
Sequence-to-sequence models 
with attention

Many slides adapted from J. Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture13.pdf


Outline
• Vanilla seq2seq with RNNs
• Seq2seq with RNNs and attention
• Image captioning with attention
• Transformers



Sequence-to-sequence modeling: Machine translation

“We are eating bread” “Estamos comiendo pan”



Sequence-to-sequence modeling with RNNs

I. Sutskever, O. Vinyals, Q. Le, Sequence to Sequence Learning with Neural Networks, NeurIPS 2014

K. Cho, B. Merrienboer, C. Gulcehre, F. Bougares, H. Schwenk, and Y. Bengio, Learning phrase 
representations using RNN encoder-decoder for statistical machine translation, ACL 2014

https://arxiv.org/abs/1409.3215
https://arxiv.org/pdf/1406.1078.pdf
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Sequence-to-sequence modeling with RNNs

#1

we are eating

#2 #3

ℎ1 ℎ2 ℎ3 !0 !2

[START]

(0 (1

(1 (2

bread

#4

ℎ4

estamos comiendo

pan

(2 (3

estamos comiendo

!3 !4

(3 (4

pan [STOP]

*

Encoder: ℎ+ = -.(#+, ℎ123)

Decoder: !+ = 56((123, !123, *)

From final hidden state predict:
Initial decoder state !0
Context vector * (often * = ℎ7)
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Sequence-to-sequence modeling with RNNs
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pan [STOP]

*

Encoder: ℎ+ = -.(#+, ℎ123)

Decoder: !+ = 56((123, !123, *)

From final hidden state predict:
Initial decoder state !0
Context vector * (often * = ℎ7)

Problem: Input sequence bottlenecked 
through fixed-sized vector 

Idea: use new context vector at each 
step of decoder!



Sequence-to-sequence with RNNs and attention
• Intuition: translation requires alignment



Sequence-to-sequence with RNNs and attention
• At each timestep of decoder, context vector “looks at” 

different parts of the input sequence
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Sequence-to-sequence with RNNs and attention
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we are eating

!2 !3
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*1
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+

Normalize to get attention 
weights ,-,/

Compute context vector as
*0 = 2

/
,-,/ℎ/

Use context vector in decoder:
&0 = 34((-67, &-67, *0)

Compute scalar alignment scores
+-,/ = 9att(&-67, ℎ/)

Intuition: Context vector 
“attends” to the relevant 
part of the input sequence
“estamos” = “we are”
so maybe ,11 = ,12 = 0.45,

,13 = ,14 = 0.05

D. Bahdanau, K. Cho, Y. Bengio, Neural Machine Translation by Jointly Learning to Align and Translate, ICLR 2015

http://arxiv.org/pdf/1409.0473.pdf


Sequence-to-sequence with RNNs and attention
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Sequence-to-sequence with RNNs and attention
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Sequence-to-sequence with RNNs and attention
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Sequence-to-sequence with RNNs and attention
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Sequence-to-sequence with RNNs and attention
• Visualizing attention weights (English source, French target):

Flipped word order

Same word order in source 
and target languages

Verb conjugation 
is different

D. Bahdanau, K. Cho, Y. Bengio, Neural Machine Translation by Jointly Learning to Align and Translate, ICLR 2015

http://arxiv.org/pdf/1409.0473.pdf


Quantitative evaluation

No attention

With attention
(trained with
sentence length
<= 30)

With attention
(trained with sentence
length <= 50)

D. Bahdanau, K. Cho, Y. Bengio, Neural Machine Translation by Jointly Learning to Align and Translate, ICLR 2015

http://arxiv.org/pdf/1409.0473.pdf


Google Neural Machine Translation (GNMT)

Y. Wu et al., Google's Neural Machine Translation System: Bridging the Gap between 
Human and Machine Translation, arXiv 2016

https://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html

https://arxiv.org/abs/1609.08144
https://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html


Google Neural Machine Translation (GNMT)

Y. Wu et al., Google's Neural Machine Translation System: Bridging the Gap between 
Human and Machine Translation, arXiv 2016

https://arxiv.org/abs/1609.08144


Google Neural Machine Translation (GNMT)
• Standard training objective: maximize log-likelihood of ground truth 

output given input:

!
"
log &' ("∗ *"

• Only encourages the system to reproduce the reference sentences, does not 
induce a very good ranking on outputs that don’t match reference sentences

• Not related to task-specific evaluation metric (e.g., BLEU score)
• Refinement objective: expectation of rewards over possible predicted 

sentences (:

!
"
!
+
&' ( *" ,((, ("∗)

• Use variant of BLEU score to compute reward
• Reward is not differentiable -- need RL to train (initialize with ML-trained model)



Google Neural Machine Translation (GNMT)
• Human evaluation results on production data (500 randomly sampled 

sentences from Wikipedia and news websites)

Side-by-side scores: range from 0 (“completely nonsense translation”) 
to 6 (“perfect translation”), produced by human raters fluent in both languages

PBMT: Translation by phrase-based statistical translation system used by Google
GNMT: Translation by GNMT system
Human: Translation by humans fluent in both languages



Outline
• Vanilla seq2seq with RNNs
• Seq2seq with RNNs and attention
• Image captioning with attention



Generalizing attention
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• The decoder doesn’t use the fact that the ℎ3 form an ordered sequence 
– it just treats them as an unordered set 

• Can use similar architecture given any set of input hidden vectors {ℎ0}!



Image captioning with RNNs and attention
• Idea: pay attention to different parts of the image when 

generating different words
• Automatically learn this grounding of words to image regions 

without direct supervision

K. Xu et al., Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, ICML 2015

https://arxiv.org/pdf/1502.03044.pdf


Image captioning with RNNs and attention

!0CNN

softmax

Alignment scores Attention weights

K. Xu et al., Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, ICML 2015

Use CNN to extract a grid of features

#$,&,' = )att(!$-., ℎ&,')
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https://arxiv.org/pdf/1502.03044.pdf


Image captioning with RNNs and attention
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Image captioning with RNNs and attention
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#1Use a CNN to compute a 
grid of features for an 
image
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Each time step of decoder uses a different 
context vector that looks at different parts of 
the input image
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Image captioning with RNNs and attention



Example results
• Good captions



Example results
• Mistakes



Quantitative results

Source

http://slazebni.cs.illinois.edu/spring17/lec21_captioning.pdf


Outline
• Vanilla seq2seq with RNNs
• Seq2seq with RNNs and attention
• Image captioning with attention
• Transformers



Sequence modeling beyond RNNs

x1 x2 x3

h1 h2 h3

x4

h4

Q1 Q2 Q3

K3
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E1,1
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A3,3

A3,2
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V2
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Product(→),			Sum(↑)

Softmax(↑)
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RNNs

x1 x2 x3 x4

h1 h2 h3 h4

1D convolutional networks Transformers

Works on ordered sequences
• Pros: Not limited by fixed context 

size (in principle): After one RNN 
layer, hT ”sees” the whole sequence

• Con: Hidden states have limited 
expressive capacity

• Con: Not parallelizable: need to 
compute hidden states sequentially

Works on multidimensional grids
• Pro: Each output can be 

computed in parallel (at training 
time)

• Con: Bad at long sequences: 
Need to stack many conv layers 
for outputs to “see” the whole 
sequence

• Works on sets of vectors



Basic transformer model
• Sequence-to-sequence architecture using only point-wise 

processing and attention – no recurrent units or convolutions

Encoder: receives entire input 
sequence and outputs encoded 
sequence of the same length

Decoder: predicts next token 
conditioned on encoder output and 

previously predicted tokens

Image source
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, L. Kaiser, 

I. Polosukhin, Attention is all you need, NeurIPS 2017

http://jalammar.github.io/illustrated-transformer/
https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf


Key-Value-Query attention model

Image source

The decoder generates a 
query describing what it 
wants to focus on

Compute dot products between 
the query and the keys
generated by encoder, giving 
alignment scores between 
source tokens and the query

Sum the values generated by 
encoder weighted by the 
attention weights

Decoder

Encoder

Feed the scores into a softmax
to create the attention weights

!1 !2 !3 !4

$1 $2 $3 $4

https://distill.pub/2016/augmented-rnns/


Key-Value-Query attention model
• Key vectors: ! = #$%

• Value Vectors: & = #$'

• Query vectors
• Similarities: scaled dot-product attention

(),+ =
,- · %+

/
or ( = 0!1 / 3

(3 is the dimensionality of the keys) 

• Attn. weights: 4 = softmax((, dim = 1)
• Output vectors: 

A) = ∑+ 4),+&+ or  A = 4&
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Adapted from J. Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture13.pdf


Key-Value-Query attention model
• How does permuting the order of 

the queries change the output?
• How does changing the order of 

the keys/values change the 
output?
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Adapted from J. Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture13.pdf


Attention mechanisms

• Encoder self-attention: queries, keys, and values come from previous 
layer of encoder

• Decoder self-attention: values corresponding to future decoder 
outputs are masked out

• Encoder-decoder attention: queries come from previous decoder 
layer, keys and values come from output of encoder



Self-attention

Image source

• Used to capture context within the sequence

As we are encoding “it”, we 
should focus on “the animal”

As we are encoding “it”, we 
should focus on “the street”

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html


Self-attention layer
• Query vectors: ! = #$%
• Key vectors: & = #$'
• Value vectors: ( = #$)
• Similarities: scaled dot-product attention

*+,- = %.· '-
0 or * = !&1 / 3

(3 is the dimensionality of the keys) 

• Attn. weights: 4 = softmax(*, dim = 1)
• Output vectors: 

A+ = ∑- 4+,-(- or  A = 4(

One query per input vector
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Adapted from J. Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture13.pdf


Recall: Self-attention GAN

!"# = % &" '((&#)

+#," =
exp(!"#)
∑" exp(!"#)

How much to attend 
to location 1 while 

synthesizing feature 
at location 2

3# = 4 5
"
+#," 6 &"

Values

Keys

Queries

H. Zhang, I. Goodfellow, D. Metaxas, A. Odena. Self-Attention Generative Adversarial Networks. ICML 2019

https://arxiv.org/pdf/1805.08318.pdf


Masked self-attention layer

• The decoder should not “look ahead” 

in the output sequence
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Adapted from J. Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture13.pdf


Masked self-attention layer
• The decoder should not “look ahead” 

in the output sequence

!1 !2 !3

%3

%2

%1

&',)

&',*

&','

&*,)

&*,*

&*,'

&),)

&),*

&),'

+',)

+',*

+','

+*,)

+*,*

+*,'

+),)

+),*

+),'

,3

,2

,1

Product(→),   Sum(↑)

Softmax(↑)

-1 -2 -3

.1 .2 .3

Adapted from J. Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture13.pdf


Masked self-attention layer
• The decoder should not “look ahead” 

in the output sequence
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Adapted from J. Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture13.pdf


Attention mechanisms: Summary

• Encoder self-attention: queries, keys, and values come from previous 
layer of encoder

• Decoder self-attention: values corresponding to future decoder 
outputs are masked out

• Encoder-decoder attention: queries come from previous decoder 
layer, keys and values come from output of encoder

N transformer 
blocks

N transformer 
blocks



Attention mechanisms: Illustration

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html


Transformer architecture: Details

A. Vaswani et al., Attention is all you need, NeurIPS 2017

Encoder

Decoder

https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf


Positional encoding
• To give transformer information about ordering of tokens, add 

function of position (based on sines and cosines) to every input

Image source

position

Embedding dimension

https://distill.pub/2016/augmented-rnns/


Multi-head attention
• Run ℎ attention models in parallel 

on top of different linearly 
projected versions of ",$, %; 
concatenate and linearly project 
the results

• Intuition: enables model to attend 
to different kinds of information at 
different positions (see 
visualization tool)

https://github.com/jessevig/bertviz


Transformer blocks

• A Transformer is a sequence 
of transformer blocks
• Vaswani et al.: N=12 blocks, 

embedding dimension = 512, 
6 attention heads

• Add & Norm: residual 
connection followed by layer 
normalization

• Feedforward: two linear layers 
with ReLUs in between, applied 
independently to each vector

• Attention is the only 
interaction between inputs!

https://arxiv.org/pdf/1607.06450.pdf


Transformer architecture: Zooming back out

A. Vaswani et al., Attention is all you need, NeurIPS 2017

Encoder

Decoder

https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf


Results

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html


Transformers: Pros and cons

x1 x2 x3

h1 h2 h3
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Product(→),			Sum(↑)

Softmax(↑)
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RNNs

x1 x2 x3 x4

h1 h2 h3 h4

1D convolutional networks Transformers

Works on ordered sequences
• Pros: Not limited by fixed context 

size (in principle): After one RNN 

layer, hT ”sees” the whole sequence

• Con: Not parallelizable: need to 

compute hidden states sequentially

• Con: Hidden states have limited 

expressive capacity

Works on multidimensional grids
• Pro: Each output can be 

computed in parallel (at training 

time)

• Con: Need to stack many conv 

layers for outputs to “see” the 

whole sequence

• Works on sets of vectors
• Pro: Good at long sequences: after 

one self-attention layer, each output 

“sees” all inputs!

• Pro: Each output can be computed 

in parallel (at training time)

• Con: Memory-intensive: cost of 

attention operator is quadratic in 

input size



Making transformers more efficient

Y. Tay et al. Efficient transformers: A survey. arXiv 2022

https://arxiv.org/pdf/2009.06732.pdf

