
Introduction to deep reinforcement learning

Outline
• Introduction to reinforcement learning
• Markov Decision Process (MDP) formalism
• The Bellman equation
• Q-learning
• Deep Q networks (DQN)
• Extensions

• Double DQN
• Dueling DQN

Reinforcement learning (RL)
• Setting: agent that can take actions affecting the state of the

environment and observe occasional rewards that depend on
the state

• Goal: learn a policy (mapping from states to actions) to
maximize expected reward over time

ActionsSuccessor states,
rewards

RL vs. supervised learning
• Reinforcement learning loop

• From state !, take action " determined by policy #(!)
• Environment selects next state !′ based on transition model '(!′|!, ")
• Observe !′ and reward *(!′), update policy

• Supervised learning loop
• Get input +, sampled i.i.d. from data distribution
• Use model with parameters - to predict output .
• Observe target output ., and loss /(-, +,, .,)
• Update - to reduce loss: - ← - − 2 ∇/ -, +,, .,

RL vs. supervised learning
• Reinforcement learning

• Agent’s actions affect the environment and help to determine next
observation

• Rewards may be sparse
• Rewards are not differentiable w.r.t. model parameters

• Supervised learning
• Next input does not depend on previous inputs or agent’s predictions
• There is a supervision signal at every step
• Loss is differentiable w.r.t. model parameters

Example applications of deep RL
• AlphaGo and AlphaZero

https://deepmind.com/research/alphago/

https://deepmind.com/research/alphago/

Example applications of deep RL

• Playing video games

Video

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, M. Riedmiller,

Human-level control through deep reinforcement learning, Nature 2015

https://youtu.be/cjpEIotvwFY
http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf

Example applications of deep RL
• Sensorimotor learning

Video

S. Levine, C. Finn, T. Darrell and P. Abbeel, End-to-End Training of Deep Visuomotor Policies, JMLR 2016

https://sites.google.com/site/visuomotorpolicy/
http://arxiv.org/abs/1504.00702

Example applications of deep RL
• Sensorimotor learning

A. Agarwal, A. Kumar, J. Malik, and D. Pathak. Legged Locomotion in Challenging Terrains
using Egocentric Vision. CoRL 2022

https://vision-locomotion.github.io/

Example applications of deep RL
• Improving large language models

L. Ouyang et al. Training language models to follow instructions with human feedback. NeurIPS 2022

https://arxiv.org/pdf/2203.02155.pdf

Formalism: Markov Decision Processes
• Components:

• States !, beginning with initial state !0
• Actions #
• Transition model $(!′ | !, #)

– Markov assumption: the probability of going to !′ from ! depends
only on ! and # and not on any other past actions or states

• Reward function *(!)
• Policy p(!): the action that an agent takes in any given state

• The “solution” to an MDP

Example MDP: Grid world

!(#) = −0.04 for
every non-terminal
state

Transition model:

0.8 0.10.1

Source: P. Abbeel and D. Klein

Example MDP: Grid world
• Goal: find the best policy

Source: P. Abbeel and D. Klein

Example MDP: Grid world
• Optimal policies for various values of !(#):

Cumulative rewards of state sequences
• Suppose that following policy ! starting in state "# leads to a

sequence or trajectory $ = ("#, "(, "), …)
• How do we define the cumulative reward of this trajectory?
• Problem: the sum of rewards of individual states grows is not

normalized w.r.t. sequence length and can even be infinite
• Solution: define cumulative reward as sum of rewards

discounted by a factor ,, 0 < , ≤ 1

Image source: P. Abbeel and D. Klein

Discounting
• Discounted cumulative reward of trajectory ! = ($%, $', $(, $), …):

, $%, $', $(, $), … = , $% + . , $' + .(, $(+ .), $) +⋯
=0

12%
.1 ,($1)

• Sum is bounded by 3456'78 (assuming 0 < . ≤ 1)

• Helps algorithms converge
• Notice:

, $%, $', $(, $), … = , $% + . , $', $(, $), …
Cumulative reward of
trajectory starting at $%

Reward
at $%

Discounted reward of
trajectory starting at $'

Value function
• The value function !"($) of a state $ w.r.t. policy & is the

expected cumulative reward of following that policy starting in $:
!" $ = () *(+)| $- = $, &

where + is a trajectory with starting state $, actions given by &,
and successor states drawn according to transition model:
$/01~3 4 $/,5/

• The optimal value of a state is the value achievable by following
the best possible policy:

!∗($) = max" !" $

The optimal policy
• How do we express the optimal policy in terms of optimal

state values?

What action ! to choose?

The optimal policy
• How do we express the optimal policy in terms of optimal

state values?

Agent chooses action !

The optimal policy
• How do we express the optimal policy in terms of optimal

state values?
• Take the action that maximizes the expected future cumulative value:

!∗ # = arg max*+,-~/(1|,,*)5∗ #6

Agent chooses action 7

Environment chooses #6~ 8(1 |#, 7)

Expected value for action 7:

+,-~/(1|,,*)5∗ #6 = 9
,-
8 #6 #, 7 5∗(#6)

Expected
reward: 5∗(#6)

The Bellman equation
• Recursive relationship between optimal values of successive

states:
!∗ # = % # + ' max+ ,-.~0(2|-,+)!∗(#6)

Agent receives reward %(#)

Optimal policy:
7∗ # = arg max+,-.~0(2|-,+)!∗ #6Agent chooses action :

Environment chooses #6~ ;(2 |#, :)
Expected

reward: !∗(#6)

The Bellman equation
• Recursive relationship between optimal values of successive

states:
!∗ # = % # + ' max+ ,-.~0(2|-,+)!∗(#6)

Reward in
current state

Discounted expected future reward
assuming agent follows the optimal policy

Outline
• Introduction to reinforcement learning
• Markov Decision Process (MDP) formalism
• The Bellman equation
• Q-learning

Q-learning
• To choose actions using value functions, we need to know

the transition model:

!∗ # = arg max*+,-~/ 0 #, 2 3∗ #4
= arg max*5

,-
6(#4|#, 2)3∗ #4

• It is more convenient to define the value of a state-action pair:

:; #, 2 = +< =(>)|#? = #, 2?= 2, !

• Then the optimal policy is given by

!∗ # = arg max*:∗ #, 2

Q-value function: Example

Bellman equation for Q-values
• Relationship between regular values and Q-values:

"∗ $ = max)*∗ $, ,

• Regular Bellman equation:

"∗ $ = - $ + / max) 012~4(6|1,))"∗($9)

• Bellman equation for Q-values:

∗ $, , = - $ + / 012~4(6|1,)) max)2∗ $′, ,′
= 012~4(6|1,)) - $ + / max)2*∗ $′, ,′

Finding the optimal policy
• The Bellman equation is a constraint on Q-values of

successive states:
!∗($, &) =)*+~-(.|*,0) 1 $ + 3 max0+!∗ $′, &′ |$, &

• We could think of !∗($, &) as a table indexed by states and
actions, and try to solve the system of Bellman equations to
fill in the unknown values of the table

• Problem: state spaces for interesting problems are huge
• Solution: approximate Q-values using a parametric function:

!∗ $, & ≈ !9($, &)

RL: Outline
• Introduction to reinforcement learning
• Markov Decision Process (MDP) formalism and classical

Bellman equation
• Q-learning
• Deep Q networks

Deep Q-learning
• Train a deep neural network to estimate Q-values:

Source: D. Silver

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, M. Riedmiller,
Human-level control through deep reinforcement learning, Nature 2015

http://hunch.net/~beygel/deep_rl_tutorial.pdf
http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf

Deep Q-learning
!∗($, &) =)*+~-(.|*,0) 1 $ + 3 max0+!∗ $′, &′ |$, &

• Idea: at each step of training, update model parameters 8 to
“nudge” the left-hand side toward the right-hand “target”:

9:;<=>: $, & =)*+~-(.|*,0) 1 $ + 3 max0+!:;<=>: $?, &? |$, &

• Loss function:

@ 8 =)*,0 (9:;<=>:($, &) − !B $, &)C

Deep Q-learning
• Target: !"#$%&"((, *) = -./~1(2|.,4) 5 (+ 7 max4/;"#$%&" (′, *′ |(, *
• Loss: = > = -.,4~? (!"#$%&"((, *) − ;A (, *)B

• Gradient update:

∇A=(>) = -.,4~? (!"#$%&"((, *) − ;A (, *) ∇A;A (, *
= -.,4~?,./ (5 (+ 7 max4/;"#$%&" (′, *′ − ;A (, *) ∇A;A (, *

• SGD training: replace expectation by sampling transitions ((, *, (′)
using behavior distribution and experience replay

• At each time step:
• Take action !" according to epsilon-greedy policy
• Store experience ($", !&, '&(), $&()) in replay memory buffer

• Randomly sample mini-batch of experiences from the buffer
• Perform gradient descent step on loss:

+ , = ./,0,/1 (' $ + 3 max01789:;<8 $′, !′ − 7? $, !)@
• Update target network every A steps

Deep Q-learning algorithm

Deep Q-learning in Atari

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, M. Riedmiller,
Human-level control through deep reinforcement learning, Nature 2015

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf

Deep Q-learning in Atari
• End-to-end learning of !(#, %) from pixels #
• Output is !(#, %) for 18 joystick/button configurations
• Reward is change in score for that step

Q(s,a1)
Q(s,a2)
Q(s,a3)
.
.
.
.
.
.
.
.
.
.
.
Q(s,a18)

Deep Q-Network (DQN)

Deep Q-learning in Atari
• Input state is stack of raw pixels (grayscale) from last 4 frames
• Network architecture and hyperparameters fixed for all games

Deep Q-Network (DQN)

Deep Q-learning in Atari

Breakout demo

https://www.youtube.com/watch?v=TmPfTpjtdgg

https://www.youtube.com/watch?v=TmPfTpjtdgg

Outline
• Introduction to reinforcement learning
• Markov Decision Process (MDP) formalism and classical

Bellman equation
• Q-learning
• Deep Q networks
• Extensions

• Double DQN
• Dueling DQN

Extension: Double Q-learning
• Max operator in standard Q-learning is used both to select

and evaluate an action, leading to systematic over-estimation
of Q-values

• Modification: select action using the online (current) network,
but evaluate Q-value using the target network

• Regular DQN target:
!"#$%&" ',) = + ' + - max123"#$%&" '′,)′

• Double DQN target:
!"#$%&" ',) = + ' + - 3"#$%&" '′, argmax1738 '′,)′

H. van Hasselt, A. Guez, D. Silver, Deep Reinforcement Learning with Double Q-learning, AAAI 2016

https://arxiv.org/pdf/1509.06461.pdf

Double DQN results

Another extension: Dueling DQN
• Decompose estimation of Q-function into value and
advantage functions

Value function

Advantage function

Z. Wang et al., Dueling Network Architectures for Deep Reinforcement Learning, ICML 2016

Q-function

https://arxiv.org/pdf/1511.06581.pdf

Dueling DQN
• Decompose estimation of Q-function into value and
advantage functions
• Motivation: in many states, actions don’t meaningfully affect the

environment, so it is not necessary to know the exact value of each
action at each time step

Z. Wang et al., Dueling Network Architectures for Deep Reinforcement Learning, ICML 2016

https://arxiv.org/pdf/1511.06581.pdf

Dueling DQN
• Decompose estimation of Q-function into value and
advantage functions:

! ", $ = & " + (", $ −max-. ((", $0) or

! ", $ = & " + (", $ − 1
|4|5-.

((", $0)

Z. Wang et al., Dueling Network Architectures for Deep Reinforcement Learning, ICML 2016

https://arxiv.org/pdf/1511.06581.pdf

Dueling DQN: Results
Improvements over prioritized DDQN baseline:

