![]() |
Bridging the Imitation Gap by Adaptive Insubordination. L. Weihs*, U. Jain*, I.-J. Liu, J. Salvador, S. Lazebnik, A. Kembhavi, and A. Schwing. Advances in Neural Information Processing Systems, 2021. Project webpage |
![]() |
GridToPix: Training Embodied Agents with Minimal Supervision. U. Jain, I.-J. Liu, S. Lazebnik, A. Kembhavi, L. Weihs*, and A. Schwing*. International Conference on Computer Vision, 2021. Project webpage |
![]() |
Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents. S. Patel*, S. Wani*, U. Jain*, A. Schwing, S. Lazebnik, M. Savva, and A. X. Chang. International Conference on Computer Vision, 2021. Project webpage |
![]() |
Dressing in Order: Recurrent Person Image Generation for Pose Transfer, Virtual Try-on and Outfit Editing. A. Cui, D. McKee, and S. Lazebnik. International Conference on Computer Vision, 2021. Project webpage |
![]() |
Diverse and Accurate Image Description Using a Variational Auto-Encoder with an Additive Gaussian Encoding Space. L. Wang, A. Schwing, and S. Lazebnik. Advances in Neural Information Processing Systems, 2017. |
![]() |
Recurrent Models for Situation Recognition. A. Mallya and S. Lazebnik. International Conference on Computer Vision, 2017. |
![]() |
Phrase Localization and Visual Relationship Detection with Comprehensive Image-Language Cues. B. Plummer, A. Mallya, C. Cervantes, J. Hockenmaier, and S. Lazebnik. International Conference on Computer Vision, 2017. |
![]() |
Enhancing Video Summarization via Vision-Language Embedding. B. Plummer, M. Brown, and S. Lazebnik. IEEE Conference on Computer Vision and Pattern Recognition, 2017. |
![]() |
Flickr30k Entities: Collecting Region-to-Phrase Correspondences for Richer Image-to-Sentence Models. B. Plummer, L. Wang, C. Cervantes, J. Caicedo, J. Hockenmaier, and S. Lazebnik. International Journal of Computer Vision, vol. 123, no. 1, May 2017, pp. 74-93. Project webpage with data. |
![]() |
Solving Visual Madlibs with Multiple Cues. T. Tommasi, A. Mallya, B. Plummer, S. Lazebnik, A. Berg, and T. Berg. Proceedings of the British Machine Vision Conference, 2016. |
![]() |
Learning Models for Actions and Person-Object Interactions with Transfer to Question Answering. A. Mallya and S. Lazebnik. Proceedings of the European Conference on Computer Vision, 2016. |
![]() |
Learning Deep Structure-Preserving Image-Text Embeddings. L. Wang, Y. Li, and S. Lazebnik. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016. |
![]() |
Adaptive Object Detection Using Adjacency and Zoom Prediction. Y. Lu, T. Javidi, and S. Lazebnik. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016. Code on GitHub. |
![]() |
Flickr30k Entities: Collecting Region-to-Phrase Correspondences for Richer Image-to-Sentence Models. B. Plummer, L. Wang, C. Cervantes, J. Caicedo, J. Hockenmaier, and S. Lazebnik. International Conference on Computer Vision, 2015. Project webpage with data. |
![]() |
Learning Informative Edge Maps for Indoor Scene Layout Prediction. A. Mallya and S. Lazebnik. International Conference on Computer Vision, 2015. |
![]() |
Active Object Localization with Deep Reinforcement Learning. J. Caicedo and S. Lazebnik. International Conference on Computer Vision, 2015. Spotlight video with examples. |
![]() |
Where to Buy It: Matching Street Clothing Photos in Online Shops. H. Kiapour, X. Han, S. Lazebnik, A. Berg, and T. Berg. International Conference on Computer Vision, 2015. Project webpage. |
![]() |
Scene Parsing with Object Instance Inference Using Regions and Per-exemplar Detectors. J. Tighe, M. Niethammer, and S. Lazebnik. International Journal of Computer Vision, vol. 112, no. 2, April 2015, pp. 150-171. |
![]() |
Iterative Quantization: A Procrustean Approach to Learning Binary Codes for Large-Scale Image Retrieval. Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 12, December 2013, pp. 2916-2929. ITQ code. |
![]() |
Finding Things: Image Parsing with Regions and Per-Exemplar Detectors. J. Tighe and S. Lazebnik. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013. |
![]() |
Learning Binary Codes for High-dimensional Data Using Bilinear Projections. Y. Gong, S. Kumar, H. Rowley, and S. Lazebnik. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013. |
![]() |
Towards Open-Universe Image Parsing with Broad Coverage. J. Tighe and S. Lazebnik. Proceedings of IAPR International Conference on Machine Vision Applications, 2013, invited paper. |
![]() |
A Recursive Procedure for Density Estimation on the Binary Hypercube. M. Raginsky, J. Silva, S. Lazebnik, and R. Willett. Electronic Journal of Statistics, vol. 7, 2013, pp. 820-858. Open-access paper. |
![]() |
SuperParsing: Scalable Nonparametric Image Parsing with Superpixels. J. Tighe and S. Lazebnik. International Journal of Computer Vision, vol. 101, no. 2, January 2013, pp. 329-349. |
![]() |
Understanding Scenes on Many Levels. J. Tighe and S. Lazebnik. Proceedings of the IEEE International Conference on Computer Vision, 2011. |
![]() |
Scene Recognition and Weakly Supervised Object Localization with Deformable Part-Based Models. M. Pandey and S. Lazebnik. Proceedings of the IEEE International Conference on Computer Vision, 2011. |
![]() |
Iterative Quantization: A Procrustean Approach to Learning Binary Codes. Y. Gong and S. Lazebnik. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2011. ITQ code. |
![]() |
Comparing Data-Dependent and Data-Independent Embeddings for Classification and Ranking of Internet Images. Y. Gong and S. Lazebnik. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2011. |
![]() |
Modeling and Recognition of Landmark Image Collections Using Iconic Scene Graphs. R. Raguram, C. Wu, J.-M. Frahm, and S. Lazebnik. International Journal of Computer Vision, vol. 95, no. 3, December 2011, pp. 213-239. |
![]() |
SuperParsing: Scalable Nonparametric Image Parsing with Superpixels. J. Tighe and S. Lazebnik. Proceedings of the European Conference on Computer Vision, 2010. |
![]() |
Building Rome on a Cloudless Day. J.-M. Frahm, P. Georgel, D. Gallup, T. Johnson, R. Raguram, C. Wu, Y.-H. Jen, E. Dunn, B. Clipp, S. Lazebnik, and M. Pollefeys. Proceedings of the European Conference on Computer Vision, 2010. Video. |
![]() |
Fast Robust Large-scale Mapping from Video and Internet Photo Collections. J.-M. Frahm, M. Pollefeys, S. Lazebnik, C. Zach, D. Gallup, B. Clipp, R. Raguram, C. Wu, and T. Johnson. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 65, no. 6 (special issue on 100 years of ISPRS), 2010, pp. 538-549. |
![]() |
Fast Robust Reconstruction of Large Scale Environments. J.-M. Frahm, M. Pollefeys, S. Lazebnik, B. Clipp, D. Gallup, R. Raguram, and C. Wu. Conference on Information Sciences and Systems (CISS), 2010. |
![]() |
Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories. S. Lazebnik, C. Schmid, and J. Ponce. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, New York, June 2006, vol. II, pp. 2169-2178. MATLAB code, 15 scene category dataset. |
![]() |
Local, Semi-Local and Global Models for Texture, Object and Scene Recognition. S. Lazebnik. Ph.D. Dissertation, May 2006 (also Beckman CVR Technical Report 2006-01). Defense slides. |
![]() |
3D Object Modeling and Recognition Using Local Affine-Invariant Image Descriptors and Multi-View Spatial Constraints. F. Rothganger, S. Lazebnik, C. Schmid, and J. Ponce. International Journal of Computer Vision, vol. 66, no. 3, March 2006, pp. 231-259. |
![]() |
Dataset Issues in Object Recognition. J. Ponce, T. L. Berg, M. Everingham, D. A. Forsyth, M. Hebert, S. Lazebnik, M. Marszalek, C. Schmid, B. C. Russell, A. Torralba, C. K. I. Williams, J. Zhang, and A. Zisserman. Toward Category-Level Object Recognition, Springer-Verlag Lecture Notes in Computer Science vol. 4170. J. Ponce, M. Hebert, C. Schmid, and A. Zisserman (eds.), 2006, pp. 29-48. |
![]() |
A Discriminative Framework for Texture and Object Recognition Using Local Image Features. S. Lazebnik, C. Schmid, and J. Ponce. Toward Category-Level Object Recognition, Springer-Verlag Lecture Notes in Computer Science vol. 4170. J. Ponce, M. Hebert, C. Schmid, and A. Zisserman (eds.), 2006, pp. 423-442. |
![]() |
3D Object Modeling and Recognition from Photographs and Image Sequences. F. Rothganger, S. Lazebnik, C. Schmid, and J. Ponce. Toward Category-Level Object Recognition, Springer-Verlag Lecture Notes in Computer Science vol. 4170. J. Ponce, M. Hebert, C. Schmid, and A. Zisserman (eds.), 2006, pp. 105-126. |
![]() |
Estimation of Intrinsic Dimensionality Using High-Rate Vector Quantization. M. Raginsky and S. Lazebnik. Advances in Neural Information Processing Systems 18, MIT Press, 2005, pp. 1105-1112. |
![]() |
A Maximum Entropy Framework for Part-Based Texture and Object Recognition. S. Lazebnik, C. Schmid, and J. Ponce. Proceedings of the IEEE International Conference on Computer Vision, Beijing, China, October 2005, vol. 1, pp. 832-838. |
![]() |
A Sparse Texture Representation Using Local Affine Regions. S. Lazebnik, C. Schmid, and J. Ponce. IEEE Transactions on Pattern Analysis and Machine Intelligence, August 2005, vol. 27, no. 8, pp. 1265-1278. UIUC texture dataset. |
![]() |
The Local Projective Shape of Smooth Surfaces and Their Outlines. S. Lazebnik and J. Ponce. International Journal of Computer Vision, June 2005, vol. 63, no. 1, pp. 65-83. |
![]() |
Pattern Recognition with Local Invariant Features. C. Schmid, G. Dorko, S. Lazebnik, K. Mikolajczyk, and J. Ponce. Handbook of Pattern Recognition and Computer Vision, 3rd edition. C.H. Chen and P.S.P Wang editors, World Scientific Publishing Co., 2005, pp. 71-92. |