Introduction to deep reinforcement learning
Outline

• Introduction to reinforcement learning
• Markov Decision Process (MDP) formalism
• The Bellman equation
• Q-learning
• Deep Q networks (DQN)
• Extensions
 • Double DQN
 • Dueling DQN
Reinforcement learning (RL)

- Setting: agent that can take *actions* affecting the *state* of the environment and observe occasional *rewards* that depend on the state
- Goal: learn a *policy* (mapping from states to actions) to maximize expected reward over time
Example applications of deep RL

• Playing games

Example applications of deep RL

• Playing games

https://deepmind.com/research/alphago/
Sensorimotor learning

Example applications of deep RL

- Improving large language models

L. Ouyang et al. Training language models to follow instructions with human feedback. NeurIPS 2022
Formalism: Markov Decision Processes

- Components:
 - **States** s, beginning with initial state s_0
 - **Actions** a
 - **Transition model** $P(s' | s, a)$
 - *Markov assumption*: the probability of going to s' from s depends only on s and a and not on any other past actions or states
 - **Reward function** $r(s)$
 - **Policy** $\pi(s)$: the action that an agent takes in any given state
 - The “solution” to an MDP
Example MDP: Grid world

\[r(s) = -0.04 \text{ for every non-terminal state} \]

Source: P. Abbeel and D. Klein
Example MDP: Grid world

• Goal: find the best policy

Source: P. Abbeel and D. Klein
Example MDP: Grid world

• Optimal policies for various values of $r(s)$:

- $R(s) < -1.6284$
- $-0.4278 < R(s) < -0.0850$
- $-0.0221 < R(s) < 0$
- $R(s) > 0$
Reinforcement learning loop

- From state s, take action a determined by policy $\pi(s)$
- Environment selects next state s' based on transition model $P(s'|s, a)$
- Observe s' and reward $r(s')$, update policy

- Compare: SGD loop
 - Get input x_i sampled i.i.d. from data distribution
 - Use model with parameters w to predict output y
 - Observe target output y_i and loss $l(w, x_i, y_i)$
 - Update w to reduce loss: $w \leftarrow w - \eta \nabla l(w, x_i, y_i)$
RL vs. supervised learning

- **Reinforcement learning**
 - Agent’s actions affect the environment and help to determine next observation
 - Rewards may be sparse
 - Rewards are *not differentiable* w.r.t. model parameters

- **Supervised learning**
 - Next input does not depend on previous inputs or agent’s predictions
 - There is a supervision signal at every step
 - Loss is differentiable w.r.t. model parameters
Solving MDPs

• Components:
 • **States** s, beginning with initial state s_0
 • **Actions** a
 • **Transition model** $P(s' \mid s, a)$
 – *Markov assumption*: the probability of going to s' from s depends only on s and a and not on any other past actions or states
 • **Reward function** $r(s)$
 • **Policy** $\pi(s)$: the action that an agent takes in any given state
 • The “solution” to an MDP
 • But how to find this solution?
Cumulative rewards of state sequences

- Suppose that following policy π starting in state s_0 leads to a sequence or trajectory $\tau = (s_0, s_1, s_2, ...)$
- How do we define the cumulative reward of this trajectory?
- **Problem:** the sum of rewards of individual states grows is not normalized w.r.t. sequence length and can even be infinite
- **Solution:** define cumulative reward as sum of rewards discounted by a factor γ, $0 < \gamma \leq 1$
Discounting

• **Discounted cumulative reward** of trajectory $\tau = (s_0, s_1, s_2, s_3, ...)$:

$$r(s_0, s_1, s_2, s_3, ...) = r(s_0) + \gamma r(s_1) + \gamma^2 r(s_2) + \gamma^3 r(s_3) + \cdots = \sum_{t \geq 0} \gamma^t r(s_t)$$

• Sum is bounded by $\frac{r_{\text{max}}}{1-\gamma}$ (assuming $0 < \gamma \leq 1$)

• Helps algorithms converge

• Notice:

$$r(s_0, s_1, s_2, s_3, ...) = r(s_0) + \gamma r(s_1, s_2, s_3, ...)$$

Cumulative reward of trajectory starting at s_0 \hspace{1cm} Reward at s_0 \hspace{1cm} Discounted reward of trajectory starting at s_1
Value function

- The value function $V^\pi(s)$ of a state s w.r.t. policy π is the expected cumulative reward of following that policy starting in s:

$$V^\pi(s) = \mathbb{E}_\tau[r(\tau) | s_0 = s, \pi]$$

where τ is a trajectory with starting state s, actions given by π, and successor states drawn according to transition model: $s_{t+1} \sim P(\cdot | s_t, a_t)$

- The optimal value of a state is the value achievable by following the best possible policy:

$$V^*(s) = \max_\pi V^\pi(s)$$
The optimal policy

- How do we express the optimal policy in terms of optimal state values?
The optimal policy

- How do we express the optimal policy in terms of optimal state values?
The optimal policy

- How do we express the optimal policy in terms of optimal state values?
 - Take the action that maximizes the expected future cumulative value:

\[\pi^*(s) = \arg \max_a \mathbb{E}_{s' \sim P(\cdot|s,a)} V^*(s') \]
The Bellman equation

\[V^*(s) = r(s) + \gamma \max_a \mathbb{E}_{s' \sim P(\cdot | s, a)} V^*(s') \]

- Agent receives reward \(r(s) \)
- Agent chooses action \(a \)
- Environment chooses \(s' \sim P(\cdot | s, a) \)

Optimal policy:

\[\pi^*(s) = \arg \max_a \mathbb{E}_{s' \sim P(\cdot | s, a)} V^*(s') \]
The Bellman equation

\[V^*(s) = r(s) + \gamma \max_a \mathbb{E}_{s' \sim P(.|s,a)} V^*(s') \]

- It’s a recursive relationship between optimal values of successive states!
Outline

• Introduction to reinforcement learning
• Markov Decision Process (MDP) formalism
• The Bellman equation
• Q-learning
Q-learning

• To choose actions using value functions, we need to know the transition model:

\[
\pi^*(s) = \arg\max_a \mathbb{E}_{s' \sim P(\cdot|s, a)} V^*(s')
= \arg\max_a \sum_{s'} P(s'|s, a) V^*(s')
\]

• It is more convenient to define the value of a state-action pair:

\[
Q^\pi(s, a) = \mathbb{E}_\tau[r(\tau)|s_0 = s, a_0 = a, \pi]
\]

• Then the optimal policy is given by

\[
\pi^*(s) = \arg\max_a Q^*(s, a)
\]
Q-value function: Example
Bellman equation for Q-values

- Relationship between regular values and Q-values:
 \[V^*(s) = \max_a Q^*(s, a) \]

- Regular Bellman equation:
 \[V^*(s) = r(s) + \gamma \max_a \mathbb{E}_{s' \sim P(\cdot | s, a)} V^*(s') \]

- Bellman equation for Q-values:
 \[Q^*(s, a) = r(s) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} \max_{a'} Q^*(s', a') \]
 \[= \mathbb{E}_{s' \sim P(\cdot | s, a)} [r(s) + \gamma \max_{a'} Q^*(s', a')] \]
Finding the optimal policy

- The Bellman equation is a constraint on Q-values of successive states:

\[Q^*(s, a) = \mathbb{E}_{s' \sim P(\cdot|s, a)} [r(s) + \gamma \max_{a'} Q^*(s', a')|s, a] \]

- We could think of \(Q^*(s, a) \) as a table indexed by states and actions, and try to solve the system of Bellman equations to fill in the unknown values of the table

- **Problem**: state spaces for interesting problems are huge

- **Solution**: approximate Q-values using a parametric function:

\[Q^*(s, a) \approx Q_w(s, a) \]
RL: Outline

• Introduction to reinforcement learning
• Markov Decision Process (MDP) formalism and classical Bellman equation
• Q-learning
• Deep Q networks
Deep Q-learning

- Train a deep neural network to estimate Q-values:

\[Q(s,a_1,w) \cdots Q(s,a_m,w) \]

Source: D. Silver

Deep Q-learning

\[Q^*(s, a) = \mathbb{E}_{s' \sim P(\cdot|s,a)} [r(s) + \gamma \max_{a'} Q^*(s', a')|s,a] \]

- Idea: at each step of training, update model parameters \(w \) to “nudge” the left-hand side toward the right-hand “target”:

\[y_{\text{target}}(s, a) = \mathbb{E}_{s' \sim P(\cdot|s,a)} [r(s) + \gamma \max_{a'} Q_{\text{target}}(s', a')|s,a] \]

- Loss function:

\[L(w) = \mathbb{E}_{s,a} [(y_{\text{target}}(s, a) - Q_w(s, a))^2] \]
Deep Q-learning

- **Target:** \(y_{\text{target}}(s, a) = \mathbb{E}_{s' \sim P(\cdot|s, a)} \left[r(s) + \gamma \max_{a'} Q_{\text{target}}(s', a') | s, a \right] \)
- **Loss:** \(L(w) = \mathbb{E}_{s, a \sim \rho} \left[(y_{\text{target}}(s, a) - Q_w(s, a))^2 \right] \)
- **Gradient update:**

\[
\nabla_w L(w) = \mathbb{E}_{s, a \sim \rho} \left[(y_{\text{target}}(s, a) - Q_w(s, a)) \nabla_w Q_w(s, a) \right]
= \mathbb{E}_{s, a \sim \rho, s'} \left[(r(s) + \gamma \max_{a'} Q_{\text{target}}(s', a') - Q_w(s, a)) \nabla_w Q_w(s, a) \right]

- **SGD training:** replace expectation by sampling transitions \((s, a, s')\) using *behavior distribution* and *experience replay*
Deep Q-learning algorithm

• At each time step:
 • Take action \(a_t \) according to \textit{epsilon}-greedy policy
 • Store experience \((s_t, a_t, r_{t+1}, s_{t+1})\) in \textit{replay memory buffer}

\[
\begin{array}{|c|c|c|c|}
\hline
S_1, a_1, r_2, S_2 \\
S_2, a_2, r_3, S_3 \\
S_3, a_3, r_4, S_4 \\
\vdots \\
S_t, a_t, r_{t+1}, S_{t+1} \\
\hline
\end{array}
\]

• Randomly sample \textit{mini-batch} of experiences from the buffer
• Perform gradient descent step on loss:
\[
L(w) = \mathbb{E}_{s,a,s'} \left[(r(s) + \gamma \max_{a'} Q_{\text{target}}(s', a') - Q_w(s, a))^2 \right]
\]
• Update target network every \(C \) steps
Deep Q-learning in Atari

Deep Q-learning in Atari

- End-to-end learning of $Q(s, a)$ from pixels s
- Output is $Q(s, a)$ for 18 joystick/button configurations
- Reward is change in score for that step
Deep Q-learning in Atari

- Input state is stack of raw pixels (grayscale) from last 4 frames
- Network architecture and hyperparameters fixed for all games
Deep Q-learning in Atari
Breakout demo

https://www.youtube.com/watch?v=TmPfTpjtdgg
Outline

• Introduction to reinforcement learning
• Markov Decision Process (MDP) formalism and classical Bellman equation
• Q-learning
• Deep Q networks
• Extensions
 • Double DQN
 • Dueling DQN
Extension: Double Q-learning

- Max operator in standard Q-learning is used both to select and evaluate an action, leading to systematic over-estimation of Q-values
- Modification: select action using the online (current) network, but evaluate Q-value using the target network
- Regular DQN target:
 \[y_{\text{target}}(s, a) = r(s) + \gamma \max_{a'} Q_{\text{target}}(s', a') \]
- Double DQN target:
 \[y_{\text{target}}(s, a) = r(s) + \gamma Q_{\text{target}}(s', \arg\max_{a'} Q_{w}(s', a')) \]

Double DQN results
Another extension: Dueling DQN

- Decompose estimation of Q-function into value and advantage functions

Dueling DQN

• Decompose estimation of Q-function into value and advantage functions

• Motivation: in many states, actions don’t meaningfully affect the environment, so it is not necessary to know the exact value of each action at each time step

Dueling DQN

- Decompose estimation of Q-function into value and advantage functions:

\[
Q(s, a) = V(s) + (A(s, a) - \max_{a'} A(s, a')) \quad \text{or} \\
Q(s, a) = V(s) + \left(A(s, a) - \frac{1}{|\mathcal{A}|} \sum_{a'} A(s, a') \right)
\]

Dueling DQN: Results

Improvements over prioritized DDQN baseline: