Policy Gradient Methods

A\
\ \
. A X N A
\ \ss \ \ \
\ [¥\ [\ \ K \ R
— = \ 3 \ [\a2
- S s\ ==~ " oy | @
2 5 ~J ML Y [‘(i I] ’[Y 13
. . \ 22 11~ N |- 27 - N Y
/ o 2 s\L \ N \ \
_ \ ks \ \ 204
\ \ | \
\ \ 2%
\ \ Max — Max
\
\‘\ Stride\| ¢ | Po0ling poolir
“T\J| of &

Sources: Stanford CS 231n, Berkeley Deep RL course,
David Silver’'s RL course

Image source

http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-5.pdf
http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture14.pdf
http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-6.pdf
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/pg.pdf

Outline

« Stochastic policy representation
* Finding the policy gradient
 REINFORCE algorithm

» Actor-critic algorithms

* Applications

Policy gradient methods: Motivation

» Instead of indirectly representing the policy using Q-values,
it can be more efficient to parameterize and learn it directly
Especially in large or continuous action spaces

i

Image source: OpenAl Gym

https://gym.openai.com/envs/Humanoid-v2/

Stochastic policy representation

« Learn a function giving the probability distribution over
actions from the current state:

mg(als) = P(als)

Stochastic policy representation

« Learn a function giving the probability distribution over
actions from the current state:

mg(als) = P(als)

« Why stochastic policies?

« There are examples even of grid world scenarios where only a
stochastic policy can reach optimality

~)

o

The agent can'’t tell the difference between the gray cells

&5

Source:
D. Silver

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/pg.pdf

Stochastic policy representation

« Learn a function giving the probability distribution over
actions from the current state:

mg(als) = P(als)

« Why stochastic policies?
It's mathematically convenient!
» Softmax policy:

exp (f@ (S, Cl))
2qr €xp(fo(s,a’))

mg(als) =

» Gaussian policy (for continuous action spaces):
1 (als) = Ly B Gl fo(s))?
? V2mo? P 202

Expected value of a policy

J(6) = E

Z:Vt 1t | ”9]

t=0

= E.[r (T)]

Expectation of return over trajectories t = (s,, ay, 1y, 51,1, 71, -+)

= j r(t)p(r; 8)dr
T _Y_)

Probability of trajectory ©
under policy with
parameters 6

Finding the policy gradient

1(6) = j r(p(x; 0)dr

T

Vo] (0) = j r(t)Vop(t; 8)dr

T

IVep(f; 6)
p(z; 6)

=Jr@h@ﬂ)

T

dt

. j r()p(z; 0V, log p(z; 0) dz

T

= E,[r(1)Vy logp(t; 0)]

Finding the policy gradient

Vo/(6) = E;[r(1)Vq logp(z; 0)]

p(;0) = P(sy) |

t=0

l_Y_}

Probability of trajectory
T = (Sgp, g, S1, Aq, -)

g (a¢|se)P(Se+1lSe, ar)

logp(t;0) =log P(sy) + 2

t=0

logmg (a|s;) +1og P(sei1lSe, ar)l

Vg logp(t;0) = 2 Vg logmg(as|st)

t=0 \ , /

The score function

Score function Vg logmg(als)

» For softmax policy:

exp(fy (s, a))
2 exp(fo(s,a’))

Vo logmg(aclse) = Vg fo(s,a) — z mg(a'ls) Vefe(s,a’)

a

mg(als) =

« For Gaussian policy:

1 ((a—fe(S))z)
exp | —

mg(als) = 22

2102

(a—fo(s))
0-2

Vo logmg(a;|s;) = Vo fo(s) — const.

Finding the policy gradient

Ve () = E.[r(t)Vg log p(; 0)]
Vo logp(z;0) =) Vo logmg(ays.)

t=0

V)(6) = E [(Z y%) (Z Vo logg (atlst)ﬂ

t=0 t=0
L__W___J ()
|
Return of Gradient of log-likelihood of
trajectory 7 actions under current policy

 How do we estimate the gradient in practice?

Finding the policy gradient

Ve () = E.[r(t)Vg log p(; 0)]
Vo logp(z;0) =) Vo logmg(ays.)

t=0

(2 ytrt> (2 V, log g (at|st)>‘

t=0 t=0

Vo/(0) = E;

« Stochastic approximation: sample N trajectories 7, ..., 7y
N

T T
1
Vo (0) ~ 3) (Z ytn,t> (Z Vo logmy (i |si,t>>
t=0 t=0

i=1

REINFORCE algorithm

1. Sample N trajectories t; using current policy mg

2. Estimate the policy gradlent

Vo) (6) ~ —Zr(n) (Z Vo log g (alt|slt)>

=1

3. Update parameters by gradient ascent:
0 <0+nVyJ(O)

Williams et al. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning, 8(3):229-256, 1992

http://www-anw.cs.umass.edu/~barto/courses/cs687/williams92simple.pdf

REINFORCE: Single-step version

1. In state s, sample action a using current policy 4, observe
reward r

2. Estimate the policy gradient:
Vo] (0) = Vg logmg(als)

3. Update parameters by gradient ascent:
0 <0+nVyJ(O)

« What effect does this update have?

Push up the probability of good actions, push down probability of bad
actions

Outline

« Stochastic policy representation
* Finding the policy gradient
 REINFORCE algorithm

» Actor-critic algorithms

Reducing variance

« Gradient estimate (for a single trajectory):

Vol (0) =) r(z) Vg logmg(alsy)

t=0

* General problem: rewards of sampled trajectories are too
noisy and lead to unreliable policy gradients

Reducing variance

« Gradient estimate (for a single trajectory):

Vol (0) =) r(z) Vg logmg(alsy)

t=0

» First observation: it seems bad to weight each action in a
trajectory by the return of the entire trajectory. In particular,
rewards obtained before an action was taken should not be

used to weight that action
Instead, for each action, consider only the cumulative future reward:

AOEDY (Z y“‘%) Vo log g (as.)

t=0 \t’>t

Reducing variance

AOEDY (Z yt’-%f) Vo logmy (acs.)

t=0 \t/>t
L J
Y

Observed cumulative
reward after taking action
a; in state s;

« But then, why not use expected cumulative reward?

Vel(0) =) Q"0(s.,a,) Vg logmg(ays:)

t=0

Actor-Critic algorithms

« Combine policy gradients and Q-learning by simultaneously
training an actor (the policy) and a critic (the Q-function)

Value Function Policy

Actor
Critic

 Value-Based Policy-Based

Source: D. Silver

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/pg.pdf

Reducing variance

Vo) (8) =) Q7(se,a,) Vs logmp (aclse)
t=0
* Next observation: the raw Q-values are not the most useful.
If all Q-values are good, we will try to push up the
probabilities of all the actions

* Instead, compare Q-values of actions to some baseline
function of the state:

VoJ(0) = z(Qﬂe (s¢,ap) — V7o (St)) Vg log g (a;|s:)

t=0 \

Y
Advantage function

A”H (St y At)

Estimating the advantage function

« Advantage function:
A™0(s,a) = Q™0 (s,a) — V™0(s)
=Eg[r+yV™(s)|s,a]l —V™(s)
~r+yVT(s') —V™o(s)
(from a single transition)

 Therefore, it is sufficient to learn the value function:
Ve (s) =V, (s)

Online actor-critic algorithm

1.

A

Sample action a using current policy, observe reward r,
successor state s’

Update 1V, (s) towards target r + yV,(s)
Estimate A™0(s,a) =r + yV,,(s") —V,(s)
Estimate V,/(0) = A™0(s,a)Vg logmg(als)
Update policy parameters: 6 < 6 +nVyJ(0)

fit V7

fit a model to
ﬁ estimate return

generate
samples (i.e.
run the policy)

; improve the

policy

Source: Berkeley RL course

http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-6.pdf

Asynchronous advantage actor-critic (A3C)

Agent 1 —> Experience 1 —> Local updates
Agent 2 —> Experience 2 —» Local updates

V,n

Agent n —> Experience n —» Local updates

Asynchronously update global parameters

Mnih et al. Asynchronous Methods for Deep Reinforcement Learning. ICML 2016

https://arxiv.org/pdf/1602.01783.pdf

Asynchronous advantage actor-critic (A3C)

Method Training Time Mean | Median
DQN 8 days on GPU 121.9% | 47.5%
Gorila 4 days, 100 machines | 215.2% | 71.3%
D-DQN 8 days on GPU 332.9% | 110.9%
Dueling D-DQN 8 days on GPU 343.8% | 117.1%
Prioritized DQN 8 days on GPU 463.6% | 127.6%
A3C, FF 1 day on CPU 344.1% | 68.2%
A3C, FF 4 days on CPU 496.8% | 116.6%
A3C, LSTM 4 days on CPU 623.0% | 112.6%

Mean and median human-normalized scores over 57 Atari games

Mnih et al. Asynchronous Methods for Deep Reinforcement Learning. ICML 2016

https://arxiv.org/pdf/1602.01783.pdf

Proximal policy optimization (PPO)

« Standard actor-critic algorithms are on-policy, cannot perform
multiple update steps using the same set of samples

« PPO enables multiple updates using the same minibatch of
samples by using a complicated “surrogate objective” that
carefully restricts how much the policy can change each time

Algorithm 1 PPO, Actor-Critic Style

for iteration=1,2,... do
for actor=1,2,...,N do
Run policy mp_, in environment for 7' timesteps

Compute advantage estimates Ay, ..., Ap
end for
Optimize surrogate L wrt 6, with K epochs and minibatch size M < NT
ol < 0
end for

J. Schulman et al. Proximal Policy Optimization Algorithms. arXiv 2017

https://arxiv.org/pdf/1707.06347.pdf

Outline

« Stochastic policy representation
* Finding the policy gradient
 REINFORCE algorithm

* Actor-critic algorithms

* Applications

Application: Adaptive policies for robot locomotion

Fig. 1: We demonstrate the performance of RMA on several challenging environments. The robot is successfully able to walk on
sand, mud, hiking trails, tall grass and dirt pile without a single failure in all our trials. The robot was successful in 70% of the
trials when walking down stairs along a hiking trail, and succeeded in 80% of the trials when walking across a cement pile and
a pile of pebbles. The robot achieves this high success rate despite never having seen unstable or sinking ground, obstructive
vegetation or stairs during training. All deployment results are with the same policy without any simulation calibration, or
real-world fine-tuning. Videos at https://ashish-kmr.github.io/rma-legged-robots/

A. Kumar et al. RMA: Rapid Motor Adaptation for Legged Robots. RSS 2021
Method video

https://ashish-kmr.github.io/rma-legged-robots/
https://www.youtube.com/watch?v=qKF6dr_S-wQ

Application: Adaptive policies for robot locomotion

A) Training in Simulation f
v
ise i
Mass, COM, Friction " -
J : Base Polic
Terrain Height (e) —»| Env Factor Encoder (u) |=» y
Motor Strength 7y '

*Trainable Modules in Red Regress

Phase 2
(T ar-51

[Xy l’at 1

A
B) Deployment e mmmeeeeeeemmmmeeeeeeeeeee———-
¥ g
;
(X_s0.9_51) Base Policy (m) |, ; 'S8
: Adaptation Module (¢) . 100 Hz ‘
10H T
[Xps G]-’ X b

A. Kumar et al. RMA: Rapid Motor Adaptation for Legged Robots. RSS 2021
Method video

https://ashish-kmr.github.io/rma-legged-robots/
https://www.youtube.com/watch?v=qKF6dr_S-wQ

Locomotion with vision in the loop

|S|mulat|on
Robot n———
Scandots
Egocentric
Depth
Privieged Scandots m,
Sensing Env Params e
(mass, friction...)

(Onboard: Proprioception X,
Sensing Ego Depth d,

Target Action a,

A. Agarwal et al. Legged Locomotion in Challenging Terrains using Egocentric Vision. CoRL 2022

Phase 1 (in Simulation)

Phase 2 (in Simulation)

Reinforcement Learning
with privileged information

v

Supervised Learning to
learn from onboard sensing

RMA Architecture

Phase 1

...... ‘
m, 7| T a,

e,
“‘;x:

Copy and
Freeze

-‘”)

Monolithic Architecture

Phase 1

a,

m)[we 7, :
Copy to '

initialize | 970

Phase 2 '
X f— y
—a

https://vision-locomotion.github.io/

Application: Learning skills from video
R

Fig. 1. Simulated characters performing highly dynamic skills learned by imitating video clips of human demonstrations. Left: Humanoid performing
cartwheel B on irregular terrain. Right: Backflip A retargeted to a simulated Atlas robot.

Video

X. B. Peng et al. SFV: Reinforcement Learning of Physical Skills from Videos. SIGGRAPH Asia 2018

https://people.eecs.berkeley.edu/~kanazawa/papers/2018_TOG_SFV.pdf
https://youtu.be/4Qg5I5vhX7Q

Application: Learning skills from video

Video Poses
\ :P . Pose E' Motion
~, ! \ = N
™ / Estimation L] QL:}, ~ | Reconstruction
[]
Reference Motion
Character i

2

| Motion \
Imitation > 71'
(RL)

X. B. Peng et al. SFV: Reinforcement Learning of Physical Skills from Videos. SIGGRAPH Asia 2018

https://people.eecs.berkeley.edu/~kanazawa/papers/2018_TOG_SFV.pdf

Skills from video: Motion estimation details

* In each video frame, use both OpenPose 2D pose estimator
and Human Mesh Recovery (HMR) 3D pose estimator

&
Video frames ’mmg

w7 f
3D pose predictions '7;;’ 7 b 4 /zﬁm {
S / ,

iy .
2D pose predictions il Pa /I_\» /

https://github.com/CMU-Perceptual-Computing-Lab/openpose
https://akanazawa.github.io/hmr/

Skills from video: Motion estimation details

* In each video frame, use both OpenPose 2D pose estimator
and Human Mesh Recovery (HMR) 3D pose estimator

* Motion reconstruction: optimize trajectory consistent with
per-frame 2D and 3D predictions while maintaining smoothness

(a) Cartwheel A (b) Frontflip

Fig. 11. 3D pose predictions before and after motion reconstruction. Top: Video. Middle: Raw predictions from the 3D pose estimator before motion
reconstruction. Bottom: After motion reconstruction. The motion reconstruction process is able to fix erroneous predictions from the 3D pose estimator by
taking advantage of the information from the 2D pose estimator and temporal consistency between adjacent frames.

https://github.com/CMU-Perceptual-Computing-Lab/openpose
https://akanazawa.github.io/hmr/

Skills from video: Motion imitation details

* Find policy to encourage simulated motion to reproduce
reference motion

J\\ AN \ WA AN —#ﬁ\ 74?: NN —/-g<\——£g\ \ 2

(a) Frontﬂxp (b) Handspring A

Skills from video: Motion imitation details

States (body configurations): position of each body segment
relative to the root, rotations, linear and angular velocities, phase
during motion (0 at start, 1 at end)

Actions: target rotations for each joint (36 dimensions)

Transition model or dynamics: derived from physics-based
simulation

Imitation reward function: sum of pose, velocity, end-effector,
and center-of-mass error terms

Finding the policy: proximal policy optimization

* Requires policy network (two FC layers, outputs represent parameters of
Gaussian distributions over actions), value network

« Adaptive state initialization: learn initial state distribution as another policy

https://arxiv.org/abs/1707.06347

Skills from video: Results

Target Image Motion Prediction

¥ A

Fig. 8. Skills retargeted to different environments. Top-to-Bottom: Backflip

A across slopes, cartwheel B across gaps, pushing a box downhill and uphill. Fig. 14. Given a target image, our motion completion technique predicts
plausible motions for the actor in the image.

Video

https://youtu.be/4Qg5I5vhX7Q

