Everything you’ve ever wanted to know about linear classifiers (Part 1)
Outline

- Examples of classification models: nearest neighbor, linear
- Empirical loss minimization framework
- Linear classification models
 1. Linear regression
 2. Logistic regression
 3. Perceptron training algorithm
 4. Support vector machines
Recall: The basic *supervised learning* framework

\[y = f(x) \]

- **Training** (or **learning**): given a *training set* of labeled examples \(\{(x_1, y_1), \ldots, (x_N, y_N)\} \), instantiate a predictor \(f \)
- **Testing** (or **inference**): apply \(f \) to a new *test example* \(x \) and output the predicted value \(y = f(x) \)
Nearest neighbor classifier

\[f(x) = \text{label of the training example nearest to } x \]

- All we need is a distance function for our inputs
- No training required!
K-nearest neighbor classifier

- For a new point, find the k closest points from training data
- Vote for class label with labels of the k points
K-nearest neighbor classifier

- For a new point, find the k closest points from training data
- Vote for class label with labels of the k points
- What advantage does k-NN have over 1-NN?

Source: http://cs231n.github.io/classification/
K-nearest neighbor classifier

- Nearest neighbors of images based on raw pixel values:

Left: Example images from the CIFAR-10 dataset. Right: first column shows a few test images and next to each we show the top 10 nearest neighbors in the training set according to pixel-wise difference.

Source: http://cs231n.github.io/classification/
Linear classifier

- Find a *linear function* to separate the classes:

\[
 f(x) = \text{sgn}(w^{(1)} x^{(1)} + w^{(2)} x^{(2)} + \cdots + w^{(D)} x^{(D)} + b) = \text{sgn}(w \cdot x + b)
\]
Visualizing linear classifiers

Seismic data classification

- Body wave magnitude
- Surface wave magnitude

Earthquakes
Nuclear explosions
Visualizing linear classifiers

Source: http://cs231n.github.io/linear-classify/
Linear classifiers: Outline

• Examples of classification models: nearest neighbor, linear
• Empirical loss minimization framework
• Linear classification models
 1. Linear regression
 2. Logistic regression
 3. Perceptron training algorithm
 4. Support vector machines
Linear classifier: Perceptron view

Input

\[x^{(1)} \]
\[x^{(2)} \]
\[x^{(3)} \]
\[\vdots \]
\[x^{(D)} \]

Weights

\[w^{(1)} \]
\[w^{(2)} \]
\[w^{(3)} \]
\[\vdots \]
\[w^{(D)} \]

Output: \(\text{sgn}(w \cdot x + b) \)
Loose inspiration: Biological neurons
Perceptrons, linear separability, Boolean functions

- x^1 and x^2
- x^1 or x^2
- x^1 xor x^2
NN vs. linear classifiers: Pros and cons

- **NN pros:**
 - Simple to implement
 - Decision boundaries not necessarily linear
 - Works for any number of classes
 - *Nonparametric* method

- **NN cons:**
 - Need good distance function
 - Slow at test time

- **Linear pros:**
 - Low-dimensional *parametric* representation
 - Very fast at test time

- **Linear cons:**
 - Works for two classes
 - How to train the linear function?
 - What if data is not linearly separable?
Outline

- Examples of classification models: nearest neighbor, linear
- Empirical loss minimization framework
Empirical loss minimization

• Let’s formalize the setting for learning of a parametric model in a supervised scenario
Empirical loss minimization

- Given: training data \(\{(x_i, y_i), i = 1, \ldots, n\} \)
- Find: predictor \(f \)
- Goal: make good predictions \(\hat{y} = f(x) \) on test data

Source: Y. Liang
Empirical loss minimization

• Given: training data \{ (x_i, y_i), i = 1, ..., n \}
• Find: predictor f
• Goal: make good predictions $\hat{y} = f(x)$ on test data

Source: Y. Liang
Empirical loss minimization

• Given: training data \(\{(x_i, y_i), i = 1, \ldots, n\} \)
• Find: predictor \(f \in \mathcal{H} \)
• Goal: make good predictions \(\hat{y} = f(x) \) on test data

Source: Y. Liang
Empirical loss minimization

• Given: training data \{(x_i, y_i), i = 1, ..., n\}
• Find: predictor \(f \in \mathcal{H} \)
• Goal: make good predictions \(\hat{y} = f(x) \) on test data

Source: Y. Liang
Empirical loss minimization

- Given: training data \(\{(x_i, y_i), i = 1, \ldots, n\} \) i.i.d. from distribution \(D \)
- Find: predictor \(f \in \mathcal{H} \)
- Goal: make good predictions \(\hat{y} = f(x) \) on test data i.i.d. from distribution \(D \)

Source: Y. Liang
Empirical loss minimization

- Given: training data \(\{(x_i, y_i), i = 1, ..., n\} \) i.i.d. from distribution \(D \)
- Find: predictor \(f \in \mathcal{H} \)
- Goal: make good predictions \(\hat{y} = f(x) \) on test data i.i.d. from distribution \(D \)

What kind of performance measure?

Source: Y. Liang
Empirical loss minimization

• Given: training data \(\{(x_i, y_i), i = 1, ..., n\} \) i.i.d. from distribution \(D \)
• Find: predictor \(f \in \mathcal{H} \)
• S.t. the \textit{expected loss} is small:

\[
L(f) = \mathbb{E}_{(x,y) \sim D}[l(f, x, y)]
\]

Source: Y. Liang
Empirical loss minimization

- Given: training data \{({x_i, y_i}), i = 1, ..., n\} i.i.d. from distribution \(D\)
- Find: predictor \(f \in \mathcal{H}\)
- S.t. the expected loss is small:
 \[L(f) = \mathbb{E}_{(x, y) \sim D} [l(f, x, y)] \]
- Example losses:
 0 – 1 loss: \(l(f, x, y) = \mathbb{I}[f(x) \neq y]\) and \(L(f) = \Pr[f(x) \neq y]\)
 \(l_2\) loss: \(l(f, x, y) = [f(x) - y]^2\) and \(L(f) = \mathbb{E} [[f(x) - y]^2]\)

Source: Y. Liang
Empirical loss minimization

• Given: training data \(\{(x_i, y_i), i = 1, \ldots, n\} \) i.i.d. from distribution \(D \)
• Find: predictor \(f \in \mathcal{H} \)
• S.t. the expected loss is small:
\[
L(f) = \mathbb{E}_{(x,y) \sim D}[l(f, x, y)]
\]

Can’t optimize this directly

Source: Y. Liang
Empirical loss minimization

- Given: training data \(\{(x_i, y_i), i = 1, \ldots, n\} \) i.i.d. from distribution \(D \)
- Find: predictor \(f \in \mathcal{H} \) that minimizes

\[
\hat{L}(f) = \frac{1}{n} \sum_{i=1}^{n} l(f, x_i, y_i)
\]

Source: Y. Liang
Supervised learning in a nutshell

1. **Collect** *training data* and labels
2. **Specify model:** select *hypothesis class* and *loss function*
3. **Train model:** find the function in the hypothesis class that minimizes the *empirical loss* on the training data
Outline

• Example classification models: nearest neighbor, linear
• Empirical loss minimization
• Linear classification models
 1. Linear regression
 2. Logistic regression
 3. Perceptron training algorithm
 4. Support vector machines
Training linear classifiers

• Given: i.i.d. training data \(\{(x_i, y_i), i = 1, ..., n\} \),
 \(y_i \in \{-1, 1\} \)

• Hypothesis class: \(f_w(x) = \text{sgn}(w^T x) \)

• Classification with bias, i.e. \(f_w(x) = \text{sgn}(w^T x + b) \),
 can be reduced to the case w/o bias by letting
 \(\tilde{w} = [w; b] \) and \(\tilde{x} = [x; 1] \)

Source: Y. Liang
Training linear classifiers

- Given: i.i.d. training data \(\{(x_i, y_i), i = 1, ..., n\}\),
 \(y_i \in \{-1, 1\}\)
- Hypothesis class: \(f_w(x) = \text{sgn}(w^T x)\)
- Loss: how about minimizing the number of mistakes on the training data?
 \[
 \hat{L}(f_w) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}[\text{sgn}(w^T x_i) \neq y_i]
 \]
- Difficult to optimize directly (NP-hard), so people resort to surrogate loss functions

Source: Y. Liang
Linear regression ("straw man" model)

- Find $f_w(x) = w^T x$ that minimizes l_2 loss or *mean squared error*

$$
\hat{L}(f_w) = \frac{1}{n} \sum_{i=1}^{n} (w^T x_i - y_i)^2
$$

- Ignores the fact that $y \in \{-1,1\}$ but is easy to optimize

Source: Y. Liang
Linear regression: Optimization

Let X be a matrix whose ith row is x_i^T, Y be the vector $(y_1, \ldots, y_n)^T$

$$
\hat{L}(f_w) = \frac{1}{n} \sum_{i=1}^{n} (w^T x_i - y_i)^2 = \|Xw - Y\|_2^2
$$

Source: Y. Liang
Linear regression: Optimization

• Let X be a matrix whose ith row is x_i^T, Y be the vector $(y_1, ..., y_n)^T$

$$\hat{L}(f_w) = \frac{1}{n} \sum_{i=1}^{n} (w^T x_i - y_i)^2 = \|Xw - Y\|_2^2$$

• This is a convex function of the weights

Source: Y. Liang
Linear regression: Optimization

- Let X be a matrix whose ith row is x_i^T, Y be the vector $(y_1, \ldots, y_n)^T$

\[
\hat{L}(f_w) = \frac{1}{n} \sum_{i=1}^{n} (w^T x_i - y_i)^2 = \|Xw - Y\|_2^2
\]

- Find the gradient w.r.t. w:
\[
\nabla_w \|Xw - Y\|_2^2
\]

Source: Y. Liang
Linear regression: Optimization

• Let X be a matrix whose ith row is x_i^T, Y be the vector $(y_1, \ldots, y_n)^T$

$$\hat{L}(f_w) = \frac{1}{n} \sum_{i=1}^{n} (w^T x_i - y_i)^2 = \|Xw - Y\|_2^2$$

• Find the gradient w.r.t. w:

$$\nabla_w \|Xw - Y\|_2^2 = \nabla_w [(Xw - Y)^T (Xw - Y)]$$

$$= \nabla_w [w^T X^T Xw - 2 w^T X^T Y + Y^T Y]$$

$$= 2 X^T Xw - 2 X^T Y$$

• Set gradient to zero to get the minimizer:

$$X^T Xw = X^T Y$$

$$w = (X^T X)^{-1} X^T Y$$

Source: Y. Liang
Linear regression: Optimization

- Linear algebra view
 - If X is invertible, simply solve $Xw = Y$ and get $w = X^{-1}Y$
 - But typically X is a “tall” matrix so you need to find the least squares solution to an over-constrained system

\[
\begin{align*}
X & \quad w \\
\quad & \quad Y
\end{align*}
\]

\[
\begin{align*}
X^T X & \quad w \\
= & \quad X^T y
\end{align*}
\]

Normal equation: $w = (X^T X)^{-1}X^T y$

Source: Y. Liang
Linear regression as maximum likelihood estimation

- Interpretation of l_2 loss: *negative log likelihood* assuming y is normally distributed with mean $f_w(x) = w^T x + b$
Maximum likelihood estimation

• Given: i.i.d. training data \(\{(x_i, y_i), i = 1, ..., n\} \)
• Let \(\{P_\theta(y|x), \theta \in \Theta\} \) be a family of distributions parameterized by \(\theta \)
• Maximum (conditional) likelihood estimate:
 \[
 \theta_{ML} = \arg\max_\theta \prod_i P_\theta(y_i|x_i) \\
 = \arg\min_\theta - \sum_i \log P_\theta(y_i|x_i)
 \]
Maximum likelihood estimation

\[\theta_{ML} = \text{argmin}_\theta - \sum_i \log P_\theta(y_i|x_i) \]

- Assume \(P_\theta(y|x) = \text{Normal}(y; f_\theta(x), \sigma^2) \)

\[
\log P_\theta(y|x) = \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(y - f_\theta(x))^2}{2\sigma^2} \right] \right] \\
= -\frac{1}{2\sigma^2} (y - f_\theta(x))^2 - \log \sigma - \frac{1}{2} \log(2\pi) \\
\theta_{ML} = \text{argmin}_\theta \sum_i (y_i - f_\theta(x_i))^2 \]
Linear regression as maximum likelihood estimation

• Interpretation of l_2 loss: *negative log likelihood* assuming y is normally distributed with mean $f_w(x) = w^T x + b$

- Does this make sense for binary classification?
Problem with linear regression

- In practice, very sensitive to outliers
Problem with linear regression

- In practice, very sensitive to outliers
Next idea

• Instead of a linear function, how about we fit a *sigmoid function* representing the *confidence* of the classifier?

\[P(y = 1|x) \]
Linear classifiers: Outline

• Example classification models: nearest neighbor, linear
• Empirical loss minimization
• Linear classification models
 1. Linear regression (least squares)
 2. Logistic regression
Logistic regression

- Let’s learn a probabilistic classifier estimating the probability of the input x having a positive label, given by putting a **sigmoid function** around the linear response $w^T x$:

$$P_w(y = 1|x) = \sigma(w^T x) = \frac{1}{1+\exp(-w^T x)}$$
Sigmoid: Properties

\[P_w(y = 1|x) = \sigma(w^T x) = \frac{1}{1 + \exp(-w^T x)} \]

- What is the range?
- What is \(\sigma(0) \)?
- What is \(P_w(y = -1|x) \)?
Sigmoid: Properties

$P_w(y = 1|x) = \sigma(w^T x) = \frac{1}{1 + \exp(-w^T x)}$

• What is the range?
• What is $\sigma(0)$?
• What is $P_w(y = -1|x)$?

$P_w(y = -1|x) = 1 - P_w(y = 1|x) = 1 - \sigma(w^T x)$

$= \frac{1 + \exp(-w^T x) - 1}{1 + \exp(-w^T x)} = \frac{\exp(-w^T x)}{1 + \exp(-w^T x)} = \frac{1}{\exp(w^T x) + 1}$

$= \sigma(-w^T x)$
Sigmoid: Properties

\[P_w(y = 1|x) = \sigma(w^T x) = \frac{1}{1 + \exp(-w^T x)} \]

- Sigmoid is symmetric: \(1 - \sigma(t) = \sigma(-t) \)
Sigmoid: Properties

\[P_w(y = 1|x) = \sigma(w^T x) = \frac{1}{1 + \exp(-w^T x)} \]

- What happens if we scale \(w \) by a constant?
Sigmoid: Properties

\[P_w(y = 1|x) = \sigma(w^T x) = \frac{1}{1 + \exp(-w^T x)} \]

• What happens if we scale \(w \) by a constant?
Sigmoid: Interpretation

• We can write out the connection between the posteriors $P(y|x)$ and the class-conditional densities $P(x|y)$:

\[
P(y = 1|x) = \frac{P(x|y = 1)P(y = 1)}{P(x)}
\]

\[
= \frac{P(x|y = 1)P(y = 1)}{P(x|y = 1)P(y = 1) + P(x|y = -1)P(y = -1)}
\]

\[
= \frac{1}{1 + \exp(-a)} = \sigma(a), \quad a = \log \frac{P(y = 1|x)}{P(y = -1|x)}
\]
Sigmoid: Interpretation

• Adopting a linear + sigmoid model is equivalent to assuming linear log odds:

\[
\log \frac{P(y = 1|x)}{P(y = -1|x)} = w^T x + b
\]

• This happens when \(P(x|y = 1) \) and \(P(x|y = -1) \) are Gaussians with different means and the same covariance matrices \((w \) is related to the difference between the means)
Logistic loss

• Given: \{(x_i, y_i), i = 1, ..., n\}, \(y_i \in \{-1, 1\}\)
• Maximum (conditional) likelihood estimate: find \(w\) that minimizes

\[
\hat{L}(w) = -\frac{1}{n} \sum_{i=1}^{n} \log P_w(y_i | x_i)
\]

\[
l(w, x_i, y_i) = -\log P_w(y_i | x_i)
\]

• If \(y_i = 1\):

\[
P_w(y_i | x_i) = \sigma(w^T x_i)
\]

• If \(y_i = -1\):

\[
P_w(y_i | x_i) = 1 - \sigma(w^T x_i) = \sigma(-w^T x_i)
\]

• Thus,

\[
l(w, x_i, y_i) = -\log \sigma(y_i w^T x_i)
\]
Logistic loss

\[l(w, x_i, y_i) = -\log \sigma(y_i w^T x_i) \]
Logistic loss: Optimization

• Given: \{ (x_i, y_i), i = 1, ..., n \}, \ y_i \in \{-1,1\}

• Find \(w \) that minimizes

\[
\hat{L}(w) = -\frac{1}{n} \sum_{i=1}^{n} \log P_w(y_i|x_i)
\]

• There is no closed-form expression for the minimum and we need to use gradient descent to find it
Gradient descent

• Goal: find w to minimize loss $\hat{L}(w)$
• Start with some initial estimate of w
• At each step, find $\nabla\hat{L}(w)$, the gradient of the loss w.r.t. w, and take a small step in the opposite direction

 $$w \leftarrow w - \eta \nabla\hat{L}(w)$$
Gradient descent

- Goal: find w to minimize loss $\hat{L}(w)$
- Start with some initial estimate of w
- At each step, find $\nabla \hat{L}(w)$, the gradient of the loss w.r.t. w, and take a small step in the opposite direction
 \[w \leftarrow w - \eta \nabla \hat{L}(w) \]
- Note: step size plays a crucial role (to be revisited later)
Gradient descent

- Goal: find w to minimize loss $\hat{L}(w)$
- Start with some initial estimate of w
- At each step, find $\nabla\hat{L}(w)$, the gradient of the loss w.r.t. w, and take a small step in the opposite direction
 \[w \leftarrow w - \eta \nabla\hat{L}(w) \]
- Since $\hat{L}(w) = \frac{1}{n} \sum_{i=1}^{n} l(w, x_i, y_i)$, we have
 \[\nabla\hat{L}(w) = \frac{1}{n} \sum_{i=1}^{n} \nabla l(w, x_i, y_i) \]
- For a single parameter update, need to cycle through the entire training set!
 - This is also called a *batch* update
Stochastic gradient descent (SGD)

• At each iteration, take a single data point \((x_i, y_i)\) and perform a parameter update using \(\nabla l(w, x_i, y_i)\), the gradient of the loss for that point:

\[
 w \leftarrow w - \eta \nabla l(w, x_i, y_i)
\]

• This is called an online or stochastic update

• In practice, mini-batch SGD is typically used:
 • Group data into mini-batches of size \(b\)
 • Compute gradient of the loss for the mini-batch \((x_1, y_1), \ldots, (x_b, y_b)\):
 \[
 \nabla \hat{L} = \frac{1}{b} \sum_{i=1}^{b} \nabla l(w, x_i, y_i)
 \]
 • Update parameters: \(w \leftarrow w - \eta \nabla \hat{L}\)
SGD for logistic regression

\[l(w, x_i, y_i) = -\log \sigma(y_i w^T x_i) \]

- Let’s find the gradient:
 \[
 \nabla l(w, x_i, y_i) = -\nabla_w \log \sigma(y_i w^T x_i)
 \]
 \[
 = -\frac{\nabla_w \sigma(y_i w^T x_i)}{\sigma(y_i w^T x_i)}
 \]

- Derivative of log:
 \[
 \left[\log(g(a)) \right]' = \frac{g'(a)}{g(a)}
 \]
SGD for logistic regression

\[l(w, x_i, y_i) = -\log \sigma(y_i w^T x_i) \]

• Let’s find the gradient:

\[
\nabla l(w, x_i, y_i) = -\nabla_w \log \sigma(y_i w^T x_i)
\]

\[
= -\frac{\nabla_w \sigma(y_i w^T x_i)}{\sigma(y_i w^T x_i)}
\]

\[
= -\frac{\sigma(y_i w^T x_i)\sigma(-y_i w^T x_i)y_i x_i}{\sigma(y_i w^T x_i)}
\]

Derivative of sigmoid:

\[\sigma'(a) = \sigma(a)(1 - \sigma(a)) = \sigma(a)\sigma(-a) \]
SGD for logistic regression

\[l(w, x_i, y_i) = -\log \sigma(y_iw^Tx_i) \]

- Let’s find the gradient:
 \[
 \nabla l(w, x_i, y_i) = -\nabla_w \log \sigma(y_iw^Tx_i) \\
 = -\frac{\nabla_w \sigma(y_iw^Tx_i)}{\sigma(y_iw^Tx_i)} \\
 = -\frac{\sigma(y_iw^Tx_i)\sigma(-y_iw^Tx_i)y_ix_i}{\sigma(y_iw^Tx_i)}
 \]

- We also used the *chain rule*: \[[g_2(g_1(a))]' = g_2'(g_1(a))g_1'(a) \]
SGD for logistic regression

\[l(w, x_i, y_i) = -\log \sigma(y_i w^T x_i) \]

- Let’s find the gradient:
 \[
 \nabla l(w, x_i, y_i) = -\nabla_w \log \sigma(y_i w^T x_i)
 \]
 \[
 \nabla_w \sigma(y_i w^T x_i)
 \]
 \[
 = -\frac{\nabla_w \sigma(y_i w^T x_i)}{\sigma(y_i w^T x_i)}
 \]
 \[
 \sigma(y_i w^T x_i) \sigma(-y_i w^T x_i) y_i x_i
 \]
 \[
 = -\frac{\sigma(y_i w^T x_i) \sigma(-y_i w^T x_i) y_i x_i}{\sigma(y_i w^T x_i)}
 \]
 \[
 = -\sigma(-y_i w^T x_i) y_i x_i
 \]

- SGD update:
 \[
 w \leftarrow w + \eta \sigma(-y_i w^T x_i) y_i x_i
 \]
SGD for logistic regression

• Let’s take a closer look at the SGD update:

\[w \leftarrow w + \eta \sigma(-y_i w^T x_i)y_i x_i \]

• What happens if \(x_i \) is incorrectly, but confidently, classified?
 • The update rule approaches \(w \leftarrow w + \eta y_i x_i \)

• What happens if \(x_i \) is correctly, and confidently, classified?
 • The update approaches zero (but never actually reaches zero)
SGD for logistic regression

• Logistic regression *does not converge* for linearly separable data!
 • Scaling \(w \) by ever larger constants makes the classifier more confident and keeps increasing the likelihood of the data