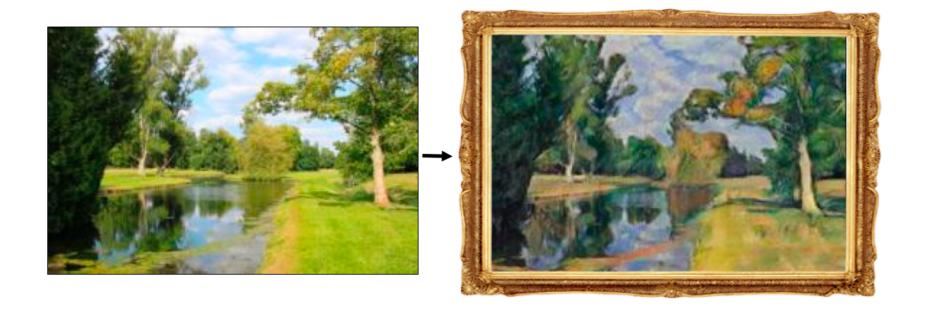
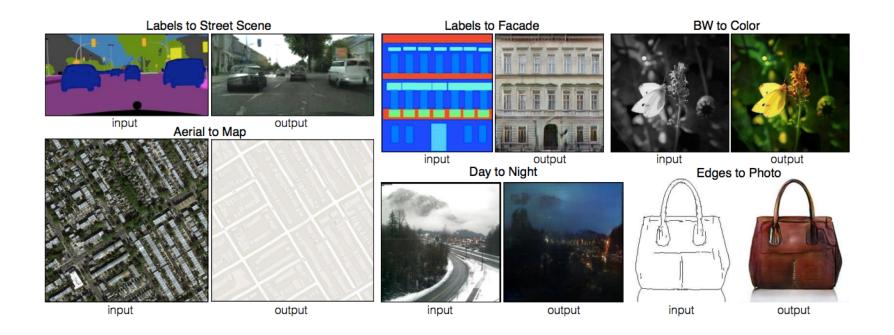
# Image-to-image translation



#### Outline

- Paired image-to-image translation: pix2pix
- Unpaired image-to-image translation: CycleGAN
- Extensions, applications

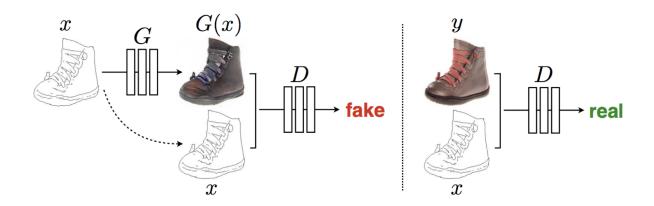
## Paired image-to-image translation



P. Isola, J.-Y. Zhu, T. Zhou, A. Efros, <u>Image-to-Image Translation with Conditional Adversarial Networks</u>, CVPR 2017

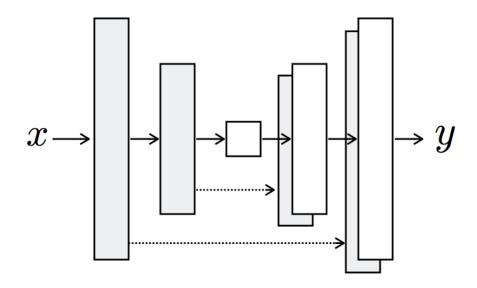
## Pix2pix

- Produce modified image y conditioned on input image x (note change of notation)
  - Generator receives x as input
  - Discriminator receives an x, y pair and has to decide whether it is real or fake



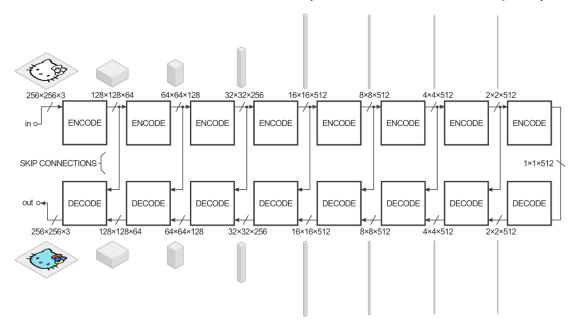
# Pix2pix: Generator

Generator architecture: U-Net (no z used as input)



## Pix2pix: Generator

Generator architecture: U-Net (no z used as input)



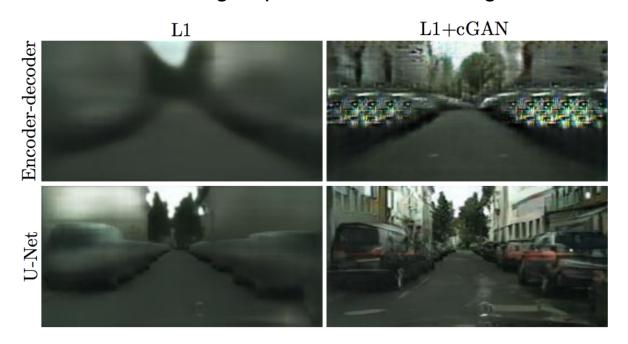
Encode: convolution → BatchNorm → ReLU

Decode: transposed convolution → BatchNorm → ReLU

Figure source

# Pix2pix: Generator

#### Effect of adding skip connections to the generator



#### Pix2pix: Generator loss

GAN loss plus L1 reconstruction penalty

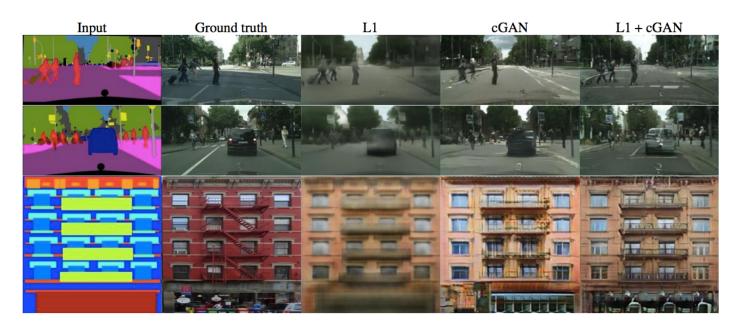
$$G^* = \operatorname{arg\,min}_G \, \operatorname{max}_D \mathcal{L}_{GAN}(G, D) + \lambda \sum_i \|y_i - G(x_i)\|_1$$

Generated output  $G(x_i)$  should be close to ground truth target  $y_i$ 

### Pix2pix: Generator loss

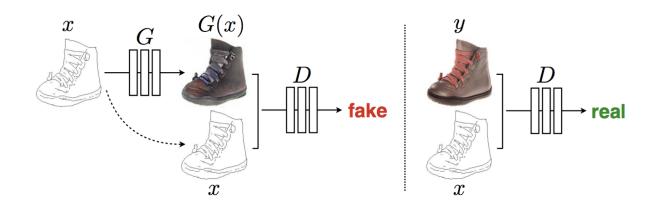
GAN loss plus L1 reconstruction penalty

$$G^* = \operatorname{arg\,min}_{G} \operatorname{max}_{D} \mathcal{L}_{GAN}(G, D) + \lambda \sum_{i} ||y_i - G(x_i)||_{1}$$



## Pix2pix: Discriminator

• Given input image x and second image y, decide whether y is a ground truth target or produced by the generator



#### Pix2pix: Discriminator

- "PatchGAN" architecture: output a 30x30 map where each value (0 to 1) represents the quality of the corresponding section of the output image, average to obtain final discriminator loss
- Implemented as FCN, effective patch size can be increased by increasing the depth

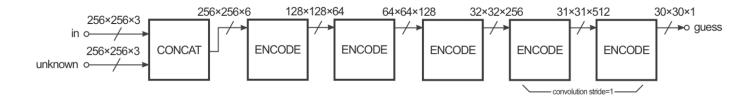


Figure source

#### Pix2pix: Discriminator

- "PatchGAN" architecture: output a 30x30 map where each value (0 to 1) represents the quality of the corresponding section of the output image, average to obtain final discriminator loss
- Implemented as FCN, effective patch size can be increased by increasing the depth

Effect of discriminator patch size on generator output



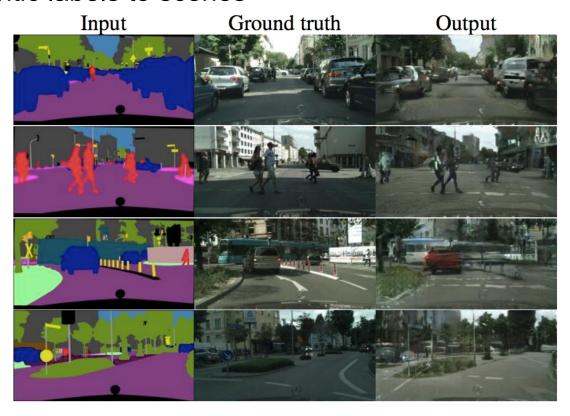
Translating between maps and aerial photos



- Translating between maps and aerial photos
- Human study:

|         | $\mathbf{Photo} \to \mathbf{Map}$ | $\mathbf{Map} 	o \mathbf{Photo}$     |
|---------|-----------------------------------|--------------------------------------|
| Loss    | % Turkers labeled real            | % Turkers labeled real               |
| L1      | $2.8\% \pm 1.0\%$                 | $0.8\% \pm 0.3\%$                    |
| L1+cGAN | $6.1\% \pm 1.3\%$                 | $\textbf{18.9\%} \pm \textbf{2.5\%}$ |

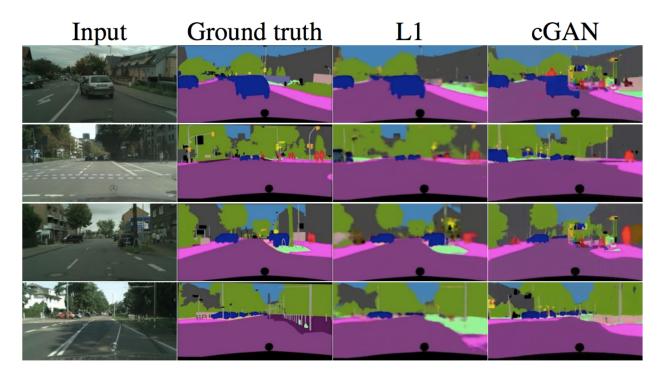
Semantic labels to scenes



- Semantic labels to scenes
  - Evaluation: FCN score the higher the quality of the output, the better the FCN should do at recovering the original semantic labels

| Loss                | Per-pixel acc. | Per-class acc. | Class IOU |
|---------------------|----------------|----------------|-----------|
| L1                  | 0.42           | 0.15           | 0.11      |
| GAN                 | 0.22           | 0.05           | 0.01      |
| cGAN                | 0.57           | 0.22           | 0.16      |
| L1+GAN              | 0.64           | 0.20           | 0.15      |
| L1+cGAN             | 0.66           | 0.23           | 0.17      |
| <b>Ground truth</b> | 0.80           | 0.26           | 0.21      |

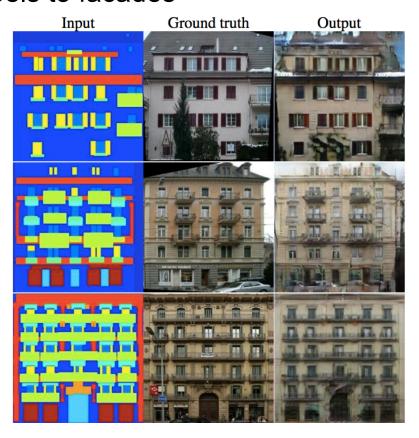
Scenes to semantic labels



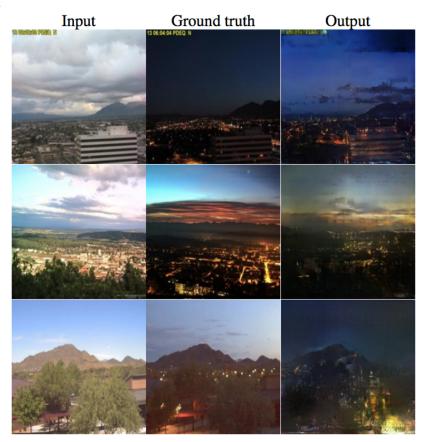
- Scenes to semantic labels
  - Accuracy is worse than that of regular FCNs or generator with L1 loss

| Loss    | Per-pixel acc. | Per-class acc. | Class IOU |
|---------|----------------|----------------|-----------|
| L1      | 0.86           | 0.42           | 0.35      |
| cGAN    | 0.74           | 0.28           | 0.22      |
| L1+cGAN | 0.83           | 0.36           | 0.29      |

Semantic labels to facades



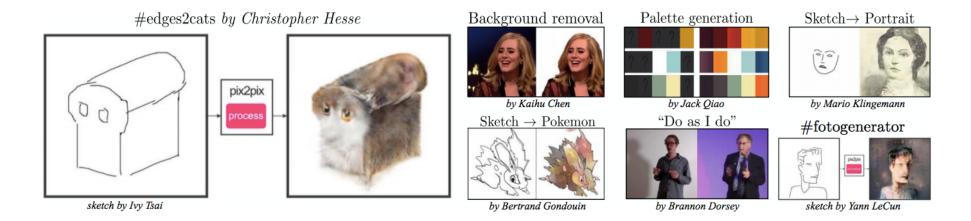
Day to night



## Edges to photos



## • pix2pix demo



## Pix2pix: Limitations

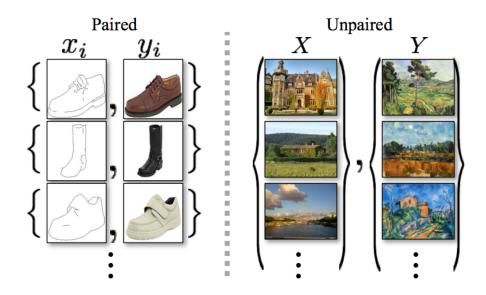
- Visual quality could be improved
- Requires x, y pairs for training
- Does not model conditional distribution P(y|x), returns a single mode instead

#### Outline

- Paired image-to-image translation: pix2pix
- Unpaired image-to-image translation: CycleGAN

#### Unpaired image-to-image translation

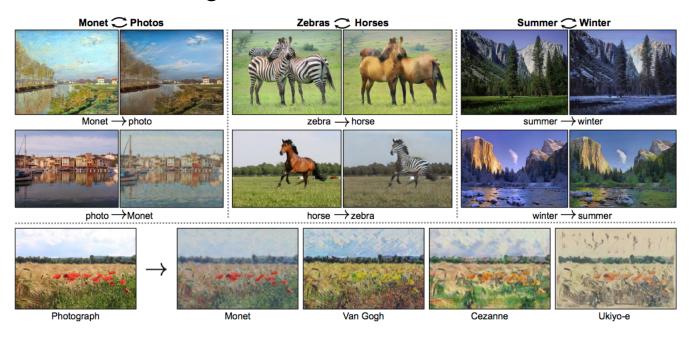
• Given two unordered image collections *X* and *Y*, learn to "translate" an image from one into the other and vice versa



J.-Y. Zhu, T. Park, P. Isola, A. Efros, <u>Unpaired Image-to-Image Translation Using</u>
<u>Cycle-Consistent Adversarial Networks</u>, ICCV 2017

#### Unpaired image-to-image translation

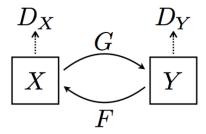
 Given two unordered image collections X and Y, learn to "translate" an image from one into the other and vice versa



J.-Y. Zhu, T. Park, P. Isola, A. Efros, <u>Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks</u>, ICCV 2017

#### CycleGAN

- Given: domains X and Y
- Train two generators F and G and two discriminators  $D_X$  and  $D_Y$ 
  - G translates from X to Y, F translates from Y to X
  - $D_X$  recognizes images from X,  $D_Y$  from Y
  - Cycle consistency: we want  $F(G(x)) \approx x$  and  $G(F(y)) \approx y$



## CycleGAN: Architecture

Generators (based on <u>Johnson et al.</u>, 2016):

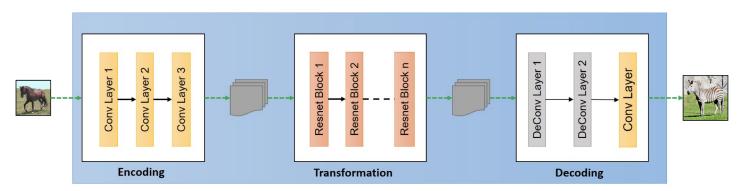


Figure source

Discriminators: PatchGAN on 70 x 70 patches

#### CycleGAN: Loss

- Requirements:
  - G translates from X to Y, F translates from Y to X
  - D<sub>X</sub> recognizes images from X, D<sub>Y</sub> from Y
  - We want  $F(G(x)) \approx x$  and  $G(F(y)) \approx y$
- CycleGAN discriminator loss: LSGAN

$$\mathcal{L}_{GAN}(D_Y) = \mathbb{E}_{y \sim p_{\text{data}}(y)} [(D_Y(y) - 1)^2] + \mathbb{E}_{x \sim p_{\text{data}}(x)} [D_Y(G(x))^2]$$

$$\mathcal{L}_{GAN}(D_X) = \mathbb{E}_{x \sim p_{\text{data}}(x)} [(D_X(x) - 1)^2] + \mathbb{E}_{y \sim p_{\text{data}}(y)} [D_X(F(y))^2]$$

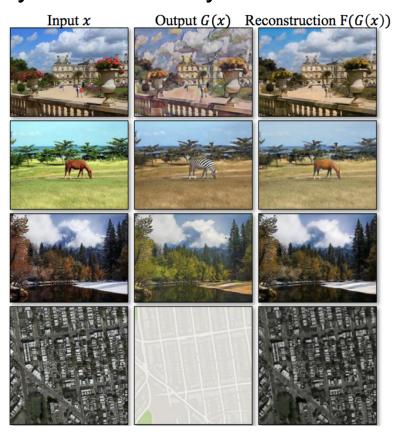
CycleGAN generator loss:

$$\mathcal{L}_{\text{cyc}}(G, F) = \mathbb{E}_{x \sim p_{\text{data}}(x)} [D_Y(G(x) - 1)^2] + \mathbb{E}_{y \sim p_{\text{data}}(y)} [D_X(F(y) - 1)^2]$$

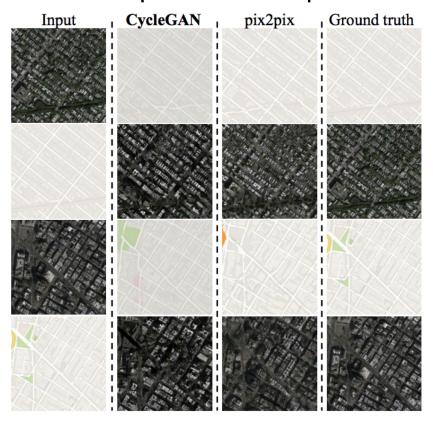
$$+ \mathbb{E}_{x \sim p_{\text{data}}(x)} [\|F(G(x)) - x\|_1] + \mathbb{E}_{y \sim p_{\text{data}}(y)} [\|G(F(y)) - y\|_1]$$

# CycleGAN

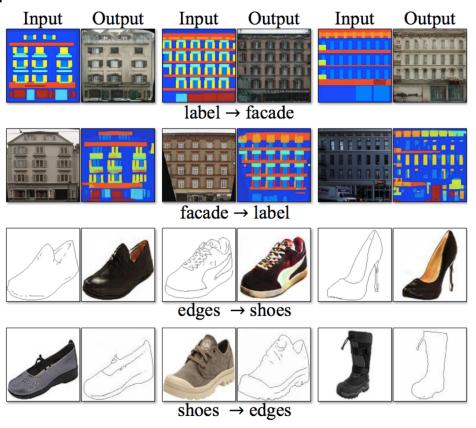
• Illustration of cycle consistency:



Translation between maps and aerial photos



Other pix2pix tasks



- Scene to labels and labels to scene
  - Worse performance than pix2pix due to lack of paired training data

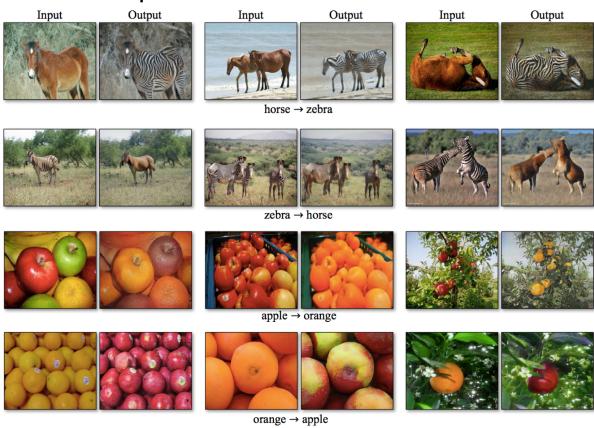
| Loss               | Per-pixel acc. | Per-class acc. | Class IOU |
|--------------------|----------------|----------------|-----------|
| CoGAN [32]         | 0.40           | 0.10           | 0.06      |
| BiGAN/ALI [9, 7]   | 0.19           | 0.06           | 0.02      |
| SimGAN [46]        | 0.20           | 0.10           | 0.04      |
| Feature loss + GAN | 0.06           | 0.04           | 0.01      |
| CycleGAN (ours)    | 0.52           | 0.17           | 0.11      |
| pix2pix [22]       | 0.71           | 0.25           | 0.18      |

Table 2: FCN-scores for different methods, evaluated on Cityscapes labels→photo.

| Loss               | Per-pixel acc. | Per-class acc. | Class IOU |
|--------------------|----------------|----------------|-----------|
| CoGAN [32]         | 0.45           | 0.11           | 0.08      |
| BiGAN/ALI [9, 7]   | 0.41           | 0.13           | 0.07      |
| SimGAN [46]        | 0.47           | 0.11           | 0.07      |
| Feature loss + GAN | 0.50           | 0.10           | 0.06      |
| CycleGAN (ours)    | 0.58           | 0.22           | 0.16      |
| pix2pix [22]       | 0.85           | 0.40           | 0.32      |

Table 3: Classification performance of photo→labels for different methods on cityscapes.

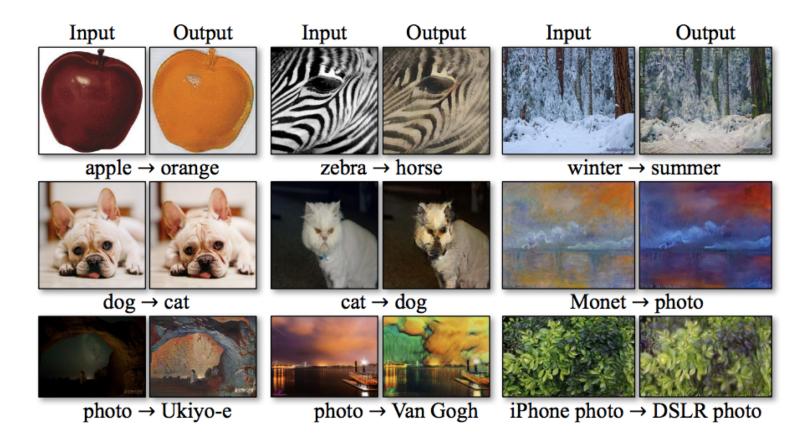
Tasks for which paired data is unavailable



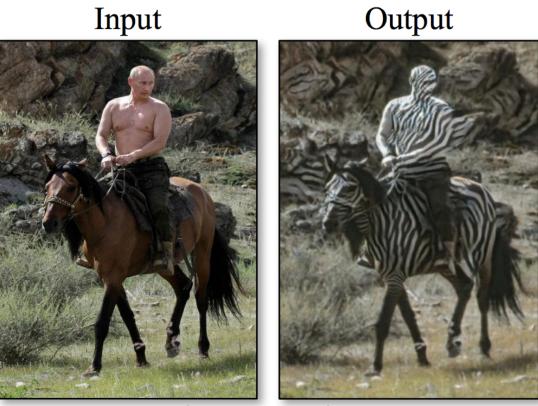
## Style transfer



## CycleGAN: Failure cases



# CycleGAN: Failure cases



horse → zebra

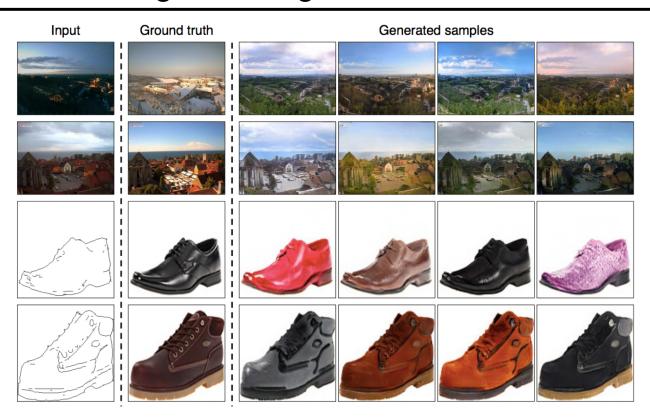
#### CycleGAN: Limitations

- Cannot handle shape changes (e.g., dog to cat)
- Can get confused on images outside of the training domains (e.g., horse with rider)
- Cannot close the gap with paired translation methods
- Does not account for the fact that one transformation direction may be more challenging than the other

#### Outline

- Paired image-to-image translation: pix2pix
- Unpaired image-to-image translation: CycleGAN
- Extensions, applications

## Multimodal image-to-image translation



J.Y. Zhu, R. Zhang, D. Pathak, T. Darrell, A. A. Efros, O. Wang, E. Shechtman, <u>Toward Multimodal Image-to-Image Translation</u>, NIPS 2017

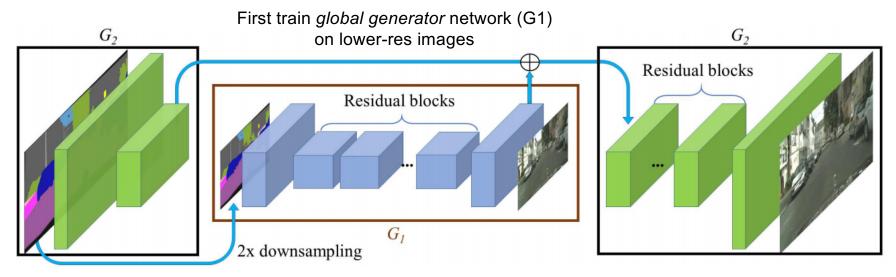
# High-resolution, high-quality pix2pix



T.-C. Wang et al., High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs, CVPR 2018

## High-resolution, high-quality pix2pix

• Two-scale generator architecture (up to 2048 x 1024 resolution)



Then append higher-res enhancer network (G2) blocks and train G1 and G2 jointly

T.-C. Wang et al., High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs, CVPR 2018

## Human generation conditioned on pose



https://carolineec.github.io/everybody\_dance\_now/

C. Chan, S. Ginosar, T. Zhou, A. Efros. Everybody Dance Now. ICCV 2019

### Human generation conditioned on pose

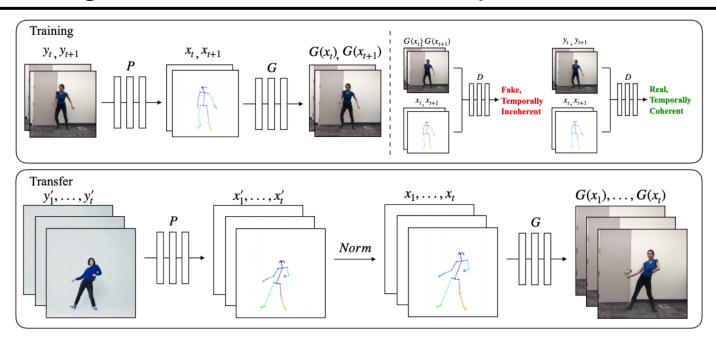
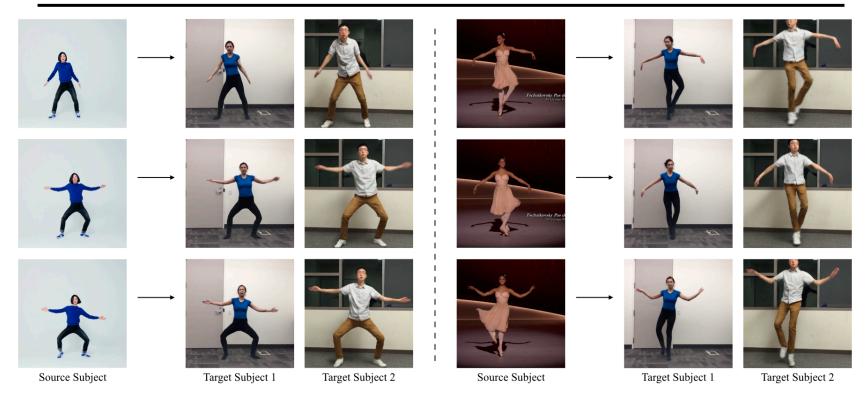


Figure 3: (Top) **Training**: Our model uses a pose detector P to create pose stick figures from video frames of the target subject. We learn the mapping G alongside an adversarial discriminator D which attempts to distinguish between the "real" correspondences  $(x_t, x_{t+1}), (y_t, y_{t+1})$  and the "fake" sequence  $(x_t, x_{t+1}), (G(x_t), G(x_{t+1}))$ . (Bottom) **Transfer**: We use a pose detector P to obtain pose joints for the source person that are transformed by our normalization process Norm into joints for the target person for which pose stick figures are created. Then we apply the trained mapping G.

C. Chan, S. Ginosar, T. Zhou, A. Efros. Everybody Dance Now. ICCV 2019

## Human generation conditioned on pose



https://carolineec.github.io/everybody dance now/

C. Chan, S. Ginosar, T. Zhou, A. Efros. Everybody Dance Now. ICCV 2019