to random values sampled from zero-mean Gaussian: \(w \sim \mathcal{N}(0, \sigma^2) \)
 • Standard deviation matters!
 • Key idea: avoid reducing or amplifying the variance of layer responses, which would lead to vanishing or exploding gradients

• Common heuristics:
 • Xavier initialization: \(\sigma^2 = 1/n_{\text{in}} \) or \(\sigma^2 = 2/(n_{\text{in}} + n_{\text{out}}) \), where \(n_{\text{in}} \) and \(n_{\text{out}} \) are the numbers of inputs and outputs to a layer (Glorot and Bengio, 2010)
 • For ReLU: \(\sigma^2 = 2/n_{\text{in}} \) (He et al., 2015)
 • Initializing biases: just set them to 0

Batch normalization

• The authors’ intuition

Batch normalization

- **Key idea**: shifting and rescaling are differentiable operations, so the network can *learn* how best to normalize the data.
- Statistics of activations (outputs) from a given layer across the dataset can be approximated by statistics from a mini-batch.

Batch normalization

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_1...m\}$;
Parameters to be learned: γ, β

Output: $\{y_i = \text{BN}_{\gamma,\beta}(x_i)\}$

$\mu_\mathcal{B} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$ \hspace{1cm} // mini-batch mean

$\sigma^2_\mathcal{B} \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_\mathcal{B})^2$ \hspace{1cm} // mini-batch variance

$\hat{x}_i \leftarrow \frac{x_i - \mu_\mathcal{B}}{\sqrt{\sigma^2_\mathcal{B} + \epsilon}}$ \hspace{1cm} // normalize

$y_i \leftarrow \gamma \hat{x}_i + \beta \equiv \text{BN}_{\gamma,\beta}(x_i)$ \hspace{1cm} // scale and shift

Why?

Batch normalization

\[
\text{Input: } \text{Values of } x \text{ over a mini-batch: } B = \{x_1...m\}; \\
\text{Parameters to be learned: } \gamma, \beta \\
\text{Output: } \{y_i = \text{BN}_{\gamma, \beta}(x_i)\}
\]

\[
\mu_B \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i \\
\sigma_B^2 \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_B)^2 \\
\hat{x}_i \leftarrow \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}} \\
y_i \leftarrow \gamma \hat{x}_i + \beta \equiv \text{BN}_{\gamma, \beta}(x_i)
\]

At test time (usually):

- \(\mu_B\) \text{ mini-batch mean} \\
- \(\sigma_B^2\) \text{ mini-batch variance} \\
- \(\hat{x}_i\) \text{ normalize} \\
- \(y_i = \gamma \hat{x}_i + \beta\) \text{ scale and shift}

Batch normalization

- Common configuration: insert BN layers right after conv or FC layers, before ReLU nonlinearity (but this is purely empirical)

Batch normalization

Benefits
- Prevents exploding and vanishing gradients
- Keeps most activations away from saturation regions of non-linearities
- Accelerates convergence of training
- Makes training more robust w.r.t. hyperparameter choice, initialization

Pitfalls
- Behavior depends on composition of mini-batches, can lead to hard-to-catch bugs if there is a mismatch between training and test regime (example)
- Doesn’t work well for small mini-batch sizes
- Cannot be used in recurrent models
Why does BatchNorm *really* work?

- It may have to do not with internal covariate shift (ICS), but with making the optimization problem much smoother (Santurkar et al., 2018)
- *Is ICS even a thing?* (Lipton and Steinhardt, 2018)
Other types of normalization

- **Layer normalization** (Ba et al., 2016)
- **Instance normalization** (Ulyanov et al., 2017)
- **Group normalization** (Wu and He, 2018)
- **Weight normalization** (Salimans et al., 2016)

Y. Wu and K. He, *Group Normalization*, ECCV 2018
Outline

- Optimization
 - Mini-batch SGD
 - Learning rate decay
 - Adaptive methods
- Massaging the numbers
 - Data augmentation
 - Data preprocessing
 - Weight initialization
 - Batch normalization
- Regularization
 - Dropout
 - Label smoothing
- Test time: ensembles, averaging predictions
Recall: Regularization

- Techniques for controlling the capacity of a neural network to prevent overfitting
- Classic regularization: L1, L2
Other types of regularization

- Adding noise to the inputs
 - Recall motivation of max margin criterion
 - In simple scenario (linear model, quadratic loss, Gaussian noise), this is equivalent to weight decay
 - Data augmentation is a more general form of this
- Adding noise to the weights
Dropout

- At training time, in each forward pass, turn off some neurons with probability p
- At test time, to have deterministic behavior, multiply output of neuron by p

Dropout: A Simple Way to Prevent Neural Networks from Overfitting. JMLR 2014
Dropout

- Intuitions
 - Prevent “co-adaptation” of units, increase robustness to noise
 - Train *implicit ensemble*

Current status of dropout

- Against
 - Slows down convergence
 - Made redundant by batch normalization or possibly even clashes with it
 - Unnecessary for larger datasets or with sufficient data augmentation

- In favor
 - Can still help in certain situations: e.g., used in Wide Residual Networks
Label smoothing

- **Idea:** avoid overly confident predictions, account for label noise
- When using softmax loss, replace hard 1 and 0 prediction targets with “soft” targets of $1 - \epsilon$ and $\frac{\epsilon}{C-1}$
- Used in Inception-v2 architecture
Outline

• Optimization
 • Mini-batch SGD
 • Learning rate decay
 • Adaptive methods

• Massaging the numbers
 • Data augmentation
 • Data preprocessing
 • Weight initialization
 • Batch normalization

• Regularization
 • Classic regularization: L2 and L1
 • Dropout
 • Label smoothing

• Test time: ensembles, averaging predictions
Test time

- **Ensembles**: train multiple independent models, then average their predicted label distributions
 - Gives 1-2% improvement in most cases
 - Can take multiple snapshots of models obtained during training, especially if you *cycle* the learning rate (increase to jump out of local minima)

G. Huang et al., *Snapshot ensembles: Train 1, get M for free*, ICLR 2017
Test time

• Average predictions across multiple crops of test image
 • There is a more elegant way to do this with *fully convolutional networks* (FCNs)
Some take-aways

- Training neural networks is still a black art
- Process requires close “babysitting”
- For many techniques, the reasons why, when, and whether they work are in active dispute – read everything but don’t trust anything
- It all comes down to (principled) trial and error
- Further reading: A. Karpathy, A recipe for training neural networks