Variational autoencoders (VAEs)
Outline

• Basic VAE formulation
• Highlights of recent work
Recall: GANs

- **Training:**
 - Discriminator: low scores for fake data, high scores for real data
 - Generator: increase discriminator score on fake data
- **Test time:** discard discriminator and use generator to sample from learned distribution
Variational autoencoders: Overview

- Probabilistic formulation based on variational Bayes framework
- At training time, jointly learn encoder and decoder by maximizing (a bound on) the data likelihood
- At test time, discard encoder and use decoder to sample from the learned distribution

D. Kingma and M. Welling, Auto-Encoding Variational Bayes, ICLR 2014
Variational autoencoders: Overview

- Probabilistic generative model of the data distribution:

\[\text{Latent code} \quad z \quad \xrightarrow{ } \quad \text{Data point} \quad x \]

Sample \(z \) from prior \(p(z) \) (usually Gaussian)

Sample \(x \) from conditional \(p(x|z) \)

Try to approximate the conditional with neural network
Variational autoencoders: Overview

- At training time, jointly learn encoder and decoder
- **Encoder**: given inputs x, output $q_\phi(z \mid x)$
 - Specifically, output mean and (diagonal) covariance, or $\mu_{z|x}$ and $\Sigma_{z|x}$, so that $q_\phi(z \mid x) = \mathcal{N}(\mu_{z|x}, \Sigma_{z|x})$
- **Decoder**: given z, output $p_\theta(x \mid z)$
 - Specifically, output $\mu_{x|z}$ and $\Sigma_{x|z}$ so that $p_\theta(x \mid z) = \mathcal{N}(\mu_{x|z}, \Sigma_{x|z})$
- **Training objective**: (a bound on) data likelihood under the model
At test time, discard encoder and use decoder to sample from

\[p_\theta(x \mid z) = N(\mu_{x\mid z}, \Sigma_{x\mid z}) \]
Variational autoencoders: Training

- Objective: maximize the variational lower bound on the data likelihood:

\[
\log p_\theta(x) \geq \mathbb{E}_{z \sim q_\phi(z|x)}[\log p_\theta(x|z)] - D_{KL}(q_\phi(z|x), p(z))
\]

Adapted from J. Johnson
Variational autoencoders: Training

• Objective: maximize the \textit{variational lower bound} on the data likelihood:

\[
\log p_\theta(x) \geq \mathbb{E}_{z \sim q_\phi(z|x)}[\log p_\theta(x|z)] - D_{KL}(q_\phi(z|x), p(z))
\]

1. Run training point \(x\) through encoder to get a distribution over latent codes \(z\)

Adapted from J. Johnson
Variational autoencoders: Training

- Objective: maximize the variational lower bound on the data likelihood:

\[
\log p_\theta(x) \geq \mathbb{E}_{z \sim q_\phi(z|x)}[\log p_\theta(x|z)] - D_{KL}(q_\phi(z|x), p(z))
\]

1. Run training point \(x\) through encoder to get a distribution over latent codes \(z\)

2. Encoder output should match the prior \(p(z)\)
 - Closed form expression when \(q_\phi\) is diagonal Gaussian and \(p\) is unit Gaussian (Assume \(z\) has dimension \(J\)):
 \[
 -D_{KL}(q_\phi(z|x), p(z)) = \sum_{j=1}^{J} \left(1 + \log \left(\Sigma_{z|x} \right)_j^2 - \left(\mu_{z|x} \right)_j^2 - \left(\Sigma_{z|x} \right)_j^2 \right)
 \]

Adapted from J. Johnson
Variational autoencoders: Training

- Objective: maximize the *variational lower bound* on the data likelihood:

\[
\log p_\theta(x) \geq \mathbb{E}_{z \sim q_\phi(z|x)}[\log p_\theta(x|z)] - D_{KL}(q_\phi(z|x), p(z))
\]

1. Run training point \(x \) through encoder to get a distribution over latent codes \(z \)
2. Encoder output should match the prior \(p(z) \)
3. Sample code \(z \) from encoder output

Adapted from J. Johnson
Variational autoencoders: Training

- Objective: maximize the \textit{variational lower bound} on the data likelihood:

\[
\log p_\theta(x) \geq \mathbb{E}_{z \sim q_\phi(z|x)}[\log p_\theta(x|z)] - D_{KL}(q_\phi(z|x), p(z))
\]

1. Run training point x through encoder to get a distribution over latent codes z
2. Encoder output should match the prior $p(z)$
3. Sample code z from encoder output
4. Run sampled z through decoder to get a distribution over data samples

Adapted from J. Johnson
Variational autoencoders: Training

• Objective: maximize the *variational lower bound* on the data likelihood:

\[
\log p_\theta(x) \geq \mathbb{E}_{z \sim q_\phi(z|x)}[\log p_\theta(x|z)] - D_{KL}(q_\phi(z|x), p(z))
\]

1. Run training point \(x\) through encoder to get a distribution over latent codes \(z\)
2. Encoder output should match the prior \(p(z)\)
3. Sample code \(z\) from encoder output
4. Run sampled \(z\) through decoder to get a distribution over data samples
5. Original input should be likely under the distribution output in (4)

Adapted from J. Johnson
Variational autoencoders: Training

- Objective: maximize the variational lower bound on the data likelihood:

\[
\log p_\theta(x) \geq \mathbb{E}_{z \sim q_\phi(z|x)}[\log p_\theta(x|z)] - D_{KL}(q_\phi(z|x), p(z))
\]

Data likelihood - Regularization
Variational autoencoders: Training

• Objective: maximize the \textit{variational lower bound} on the data likelihood:

$$
\log p_\theta(x) \geq \mathbb{E}_{z \sim q_\phi(z|x)}[\log p_\theta(x|z)] - D_{KL}(q_\phi(z|x), p(z))
$$

\text{Data likelihood} \hspace{2cm} \text{Regularization}

• Objective for the entire dataset:

$$
\mathbb{E}_{x \sim D} \left[\mathbb{E}_{z \sim q_\phi(z|x)}[\log p_\theta(x|z)] - D_{KL}(q_\phi(z|x), p(z)) \right]
$$

For further details, see: C. Doersch, \textit{Tutorial on Variational Autoencoders}, 2016
Original results

- Learned 2D manifolds:

Variational autoencoders: Generating data
Basic VAE framework: Summary

- Pros:
 - Principled mathematical formalism for generative models
 - Allows inference of code given image, can be useful for controlling the latent space
- Cons:
 - Samples blurrier and lower quality compared to GANs
- Active areas of research:
 - More powerful and flexible approximations for relevant probability distributions
 - Combining VAEs and GANs
 - Incorporating structure in latent variables, e.g., hierarchical or categorical distributions

Adapted from J. Johnson
Combining VAEs and GANs

• Define decoder probability model $p_\theta(x|z)$ not in terms of reconstruction errors in pixel space, but in terms of errors in discriminator feature space.

Combining VAEs and GANs: BicycleGANs

Combining VAEs and GANs: BicycleGANs

• Key ideas:
 • Image-to-image translation is a one-to-many problem. Need to model conditional distribution of output given input parametrized by z.
 • To prevent mode collapse (or many-to-one mapping from z to output), need to encourage the mapping between output and latent code to be invertible.
 • Propose BicycleGAN framework to simultaneously learn mappings in both directions.

Combining VAEs and GANs: BicycleGANs

Toward Multimodal Image-to-Image Translation, NIPS 2017
Generating better samples: VQ-VAE-2

- Combining VAE and autoregressive models:

 Train a VAE-like model to generate multiscale grids of latent codes
 Use a multiscale autoregressive model (PixelCNN) to sample in latent code space

A. Razavi, A. van den Oord, O. Vinyals, **Generating Diverse High-Fidelity Images with VQ-VAE-2**, NeurIPS 2019
Generating better samples: VQ-VAE-2

- 256 x 256 class-conditional samples, trained on ImageNet:
Generating better samples: VQ-VAE-2

- 256 x 256 class-conditional samples, trained on ImageNet:
Generating better samples: VQ-VAE-2

- 1024 x 1024 generated faces, trained on FFHQ:
Generating better samples: Hierarchical VAE

Figure 1: 256×256-pixel samples generated by NVAE, trained on CelebA HQ [28].

Combining VAEs and transformers: DALL-E

- Train an encoder similar to VQ-VAE to compress images to 32x32 grids of discrete tokens (each assuming 8192 values)
- Concatenate with text strings, learn a joint sequential transformer model that can be used to generate image based on text prompt

A. Ramesh et al., Zero-Shot Text-to-Image Generation, arXiv 2021
https://openai.com/blog/dall-e/