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Iterative Quantization:
A Procrustean Approach to Learning Binary

Codes for Large-scale Image Retrieval
Yunchao Gong, Svetlana Lazebnik, Albert Gordo, Florent Perronnin

Abstract—This paper addresses the problem of learning similarity-preserving binary codes for efficient similarity search in
large-scale image collections. We formulate this problem in terms of finding a rotation of zero-centered data so as to minimize
the quantization error of mapping this data to the vertices of a zero-centered binary hypercube, and propose a simple and efficient
alternating minimization algorithm to accomplish this task. This algorithm, dubbed iterative quantization (ITQ), has connections
to multi-class spectral clustering and to the orthogonal Procrustes problem, and it can be used both with unsupervised data
embeddings such as PCA and supervised embeddings such as canonical correlation analysis (CCA). The resulting binary codes
significantly outperform several other state-of-the-art methods. We also show that further performance improvements can result
from transforming the data with a nonlinear kernel mapping prior to PCA or CCA. Finally, we demonstrate an application of ITQ
to learning binary attributes or “classemes” on the ImageNet dataset.

Index Terms—Large-scale image search, binary codes, hashing, quantization.
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1 INTRODUCTION

R Ecently, the vision community has devoted a lot
of attention to the problem of learning similarity-

preserving binary codes for representing large-scale
image collections [4], [5], [13], [15], [20], [22], [23], [29],
[31], [36], [39], [43], [45], [49], [50], [51]. An effective
scheme for learning binary codes should have several
properties. First, the codes should be short to enable
the storage of large amounts of images in memory.
For example, for an ordinary workstation with 16GB
of RAM, to fit 250 million images in memory, we could
only use about 64 bits per image. Second, the codes
should map images that are similar (either in terms of
feature space distance or semantic distance) to binary
strings with a low Hamming distance. Finally, the
algorithms for learning the parameters of the binary
code and for encoding a new test image should be
efficient and scalable.

A common initial step in many binary coding meth-
ods is to perform principal component analysis (PCA)
to ensure good generalization ability for small code
sizes [14], [49], [51]. However, since the variance of
the data in each PCA direction is different – in par-
ticular, higher-variance directions carry much more
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information – encoding each direction with the same
number of bits is bound to produce poor performance.
To deal with this issue, spectral hashing (SH) [51]
uses a separable Laplacian eigenfunction formulation
that ends up assigning more bits to directions along
which the data has a greater range. However, this
approach is somewhat heuristic and relies on an
assumption that the data is uniformly distributed in a
high-dimensional rectangle. Semi-supervised hashing
(SSH) [49] relaxes the orthogonality constraints of
PCA to allow successive projection directions to cap-
ture more of the data variance. While this approach
produces promising results, the optimization problem
requires careful regularization to avoid degenerate
solutions.

In this work, we start with PCA-projected data
and formulate the problem of learning a good binary
code in terms of directly minimizing the quantization
error of mapping this data to vertices of the binary
hypercube. Figure 1 illustrates the key steps of our ap-
proach. First, we show that simply applying a random
orthogonal transformation, as suggested by Jégou et
al. [19], already does a very good job of balancing the
variance of different PCA directions and outperforms
both SH [51] and non-orthogonal relaxation [49]. Next,
we propose an alternating minimization approach
for refining the initial orthogonal transformation to
reduce quantization error. This approach, dubbed it-
erative quantization (ITQ), is described in Section
3. It has connections to the orthogonal Procrustes
problem [41] and to eigenvector discretization for
multi-class spectral partitioning [52], and in the ex-
periments of Section 4 it outperforms the methods

http://www.unc.edu/~yunchao/itq.htm
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(a) PCA aligned. (b) Random Rotation. (c) Optimized Rotation.
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Figure 1. Toy illustration of our ITQ method (see Section 3 for details). The basic binary encoding scheme is
to quantize each data point to the closest vertex of the binary cube, (±1,±1) (this is equivalent to quantizing
points according to their quadrant). (a) The x and y axes correspond to the PCA directions of the data. Note that
quantization assigns points in the same cluster to different vertices. (b) Randomly rotated data – the variance
is more balanced and the quantization error is lower. (c) Optimized rotation found by ITQ – quantization error is
lowest, and the partitioning respects the cluster structure.

of [36], [49], [51]. Moreover, ITQ does not need to be
coupled with PCA, but can be used with many other
dimensionality reducing embeddings. In Section 5, we
show how to combine ITQ with canonical correlation
analysis (CCA) to incorporate information from clean
or noisy class labels in order to improve the semantic
consistency of the code. Section 6 shows that further
improvements can be achieved by transforming the
data using a randomized nonlinear embedding [37]
that approximates the Gaussian kernel. As an addi-
tional application, Section 7 demonstrates the use-
fulness of ITQ for learning binary visual attributes
or “classemes” [46] on the ImageNet dataset [8]. We
show the resulted binary descriptor is discriminative,
and can be effectively used for object category re-
trieval.

This paper is an extended version of the work
initially published in CVPR 2011 [13]. Novel contribu-
tions over [13] include the nonlinear kernel extension
(Section 6) and the application to object categorization
and retrieval (Section 7).

2 RELATED WORK

Nearest neighbor search is a fundamental operation
underlying many computer vision approaches. Brute-
force search, or comparing a query point with every
point in the database, becomes prohibitively expen-
sive as the dataset size and the dimensionality of
the features grows. To reduce search complexity, a
number of algorithms and data structures have been
proposed [42]. These methods, such as hierarchical
feature space decompositions and locality sensitive
hashing (LSH), usually aim to provide sub-linear
running time for approximate near-neighbor lookup.
By contrast, similarity-preserving binary codes do not
necessarily offer sub-linear search complexity. How-
ever, they can reduce memory requirements and the

running time of brute-force search by significant con-
stant factors, and they do not involve building and
maintaining complex data structures.

The first step of computing binary codes usually
involves finding an intermediate continuous embed-
ding of the original data. For example, a popular hash
function for LSH that preserves dot-product similar-
ity uses random projections drawn from a Gaussian
distribution [1]. Kulis et al. [22] generalize this LSH
formulation to the setting where the similarity is
given by a “black-box” kernel function. Raginsky and
Lazebnik [36] use random Fourier features [37] to ap-
proximate the Gaussian kernel. All these methods are
based on randomized embeddings, which tend to be
too noisy for a small number of bits. Another family
of methods uses dimensionality reduction prior to
binary coding, with PCA being the most common
choice [13], [14], [18], [49], [50], [51]. Beyond PCA,
other embeddings can be applied. For example, Liu et
al. [24] use a spectral embedding, He et al. [15] use a
method similar to Independent Component Analysis
(ICA), Strecha et al. [43] use Linear Discriminant
Analysis (LDA). Most recently, Liu et al. [25] have
developed a principled formulation for learning hash
codes using kernels and category labels.

After the embedding, the next step is to binarize
the data. For randomized embeddings, this can simply
be done by appropriately thresholding the projected
data [1], [22], [36]. For PCA and related techniques,
a more complex binarization scheme is necessary to
alleviate the problem of unbalanced variance dis-
cussed in the Introduction. The works by Wang et al.
[49], [50] use non-orthogonal relaxation or sequential
projections. Spectral Hashing [51] allocates bits based
on separable Laplacian eigenfunctions. In this paper,
we propose a simpler idea of rotating the data in order
to balance the variance. We have been inspired by the
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approach of Yu and Shi [52] for discretizing relaxed
solutions to multi-class spectral clustering, where an
orthogonal transformation is applied to the continu-
ous eigenvectors to bring them as close as possible to
a discrete solution. One important difference between
[52] and our approach is that [52] allows discretization
only to the c orthogonal hypercube vertices with
exactly one positive entry, while we use all the 2c

vertices as targets.
At retrieval time, given a new query image, it is

necessary to compute the distances from that query to
every image in the database. Most methods directly
compute the Hamming distance between the respec-
tive binary codes, which can be done very efficiently
using low-level hardware operations. An alternative
to this is given by asymmetric distance [14], [18],
in which the database points are quantized but the
query is not. In this paper, we use only the Hamming
distance. If nearest-neighbor lookup by linear scan is
not satisfactory, it is possible to treat the binary strings
representing images as hash keys [1], [22]. Note that
this is only feasible with very compact codes, i.e., 32
bits at most. Section 4.5 will look at this scenario and
evaluate the performance of binary codes for hashing.

Besides similarity-preserving binary codes, other
representations have been proposed for efficient large-
scale image retrieval. One of these is Product Quan-
tization (PQ) [18], [19], where the feature space
is decomposed into a Cartesian product of low-
dimensional subspaces, each subspace is quantized
separately, and asymmetric distance is computed be-
tween the query and the quantized codes with the
help of lookup tables. Other state-of-the-art methods
include min-hashing for bags of features [7] and vo-
cabulary trees [28]. Though such schemes are capable
of achieving very high performance for tasks such as
near-duplicate detection and object instance retrieval,
binary coding schemes remain attractive due to their
flexibility. They do not require building of hash ta-
bles or inverted indices, and they can be compared
using simple Hamming distance. As a consequence
of this, binary codes can easily support other dataset
operations besides near-neighbor retrieval. For exam-
ple, clustering of binary codes can be implemented
using a standard k-medoids algorithm [12], while
clustering in the min-hash framework is much less
straightforward [7]. As another example, in Section
7 we will train linear SVM classifiers directly on top
of similarity-preserving binary codes (see also [33]),
whereas this would be impossible to do with PQ-
compressed visual features without decoding them
first.

3 UNSUPERVISED CODE LEARNING
In this section, we address the problem of learning
binary codes without any supervisory information
(e.g., class labels or tags). We first apply linear di-
mensionality reduction to the data, and then perform

binary quantization in the resulting space. For the first
step, discussed in Section 3.1, we follow the maximum
variance formulation of [49], [51], which yields PCA
projections. The major novelty of our method is in the
second step (Section 3.2), where we try to preserve the
locality structure of the projected data by rotating it
so as to minimize the quantization error.

Let us first introduce our notation. We have a set of
n data points {x1,x2, . . . ,xn}, xi ∈ Rd, that form the
rows of the data matrix X ∈ Rn×d. We assume that
the points are zero-centered, i.e.,

∑n
i=1 xi = 0. Our

goal is to learn a binary code matrix B ∈ {−1, 1}n×c,
where c denotes the code length.1 For each bit k =
1, . . . , c, the binary encoding function is defined by
hk(x) = sgn(xwk), where wk is a column vector of
hyperplane coefficients and

sgn(v) =

{
1, if v ≥ 0;
−1, otherwise.

For a matrix or a vector, sgn(·) will denote the result
of element-wise application of the above function.
Thus, we can write the entire encoding process as
B = sgn(XW ), where W ∈ Rd×c is the matrix with
columns wk.

3.1 Unsupervised PCA Embedding
Following the formulation of [49], [50], [51], we want
to produce an efficient code in which the variance of
each bit is maximized and the bits are pairwise uncor-
related. We can do this by maximizing the following
objective function:

I(W ) =
∑
k

var(hk(x)) =
∑
k

var(sgn(xwk)) ,

1

n
BTB = I .

As shown in [49], the variance is maximized by
encoding functions that produce exactly balanced bits,
i.e., when hk(x) = 1 for exactly half of the data points
and −1 for the other half. However, the requirement
of exact balancedness makes the above objective func-
tion intractable. Adopting the same signed magnitude
relaxation as in [49], we get the following continuous
objective function:

Ĩ(W ) =
∑
k

E(‖xwk‖22) =
1

n

∑
k

wT
kX

TXwk

=
1

n
tr(WTXTXW ) , WTW = I . (1)

The constraint WTW = I requires the hashing hy-
perplanes to be orthogonal to each other, which is
a relaxed version of the requirement that code bits
be pairwise decorrelated. This objective function is

1. In our formulation, the entries of B take on values {−1, 1}
instead of {0, 1} because the proposed quantization-based scheme
of Section 3.2 requires both the data and the binary cube to be
zero-centered.
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Figure 2. Performance of ITQ (32 bits) as a function of the number of iterations on the CIFAR dataset (refer
to Section 4 for details of the dataset and evaluation protocol). (a) Objective function value vs. the number
of iterations; (b) Mean average precision (mAP) of Euclidean neighbor retrieval vs. the number of iterations;
(c) Average class label precision at top 500 retrieved images vs. the number of iterations.

exactly the same as that of PCA. For a code of c bits,
we obtain W by taking the top c eigenvectors of the
data covariance matrix XTX .

3.2 Iterative Quantization

Let v ∈ Rc be a vector in the projected space. It is
easy to show (see below) that sgn(v) is the vertex
of the hypercube {−1, 1}c closest to v in terms of
Euclidean distance. The smaller the quantization loss
‖ sgn(v)−v‖2, the better the resulting binary code will
preserve the original locality structure of the data.
Now, going back to eq. (1), it is clear that if W is
an optimal solution, then so is W̃ = WR for any
orthogonal c × c matrix R. Therefore, we are free to
orthogonally transform the projected data V = XW
in such a way as to minimize the quantization loss

Q(B,R) = ‖B − V R‖2F , (2)

where ‖ · ‖F denotes the Frobenius norm.
The idea of rotating the data to minimize quan-

tization loss can be found in Jégou et al. [17], [19].
However, the approach of [17] does not include a di-
mensionality reduction step, and the approach of [19]
is based not on binary codes, but on product quantiza-
tion with asymmetric distance computation. Unlike in
our formulation, direct minimization of quantization
loss for asymmetric distance is impractical, so Jégou
et al. instead suggest solving an easier problem, that
of finding a rotation (or, more precisely, an orthogonal
transformation) to balance the variance of the different
dimensions of the data. In practice, they find that a
random rotation works well. Based on this observa-
tion, a natural baseline for our method is given by
initializing R to a random orthogonal matrix.

Beginning with the random initialization of R, we
adopt a k-means-like procedure that we call ITQ to
find a local minimum of the quantization loss (2). In
each iteration, each data point is first assigned to the
nearest vertex of the binary hypercube, and then R is

updated to minimize the quantization loss given this
assignment. These two alternating steps are described
in detail below.
Fix R and update B. Expanding (2), we have

Q(B,R) = ‖B‖2F + ‖V ‖2F − 2 tr(BRTV T )

= nc+ ‖V ‖2F − 2 tr(BRTV T ) . (3)

Because the projected data matrix V = XW is fixed,
minimizing (3) is equivalent to maximizing

tr(BRTV T ) =

n∑
i=1

c∑
j=1

Bij Ṽij ,

where Ṽij denote the elements of Ṽ = V R. To max-
imize this expression with respect to B, we need to
have Bij = 1 whenever Ṽij ≥ 0 and −1 otherwise.
In other words, B = sgn(V R) as claimed in the
beginning of this section.

Note that scaling the original data X by a constant
factor changes the additive and multiplicative con-
stants in (3), but does not affect the optimal value
of B or R. Thus, while our method requires the data
to be zero-centered, it does not care at all about the
scaling. In other words, the quantization formulation
(2) makes sense regardless of whether the average
magnitude of the feature vectors matches the radius
of the binary cube.
Fix B and update R. For a fixed B, the objective
function (2) corresponds to the classic Orthogonal
Procrustes problem [41], in which one tries to find
a rotation to align one point set with another. In our
case, the two point sets are given by the projected data
V and the target binary code matrix B. For a fixed B,
(2) is minimized as follows: first compute the SVD of
the c × c matrix BTV as BTV = SΩŜT and then let
R = ŜST .

We alternate between updates to B and R for sev-
eral iterations to find a locally optimal solution. The
convergence is guaranteed as the global optimal so-
lution of each subproblem can be achieved, thus each
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Figure 3. Variance of different dimensions for PCA,
random rotation (RR), and ITQ using a 32-bit code.
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Figure 4. Training time for different binary encoding
methods with 32 bits. Refer to section 4.2 for the details
of different baseline methods.

step will never increase the objective function value.
Figure 2 shows the typical behavior of the objective
function and of our two operational criteria, precision
for Euclidean neighbor retrieval and for class label
retrieval, as a function of the number of iterations. In
practice, we have found that we do not need to iterate
until convergence to get good results, so we use 50
iterations in all our subsequent experiments. Figure 3
plots the variance of each dimension before and after
ITQ. It is clear that ITQ leads to the most balanced
variances. Finally, Figure 4 shows the training times
for 32-bits codes for ITQ and competing baselines
described in Section 4.2. All the methods scale linearly
with the number of images, and although ours has
the slowest training time, it is still very practical in
absolute terms.

4 EVALUATING UNSUPERVISED ITQ

In this section, we evaluate the basic unsupervised
ITQ framework introduced in Section 3. Once the
promise of this framework has been established, we
will then go on to describe and evaluate its supervised
extension (Section 5), nonlinear kernel extension (Sec-
tion 6), and application to object categorization and
retrieval (Section 7).

4.1 Datasets
We evaluate ITQ on two subsets of the Tiny Images
dataset [44], both of which come from [10]. The first
one is a version of the CIFAR dataset [21], and it
consists of 64,185 images that have been manually
grouped into 11 ground-truth classes: airplane, au-
tomobile, bird, boat, cat, deer, dog, frog, horse, ship
and truck. The second subset consists of 580,000 Tiny
Images. Apart from the CIFAR images, which are
included in the larger subset, all the other images lack
manually supplied ground truth labels, but they come
associated with one of 388 Internet search keywords.
In this section, we use the CIFAR ground-truth labels
to evaluate the semantic consistency of our codes, and
in Section 5, we will use the “noisy” keyword infor-
mation associated with the remaining Tiny Images to
train a supervised linear embedding.

The original Tiny Images are 32 × 32 pixels. We
represent them with grayscale GIST descriptors [30]
computed at three different scales (8, 8, 4), resulting in
320-dimensional feature vectors. Because ITQ cannot
use more bits than the original dimension of the data,
in this section we evaluate code sizes up to 256 bits.
However, in Section 6 we will show an extension that
will allow us to use more bits than data dimensions.

4.2 Protocols and Baseline Methods
We follow two evaluation protocols widely used in
recent papers [36], [49], [51]. The first one is to eval-
uate performance of nearest neighbor search using
Euclidean neighbors as ground truth. As in [36], a
nominal threshold of the average distance to the
50th nearest neighbor is used to determine whether
a database point returned for a given query is con-
sidered a true positive. Then, based on the Euclidean
ground truth, we compute the recall-precision curve
and the mean average precision (mAP), or the area
under the recall-precision curve. Second, we evaluate
the semantic consistency of codes produced by dif-
ferent methods by using class labels as ground truth.
For this case, we report the averaged precision of top
500 ranked images for each query as in [50] (note that
the CIFAR dataset has about 6,000 images per class).
For all experiments, we randomly select 1000 points to
serve as test queries. The remaining images form the
training set on which the code parameters are learned,
as well as the database against which the queries
are performed. All the experiments reported in this
paper are averaged over five random training/test
partitions.

We compare our ITQ method to three baseline
methods that follow the basic hashing scheme B =

sgn(XW̃ ), where the projection matrix W̃ is defined
in different ways:

1) LSH: W̃ is a Gaussian random matrix [1]. Note
that in theory, this scheme has locality preserv-
ing guarantees only for unit-norm vectors. While
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Figure 5. Comparative evaluation on CIFAR dataset. (a) Performance is measured by mean average precision
(mAP) for retrieval of Euclidean neighbors within a target radius (see text). Refer to Figure 6 for the complete
recall-precision curves for the state-of-the-art methods. (b) Performance is measured by the averaged precision
of top 500 ranked images for each query where ground truth is defined by semantic class labels. Refer to Figure
7 for the complete class label precision curves for the state-of-the-art methods.
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(a) Recall precision @32 bits.
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(b) Recall precision @64 bits.
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(c) Recall precision @128 bits.
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(d) Recall precision @256 bits.

Figure 6. Comparison with state-of-the-art methods on CIFAR dataset using Euclidean neighbors as ground
truth. Refer to Figure 5(a) for a summary of the mAP of these curves as a function of code size.
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(a) Label precision @32 bits.
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(b) Label precision @64 bits.
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(c) Label precision @128 bits.
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(d) Label precision @256 bits.

Figure 7. Comparison with state-of-the-art methods on CIFAR dataset using semantic labels as ground truth.
Figure 5(b) shows the summary plot of average precision as a function of code size.

we do not normalize our data to unit norm, we
have found that it still works well as long as the
data is zero centered.

2) PCA-Direct: W̃ is simply the matrix of top c
PCA directions. This baseline is included to
show what happens when we do not rotate the
PCA-projected data prior to quantization.

3) PCA-RR: W̃ = WR, where W is the matrix of
PCA directions and R is a random orthogonal
matrix. This is the initialization of ITQ, as de-
scribed in Section 3.

We also compare ITQ to three state-of-the-art methods
using code provided by the authors:

1) SH [51]: Spectral Hashing. This method is based
on quantizing the values of analytical eigen-
functions computed along PCA directions of the
data.

2) SKLSH [36]: This method is based on random
Fourier features for approximating the Gaussian
kernel [37]. In [36], this method is reported to
outperform SH for code sizes larger than 64 bits.
We use a Gaussian kernel with bandwidth set to
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(a) Recall precision @32 bits.
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(b) Recall precision @64 bits.
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(c) Recall precision @256 bits.
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Figure 8. Results on the 580,000 Tiny Image subset. Ground truth is defined by Euclidean neighbors.

the average distance to the 50th nearest neighbor
as in [36].

3) PCA-Nonorth [49]: Non-orthogonal relaxation
of PCA. This method is reported in [49] to
outperform SH. Note that instead of using semi-
supervised PCA as in [49], the evaluation of this
section uses standard unsupervised PCA since
we assume there is no class label information
available (although label information will be
used in Section 5).

Note that of all the six methods above, LSH and
SKLSH are the only ones that rely on randomized
data-independent linear projections. All the other
methods, including our PCA-RR and PCA-ITQ, use
PCA (or a non-orthogonal relaxation of PCA) as an
intermediate dimensionality reduction step.

4.3 Results on CIFAR Dataset
Figure 5(a) compares all the methods based on
their mean average precision for Euclidean neighbor
ground truth. Perhaps surprisingly, the natural base-
line for our method, PCA-RR, already outperforms
everything except PCA-ITQ for most code sizes. The
only exception is SKLSH, which has a strongly up-
ward trajectory and gets the best performance for
a code size of 256. This behavior may be due to
the theoretical convergence guarantee of SKLSH [36].
LSH, which is data-independent just like SKLSH, also
improves as the code size increases, and it almost
reaches the performance level of PCA-RR at 256 bits.
As for PCA-ITQ, it consistently performs better than
PCA-RR, although the advantage becomes smaller as
the code size increases. Thus, adapting to the data dis-
tribution seems especially important when the code
size is small. In particular, doing the ITQ refinement
for a 64-bit code raises its performance almost to the
level of the 256-bit PCA-RR code.

Figure 5(b) evaluates the semantic consistency of
the codes using class labels as ground truth. For each
method, it shows the precision for top 500 returned
images as a function of code size. As in Figure 5(a),
PCA-RR and PCA-ITQ outperform all the other meth-
ods, and PCA-ITQ has a small but consistent advan-
tage over PCA-RR. There are some interesting dif-

ferences among the other methods, however. Unlike
in Figure 5(a), PCA-Direct works relatively well for
the smallest code sizes (32 and 64 bits), while SKLSH
works surprisingly poorly. This may be due to the fact
that unlike most of the other methods, SKLSH does
not rely on PCA. Our results seem to indicate that
PCA really helps to preserve semantic consistency
for the smallest code sizes. Even at 256 bits, while
SKLSH had by far the best performance for Euclidean
neighbor retrieval, it lags behind most of the other
methods in terms of class label precision. This un-
derscores the fact that the best Euclidean neighbors
are not necessarily the most semantically consistent,
and that it is necessary to evaluate performance using
both Euclidean and class label ground truth. Another
observation worth making is that the most heuristic
methods, namely PCA-Direct and SH, can actually get
worse as the number of bits increases.

Figures 6 and 7 show complete recall-precision and
class label precision curves corresponding to the sum-
mary numbers in Figures 5(a,b). To avoid clutter, these
curves (and all the subsequent results reported in this
paper) omit the two baseline methods LSH and PCA-
Direct. The complete curves confirm the trends seen
in Figures 5(a,b). One thing that becomes especially
apparent from looking at Figure 6(d) is that the data-
dependent methods (PCA-Nonorth, PCA-RR, PCA-
ITQ) seem to hit a ceiling of performance as code size
increases, while the data-independent SKLSH method
does not have a similar limitation (in fact, in the limit
of infinitely many bits, SKLSH is guaranteed to yield
exact Euclidean neighbors). Once again, the message
seems to be that adapting binary codes to the data
can give the biggest gain for small code sizes.

4.4 Results on 580,000 Tiny Images
Figure 8 shows precision-recall curves and mAP for
Euclidean neighbor retrieval on the 580,000 Tiny
Images. As explained in Section 4.1, there are no
ground truth class labels for this dataset, so we cannot
evaluate class label precision. The relative ordering
of the different methods is largely consistent with
results on CIFAR, with PCA-ITQ getting an even
bigger performance advantage at small code sizes.
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(a) CIFAR, 8 bits
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(b) CIFAR, 16 bits
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(c) CIFAR, 32 bits
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(d) Tiny images, 8 bits
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(e) Tiny images, 16 bits
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(f) Tiny images, 32 bits

Figure 9. Hashing performance for different Hamming radii r with Euclidean neighbor ground truth. (a-c) CIFAR
dataset; (d-f) 580,000 Tiny Images dataset.
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(b) CIFAR, 16 bits
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(c) CIFAR, 32 bits

Figure 10. Hashing performance on the CIFAR dataset with class label ground truth. r is Hamming radius. Note
the progressively decreasing recall from (a) to (c), and the different vertical scale in (c).

Moreover, comparing Figure 8(d) with Figure 5(a), we
can see that at 256 bits, SKLSH, PCA-Nonorth, PCA-
RR, and PCA-ITQ converge to a higher level of mAP
performance than on the smaller CIFAR dataset. This
may be because the larger dataset samples the feature
space more densely, making it easier to find good
image matches.

4.5 Evaluation of Hashing Performance

To fully realize the potential of binary codes for large-
scale datasets, we would like to be able to use them
for hashing or indexing as opposed to exhaustive
search. For this, we would need a very small code
(32 bits or less) to yield reasonably high precision
and recall among retrieved points that lie within a

Hamming distance of 0 to 2 from the query. Figure
9 shows the recall and precision of 8, 16 and 32-
bit codes at Hamming radii r = 0, 1, and 2 for
several methods on CIFAR and 580,000 Tiny Images
with Euclidean neighbor ground truth. PCA-ITQ is
almost always the best in terms of both recall and
precision. Furthermore, comparing Figure 9(a-c) with
(d-f), we can find that the recall of PCA-ITQ improves
substantially when we increase the dataset size by an
order of magnitude.

Figure 10 reports hashing performance in terms
of class label retrieval. In this case, ITQ has good
precision for 8 and 16 bits, but not for 32 bits. At first
glance, this seems to contradict the result of Figure
5(b) where ITQ has the highest class label precision
at top 500 retrieved images for every code size. To
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explain this, note that some query points have many
matches in a small Hamming radius (corresponding
to dense areas of the feature space) and some queries
have very few. The precision for a very small Ham-
ming ball is significantly reduced by the queries with
many matches since the matches usually do not all
belong to the same class. Note that the same finding
does not hold for Euclidean neighbor precision since
the queries having many matches in a small Hamming
ball also have many Euclidean neighbors. In any
case, the semantic label recall of all the methods is
dismally low, indicating that a lot more research needs
to be done before similarity-preserving binary codes
become truly useful for hashing.

5 LEVERAGING LABEL INFORMATION

5.1 Supervised CCA Embedding
When label information is available for the images
that are used to train the embedding, we can choose
a supervised dimensionality reduction method to bet-
ter capture the semantic structure of the dataset. In
our work, we use the Canonical Correlation Analy-
sis (CCA) [16], which has proven to be an effective
tool for extracting a common latent space from two
views [11] and is robust to noise [3]. We assume that
each training image descriptor xi ∈ Rd has associated
with it a label vector yi ∈ {0, 1}t, where t is the total
number of labels (search keywords, tags) available,
and a given entry of yi is 1 if the image is associated
with the corresponding label and 0 otherwise. Note
that the labels do not have to be mutually exclusive
and may be noisy. The label vectors form the rows of
a label matrix Y ∈ {0, 1}n×t. The goal of CCA is to
find projection directions wk and uk for feature and
label vectors to maximize the correlation between the
projected data Xwk and Y uk:

C(wk,uk) = wT
kX

TY uk

s.t. wT
kX

TXwk = 1, uTk Y
TY uk = 1 .

Maximizing the above objective function involves
solving the following generalized eigenvalue problem
to get wk:

XTY (Y TY + ρI)−1Y TXwk = λ2k(XTX + ρI)wk , (4)

in which ρ is a small regularization constant used to
prevent a trivial solution [11] (we set ρ to be 0.0001
in our experiments). The leading generalized eigen-
vectors of (4) then give us a sequence of orthogonal
wk directions that span the solution space, just as for
PCA. Note that once we have wk, we can also solve
for the corresponding uk, but in our case, we only care
about the projection directions in the data space, since
we assume that label information will be unavailable
at test time.

For a c-bit code, we form a projection matrix Ŵ ∈
Rd×c whose columns are given by the leading eigen-
vectors wk scaled by the corresponding eigenvalues
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Figure 11. Average precision for top 500 retrieved
images for supervised data embeddings based on
clean and noisy labels.

λk. The reason for the scaling is that for supervised
embeddings such as CCA, the most discriminative in-
formation tends to concentrate in the top eigenvectors.
Since we usually have more bits in the code than the
number of most informative eigenvectors, scaling the
trailing eigenvectors can reduce noise and empirically
produce better performance.2 More generally, it is
possible to scale the eigenvectors by the tth power of
the eigenvalues [6], but in our experiments, we have
found that t = 1 works the best. Finally we obtain the
embedded dataset V = XŴ in the new latent space
that preserves both visual and semantic similarity.

5.2 Results

Recall from Section 4.1 that the CIFAR dataset comes
with manually verified keywords, while the 580,000
Tiny Images subset comes with noisy keywords that
have not been verified by humans. These two dif-
ferent kinds of annotation allow us to explore the
power of the CCA embedding given both “clean”
and “noisy” supervisory information. For the “clean”
scenario, we use a setup analogous to that of Section
4.3: namely, we set aside 1,000 query images from the
CIFAR dataset and use the remaining CIFAR images
as the training set and the database against which the
queries are run. The labels in the training set are used
to train the CCA embedding. For the query images,
the class labels are used only for benchmarking. For
the “noisy” scenario, we learn the CCA embedding
from all the Tiny Images that are disjoint from the
CIFAR dataset using their unverified search keywords
as the supervisory information. Then we apply the
resulting embedding to the CIFAR dataset, split it into
query images and reference database as in the clean

2. We have found this is not true for PCA. CCA is a supervised
embedding, so the top eigenvectors carry much more discriminative
information than in the case of PCA.
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(a) Query (b) CCA-ITQ (c) CCA-RR (d) PCA-ITQ (c) PCA-RR

Precision: 90.00% Precision: 72.22% Precision: 55.56% Precision: 44.44%

Precision: 94.44% Precision: 66.67% Precision: 55.56% Precision: 36.11%

Precision: 100% Precision: 86.11% Precision: 69.44% Precision: 63.89%

Figure 12. Image search (32-bit binary code) results on CIFAR. Red border means false positive.

scenario, and use the “clean” ground-truth labels for
benchmarking.

As a baseline, we use the semi-supervised approach
of [49], in which the label information of the n data
points is used to construct an n × n matrix S that
modulates the data covariance matrix. We set Sij = 1
if two data points xi and xj have the same label,
and 0 otherwise. Then we find the projection matrix
W by taking the eigendecomposition of XTSX . Note
that [49], which assumes that few labeled images are
available, regularizes XTSX by adding to it a small
multiple of the covariance matrix XTX . In our case,
we have found this regularization to be unnecessary.
We then take the data-dependent embedding W and
perform ITQ refinement. We call the resulting method
SSH-ITQ. Note that in [49], the semi-supervised em-
bedding is combined with nonorthogonal relaxation
(SSH-Nonorth), however, just as in Section 4, we have
found that SSH-ITQ works better than SSH-Nonorth,
so we only reproduce the SSH-ITQ results here.

Figure 11 shows the averaged precision at top 500
retrieved images for the “clean” and “noisy” versions
of the CCA and SSH embeddings. For reference, we
also include the performance of the unsupervised
PCA embedding. We can see that CCA-ITQ with
clean labels achieves the highest performance, while

CCA-ITQ with noisy labels still gives a big improve-
ment over the unsupervised PCA-ITQ. On the other
hand, both versions of SSH fail to improve much
over the PCA baseline. For reference, this figure also
shows retrieval precision curves for uncompressed
CCA-projected data with both “clean” and “noisy”
supervisory information. Interestingly, after 32 bits,
the ITQ-compressed data actually begins to give better
retrieval performance than the uncompressed data! It
seems that clustering the discriminative CCA outputs
to vertices of the binary hypercube is actually accom-
plishing some sort of “semantic hashing” [39]. How-
ever, the precise explanation for this effect remains
unclear, and investigating it is an important problem
for the future. Finally, Figure 12 shows retrieved im-
ages for several sample query images. We can clearly
see that when labels are incorporated, the results are
much more semantically consistent.

6 ITQ WITH A KERNEL EMBEDDING

6.1 Random Fourier Features
A big limitation of PCA and CCA is that they can
only capture linear structure in the data. In order
to introduce nonlinearity into the embedding pro-
cess, we can use kernel PCA (KPCA) [40]. Finding
the KPCA embedding for n feature vectors involves
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Figure 13. Comparative evaluation of kernel ITQ on CIFAR dataset. (a) Performance is measured by mean
average precision (mAP) for Euclidean neighbor retrieval. (b) Performance is measured by the averaged precision
of top 500 ranked images for each query where ground truth is defined by semantic class labels.

computing the n × n kernel matrix and performing
eigendecomposition on it. However, for large-scale
image databases, these operations are prohibitively
expensive, so we have to resort to approximation
schemes.

In this paper, we are particularly interested in
the Gaussian kernel, whose radius can be used to
control the neighborhood size for nearest-neighbor
search. To approximate the Gaussian kernel K(x,y) =
exp(−‖x−y‖2/(2σ2)), we can use the explicit random
Fourier feature (RFF) mapping [37]. For a data point x,
each coordinate of this mapping is given by

Φw,b(x) =
√

2 cos(xw + b) ,

where the random projection vector w is drawn from
Normal(0, 1

σ2 I) and b is drawn from Unif[0, 2π]. A D-
dimensional embedding is given by

ΦD(x) = [Φw1,b1(x),Φw2,b2(x), . . . ,ΦwD,bD (x)].

The inner product of the mapped data approximates
the Gaussian kernel as K(x,y) ≈ ΦD(x)ΦD(y)T .
When D goes to infinity, the mapping becomes exact.
In our experiments, we use D = 3, 000. After the
random Fourier mapping, we simply perform linear
PCA on top of ΦD(X) to obtain an approximate
KPCA embedding for the data. Given the points in
our dataset, we first transform them using RFF, then
perform KPCA to reduce the dimensionality, and
finally binarize the data in the same way as before.

Note that while we solely focus on approximation
of the Gaussian kernel, there also exist explicit map-
pings for other popular kernels [27], [34], [47].

6.2 Results
We first compare KPCA with ITQ to other baseline
methods, including linear PCA with ITQ. Results for
Euclidean neighbor retrieval are reported in Figure
13 (a). One of the advantages of RFF is that it allows
us to learn binary codes whose dimension is higher
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Figure 14. Comparison of KCCA methods with CCA-
ITQ on the CIFAR dataset. Performance is evaluated
in terms of average class label precision for top 500
retrieved images. Results are generated using clean
labels (refer to Section 5 for a description of the label
information in the CIFAR dataset).

than that of the original data (320 in the experiments
so far). Thus, we report results up to 1,024 bits for
the kernel methods, and for PCA-ITQ, we report
results up to 256 bits. For RFF, we set the radius of
the Gaussian kernel to the average distance to the
50th nearest neighbor. From Figure 13(a), in terms
of Euclidean neighbor retrieval, KPCA-ITQ starts to
have an advantage over PCA-ITQ beginning with
128 bits (though we have found that it is possible
to tune the radius of the Gaussian kernel to match
the performance of PCA-ITQ for shorter codes), and
KPCA-RR seems to work the best for the longest
code sizes. Figure 13 (b) reports performance in terms
of class label retrieval. For this case, KPCA-ITQ is
consistently better than PCA-ITQ or KPCA-RR.

It is interesting to compare KPCA-RR/ITQ and
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Figure 15. Performance of kernel ITQ (32 bits) with a
ground truth radius δ equal to half the distance to the
50th nearest neighbor. The numbers in parentheses
show the value of the kernel width σ used in the RFF
mapping.

SKLSH [36], since the latter is also based on RFF.
To obtain a c-bit code, SKLSH first computes a c-
dimensional RFF embedding of the data and then
quantizes each dimension after adding a random
threshold. By contrast, our KPCA-based methods start
with a 3,000-dimensional RFF embedding and then
use PCA to reduce it to top c dimensions. Based on the
results of Figure 13, this process makes an especially
big difference for class label precision.

Next, Figure 14 shows results for performing CCA
on top of RFF to learn a supervised embedding. As a
baseline, this figure includes the curve for CCA-ITQ,
which was also shown in Figure 11 (where it was, in
turn, a big improvement over the unsupervised PCA-
ITQ). Now, we can see that KCCA-RR and KCCA-
ITQ both significantly improve over CCA-ITQ, with
KCCA-ITQ giving the best results for every code size.
Moreover, KCCA-ITQ outperforms the continuous
KCCA baseline even for 16 bits! This is even stronger
than the finding of Figure 11, where we first saw that
performing ITQ on top of a supervised embedding
can actually improve its semantic precision. Note that
a recent work [25] has proposed a supervised kernel
hashing scheme that shares a similar motivation to
ours here. In the future, it will be interesting to
compare our method with that of [25].

Finally, we want to demonstrate the effect of the
radius σ of the Gaussian kernel in the RFF mapping.
Intuitively, by tuning this parameter, we can control
how the binary codes approximate the neighbors: a
smaller radius can give us better approximation for
very close neighbors, while a larger one can give
us codes that better reflect the global structure of
the data. To demonstrate this, we use a ground-truth
radius δ defined as half the distance to the 50th nearest
neighbor. This results in only very close points (near
duplicates) being defined as ground truth neighbors.
Figure 15 shows recall and precision of KPCA-ITQ for

Method Dimensionality FV Precision@50
Fisher Vector 4096 × 32 bits 33.40
Classeme 950 × 32 bits 39.24
Classeme-Threshold 950 × 1 bits 31.54
Classeme-ITQ 950 × 1 bits 38.98
Classeme-RR 950 × 1 bits 37.06
Classeme-SH 950 × 1 bits 22.66
Classeme-LSH 950 × 1 bits 36.27
Classeme-SKLSH 950 × 1 bits 33.35

Table 1
Image retrieval results (average class label precision

at top 50 returned images) on 50 classes from
ILSVRC2010.

Percent of training set
Method 1% 5% 10% 50% 100%
Fisher Vector 35.55 52.21 57.11 66.21 69.16
Classeme 38.54 51.49 56.18 64.31 66.77
Classeme-Threshold 34.17 47.93 51.16 56.75 58.72
Classeme-ITQ 40.58 53.32 56.62 61.12 62.68
Classeme-RR 37.33 50.39 54.06 58.83 60.55

Table 2
Image classification results (%) on 50 classes from
ILSVRC2010 using Classemes trained on Fisher

Vectors. Standard deviations are around 1%.

σ = [δ/2, δ, 2δ, 4δ]. The best performance is obtained
for δ and δ/2, which match the desired neighborhood
size the most closely. By contrast, KPCA-ITQ with a
larger radius, or PCA-ITQ, which does not have a
radius parameter, work very poorly in this regime.

Let us summarize the benefits of using the RFF em-
bedding in combination with ITQ. First, it allows us to
use more bits than original feature dimensions to get
better code accuracy. Second, it significantly improves
class label precision, especially when combined with
CCA. Third, it has a tunable radius parameter that
can be changed to obtain much better performance
on tasks such as near-duplicate image retrieval.

7 LEARNING CLASSEMES FROM IMAGENET

Finally, we present an application of ITQ to learning
binary classeme features [2], [38], [46], [48]. The idea of
classemes is to train large numbers of visual classifiers
and then use their outputs on a new test image as a
high-level feature for novel category recognition.

For the experiments of this section, we collect data
from the ImageNet database [8], which contains more
than 14 million labeled images from more than 22,000
categories. Specifically, we use the ILSVRC2010 subset
containing 1.2 million images from 1000 categories.
We represent images using state-of-the-art Fisher vec-
tor (FV) [32] descriptors, which are computed as
follows. Images are resized to have an area of 100,000
pixels (if larger). SIFT [26] and color descriptors [35]
are extracted from 24 × 24 patches every 6 pixels
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(a) Query (b) Classeme-ITQ (c) Classeme (d) Fisher Vector

Precision: 83.33% Precision: 94.44% Precision: 63.89%

Precision: 97.22% Precision: 86.11% Precision: 66.67%

Precision: 72.22% Precision: 80.56% Precision: 50.00%

Figure 16. Sample image search results on ImageNet (50 testing categories). We qualitatively compare Fisher
Vector, Classeme, and binary Classeme (950 bits) obtained by ITQ. Red border means false positive. Note that
in some of the examples, Classeme-ITQ has lower precision than the continuous Classeme.

at 5 scales (by resizing the image by a factor
√

2
between two scales). The dimensionality of both SIFT
and color descriptors is reduced to 64 by PCA. For
each descriptor type, a Gaussian Mixture Model with
16 components is trained. Given an image, a 2048-
dimensional FV is computed for SIFT and color by
taking the gradient with respect to the mean and
standard deviation parameters. The FVs are power-
and L2-normalized as suggested in [35]. The final
descriptor is the concatenation of the SIFT and color
FV’s, and is 4096-dimensional.

To learn the classemes, we randomly pick 950
classes from ILSVRC2010 and train LIBLINEAR SVM
classifiers [9] on them. We use all the positive training
data for each class, and randomly sample the same
amount of negative training data from the remaining

classes. The regularization parameter C of LIBLIN-
EAR SVM is set to 2. Then the output scores of the 950
classifiers are used as classeme features to recognize
the remaining 50 categories. To convert classemes
to binary codes, we simply run ITQ (or any other
binarization method) on top of the classifier outputs
without any additional dimensionality reduction.

For our first experiment, we want to see how well
binary classemes work as a representation for image
retrieval. There are a total of 68,295 images in our
50 “testing” categories. We set aside 1,000 of those
as “queries” and find their nearest neighbors among
the remaining 67,295 images. Table 1 compares the
average class label precision of the top 50 returned
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images3 for a number of coding methods. First of
all, we can see that the continuous 950-dimensional
classemes give better retrieval performance than the
low-level FV features. Binarizing the classemes by
directly thresholding them drops the performance
significantly. However, binarizing them with ITQ re-
sults in almost no degradation (we have randomly
sampled five other 950/50 class splits, and found
that classeme-ITQ is consistently about 0.5% worse
than the uncompressed classeme). For comparison,
the table includes a number of other binary coding
methods, all of which are worse than ITQ. Qualitative
image retrieval results are shown in Figure 16.

Next, we would like to use classemes for novel
category recognition, as suggested in [2], [46]. The
motivating scenario is as follows: suppose we have
already learned visual models for a number of cate-
gories using a large amount of training data, and then
we are given a much smaller amount of training data
for a never before seen category. Can we leverage our
previous knowledge to quickly and efficiently learn a
model for the new category?

In our experimental setup, we use the classifiers
for the 950 categories as “previous knowledge.” For
the remaining 50 categories, we set aside 80% of
the data for training, 10% for validation, and 10%
for testing. We randomly sample different amounts
of training data from the 80% training set for five
trials, and train LIBLINEAR SVMs on the binary
classeme features. The regularization parameter of
linear SVM is tuned on the validation set using the
grid of [0.0002, 0.002, 0.02, 0.2, 2, 20]. Table 2 shows
the resulting classification accuracies. As before, the
classeme-ITQ representation outperforms all the other
binary embeddings. More interestingly, classeme-ITQ
works better than continuous classeme or Fisher vec-
tors for small training set size, where the higher-
dimensional features may be overfitting. For larger
training sizes, overfitting is no longer an issue, and
the original Fisher vectors work the best. Thus we
conclude that ITQ-based binary classemes may be
well suited for recognition of novel categories when
a very small amount of training data is available.

8 DISCUSSION

The main insight of our work is that the problem
of learning similarity-preserving binary codes can be
successfully formulated in terms of rotating zero-
centered PCA-projected data so as to minimize the
quantization error of mapping that data to the vertices
of a zero-centered binary hypercube. Our ITQ method
for finding this rotation is simple and efficient, and

3. Recall that in our CIFAR retrieval experiments, we were evalu-
ating precision at top 500 returned images. That number was chosen
because CIFAR has 6,000 images per class. ILSVRC2010 has only
300-1,200 images per class, so evaluating precision at top 50 is more
appropriate.

produces compelling improvements over the state of
the art. Along the way, we have also shown that a
random rotation [19] already works better than more
elaborate schemes like non-orthogonal relaxation [49],
and thus makes a strong baseline for evaluating ITQ.
In Section 5, we have shown that the classic CCA
embedding [16] gives a very effective way of utilizing
clean or noisy labels for supervised training of binary
codes. Intriguingly, our experiments even suggest that
binarizing CCA-projected data with ITQ can actually
improve the semantic precision of retrieval. This im-
plies that ITQ on top of a supervised embedding does
a good job of finding a binary code structure that
accurately reflects the underlying class label structure
– a phenomenon that needs more study in the future.
In Section 6, we have demonstrated that even further
improvements can result from using a nonlinear ker-
nel embedding prior to PCA or CCA. Finally, Section
7 has given an application of ITQ to creating a com-
pressed binary “classeme” representation suitable for
retrieval and novel category recognition on Internet-
scale datasets.
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