
Sequence-to-sequence models
with attention

Many slides adapted from J. Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture13.pdf

Outline
• Vanilla seq2seq with RNNs
• Seq2seq with RNNs and attention
• Image captioning with attention
• Transformers

Sequence-to-sequence modeling: Machine translation

“We are eating bread” “Estamos comiendo pan”

Sequence-to-sequence modeling with RNNs

I. Sutskever, O. Vinyals, Q. Le, Sequence to Sequence Learning with Neural Networks, NeurIPS 2014

K. Cho, B. Merrienboer, C. Gulcehre, F. Bougares, H. Schwenk, and Y. Bengio, Learning phrase
representations using RNN encoder-decoder for statistical machine translation, ACL 2014

https://arxiv.org/abs/1409.3215
https://arxiv.org/pdf/1406.1078.pdf

!1

Sequence-to-sequence modeling with RNNs

#1

we are eating

#2 #3

ℎ1 ℎ2 ℎ3 !0 !2

[START]

(0 (1

(1 (2

bread

#4

ℎ4

estamos comiendo

pan

(2 (3

estamos comiendo

!3 !4

(3 (4

pan [STOP]

*

Encoder: ℎ+ = -.(#+, ℎ123)

Decoder: !+ = 56((123, !123, *)

From final hidden state predict:
Initial decoder state !0
Context vector * (often * = ℎ7)

!1

Sequence-to-sequence modeling with RNNs

#1

we are eating

#2 #3

ℎ1 ℎ2 ℎ3 !0 !2

[START]

(0 (1

(1 (2

bread

#4

ℎ4

estamos comiendo

pan

(2 (3

estamos comiendo

!3 !4

(3 (4

pan [STOP]

*

Encoder: ℎ+ = -.(#+, ℎ123)

Decoder: !+ = 56((123, !123, *)

From final hidden state predict:
Initial decoder state !0
Context vector * (often * = ℎ7)

Problem: Input sequence bottlenecked
through fixed-sized vector

Idea: use new context vector at each
step of decoder!

Sequence-to-sequence with RNNs and attention
• Intuition: translation requires alignment

Sequence-to-sequence with RNNs and attention
• At each timestep of decoder, context vector “looks at”

different parts of the input sequence

!1

we are eating

!2 !3

ℎ1 ℎ2 ℎ3 &0

bread

!4

ℎ4

)

Sequence-to-sequence with RNNs and attention

!1

we are eating

!2 !3

ℎ1 ℎ2 ℎ3 &0

[START]

(0

(1

bread

!4

ℎ4

estamos

*1

&1

softmax

✖ ✖ ✖ ✖

+11 +12 +13 +14

,11 ,12 ,13 ,14

+

Normalize to get attention
weights ,-,/

Compute context vector as
*0 = 2

/
,-,/ℎ/

Use context vector in decoder:
&0 = 34((-67, &-67, *0)

Compute scalar alignment scores
+-,/ = 9att(&-67, ℎ/)

Intuition: Context vector
“attends” to the relevant
part of the input sequence
“estamos” = “we are”
so maybe ,11 = ,12 = 0.45,

,13 = ,14 = 0.05

D. Bahdanau, K. Cho, Y. Bengio, Neural Machine Translation by Jointly Learning to Align and Translate, ICLR 2015

http://arxiv.org/pdf/1409.0473.pdf

Sequence-to-sequence with RNNs and attention

!1

we are eating

!2 !3

ℎ1 ℎ2 ℎ3 &0

[START]

(0

(1

bread

!4

ℎ4

estamos

*1

&1

softmax

✖ ✖ ✖ ✖

+21 +22 +23 +24

,21 ,22 ,23 ,24

(1

(2

comiendo

estamos

*2

&2

Repeat: Use &1 to
compute new context
vector *2

Use *2 to compute &2, (2

+

Sequence-to-sequence with RNNs and attention

!1

we are eating

!2 !3

ℎ1 ℎ2 ℎ3 &0

[START]

(0

(1

bread

!4

ℎ4

estamos

*1

&1

softmax

✖ ✖ ✖ ✖

+31 +32 +33 +34

,31 ,32 ,33 ,34

(1

(2

comiendo

estamos

*2

&2

(2

comiendo

(3

pan

*3

&3

+

Sequence-to-sequence with RNNs and attention

!1

we are eating

!2 !3

ℎ1 ℎ2 ℎ3 &0

[START]

(0

(1

bread

!4

ℎ4

estamos

*1

&1

softmax

✖ ✖ ✖ ✖

+41 +42 +43 +44

,41 ,42 ,43 ,44

(1

(2

comiendo

estamos

*2

&2

(2

comiendo

(3

pan

*3

&3

pan

(3

(4

[STOP]

*4

&4

+

Sequence-to-sequence with RNNs and attention

!1

we are eating

!2 !3

ℎ1 ℎ2 ℎ3 &0

[START]

(0

(1

bread

!4

ℎ4

estamos

*1

&1

softmax

✖ ✖ ✖ ✖

+,1 +,2 +,3 +,4

-,1 -,2 -,3 -,4

(1

(2

comiendo

estamos

*2

&2

(2

comiendo

(3

pan

*3

&3

pan

(3

(4

[STOP]

*4

&4

+

Sequence-to-sequence with RNNs and attention
• Visualizing attention weights (English source, French target):

Flipped word order

Same word order in source
and target languages

Verb conjugation
is different

D. Bahdanau, K. Cho, Y. Bengio, Neural Machine Translation by Jointly Learning to Align and Translate, ICLR 2015

http://arxiv.org/pdf/1409.0473.pdf

Quantitative evaluation

No attention

With attention
(trained with
sentence length
<= 30)

With attention
(trained with sentence
length <= 50)

D. Bahdanau, K. Cho, Y. Bengio, Neural Machine Translation by Jointly Learning to Align and Translate, ICLR 2015

http://arxiv.org/pdf/1409.0473.pdf

Google Neural Machine Translation (GNMT)

Y. Wu et al., Google's Neural Machine Translation System: Bridging the Gap between
Human and Machine Translation, arXiv 2016

https://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html

https://arxiv.org/abs/1609.08144
https://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html

Google Neural Machine Translation (GNMT)

Y. Wu et al., Google's Neural Machine Translation System: Bridging the Gap between
Human and Machine Translation, arXiv 2016

https://arxiv.org/abs/1609.08144

Google Neural Machine Translation (GNMT)
• Standard training objective: maximize log-likelihood of ground truth

output given input:

!
"
log &' ("∗ *"

• Only encourages the system to reproduce the reference sentences, does not
induce a very good ranking on outputs that don’t match reference sentences

• Not related to task-specific evaluation metric (e.g., BLEU score)
• Refinement objective: expectation of rewards over possible predicted

sentences (:

!
"
!
+
&' (*" ,((, ("∗)

• Use variant of BLEU score to compute reward
• Reward is not differentiable -- need RL to train (initialize with ML-trained model)

Google Neural Machine Translation (GNMT)
• Human evaluation results on production data (500 randomly sampled

sentences from Wikipedia and news websites)

Side-by-side scores: range from 0 (“completely nonsense translation”)
to 6 (“perfect translation”), produced by human raters fluent in both languages

PBMT: Translation by phrase-based statistical translation system used by Google
GNMT: Translation by GNMT system
Human: Translation by humans fluent in both languages

Outline
• Vanilla seq2seq with RNNs
• Seq2seq with RNNs and attention
• Image captioning with attention

Generalizing attention

!1

we are eating

!2 !3

ℎ1 ℎ2 ℎ3 &0

[START]

(0

(1

bread

!4

ℎ4

estamos

*1

&1

softmax

✖ ✖ ✖ ✖

+,1 +,2 +,3 +,4

-,1 -,2 -,3 -,4

(1

(2

comiendo

estamos

*2

&2

(2

comiendo

(3

pan

*3

&3

pan

(3

(4

[STOP]

*4

&4

+

*, = /
0
-1,0ℎ0

• The decoder doesn’t use the fact that the ℎ3 form an ordered sequence
– it just treats them as an unordered set

• Can use similar architecture given any set of input hidden vectors {ℎ0}!

Image captioning with RNNs and attention
• Idea: pay attention to different parts of the image when

generating different words
• Automatically learn this grounding of words to image regions

without direct supervision

K. Xu et al., Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, ICML 2015

https://arxiv.org/pdf/1502.03044.pdf

Image captioning with RNNs and attention

!0CNN

softmax

Alignment scores Attention weights

K. Xu et al., Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, ICML 2015

Use CNN to extract a grid of features

#$,&,' =)att(!$-., ℎ&,')

ℎ.,. ℎ.,1 ℎ.,2

ℎ1,. ℎ1,1 ℎ1,2

ℎ2,. ℎ2,1 ℎ2,2

#.,.,. #.,.,1 #.,.,2

#.,1,. #.,1,1 #.,1,2

#.,2,. #.,2,1 #.,2,2

3.,.,. 3.,.,1 3.,.,2

3.,1,. 3.,1,1 3.,1,2

3.,2,. 3.,2,1 3.,2,2

https://arxiv.org/pdf/1502.03044.pdf

Image captioning with RNNs and attention

!0

#1

softmax

Alignment scores Attention weights

%&,(,) = +att(!&/0, ℎ(,))

!1

[START]

30

31

cat

#4 =5
(
6&,(,)ℎ(

ℎ0,0 ℎ0,7 ℎ0,8

ℎ7,0 ℎ7,7 ℎ7,8

ℎ8,0 ℎ8,7 ℎ8,8

%0,0,0 %0,0,7 %0,0,8

%0,7,0 %0,7,7 %0,7,8

%0,8,0 %0,8,7 %0,8,8

60,0,0 60,0,7 60,0,8

60,7,0 60,7,7 60,7,8

60,8,0 60,8,7 60,8,8

CNN

Image captioning with RNNs and attention

!0

#1Use a CNN to compute a
grid of features for an
image

softmax

Alignment scores Attention weights

%&,(,) = +att(!&/0, ℎ(,))

!1

[START]

30

31

cat

#2

!2

32

31

sitting

cat
#5 =6

(
7&,(,)ℎ(

ℎ0,0 ℎ0,8 ℎ0,9

ℎ8,0 ℎ8,8 ℎ8,9

ℎ9,0 ℎ9,8 ℎ9,9

%8,0,0 %8,0,8 %8,0,9

%8,8,0 %8,8,8 %8,8,9

%8,9,0 %8,9,8 %8,9,9

78,0,0 78,0,8 78,0,9

78,8,0 78,8,8 78,8,9

78,9,0 78,9,8 78,9,9

CNN

!0

#1

softmax

Alignment scores Attention weights

%&,(,) = +att(!&/0, ℎ(,))

!1

[START]

30

31

cat

#2

!2

32

31

sitting

cat
#5 =6

(
7&,(,)ℎ(

!3 !4

33 34

outside [STOP]

32#3 33#4

outsidesitting

Each time step of decoder uses a different
context vector that looks at different parts of
the input image

ℎ0,0 ℎ0,: ℎ0,;

ℎ:,0 ℎ:,: ℎ:,;

ℎ;,0 ℎ;,: ℎ;,;

%&,0,0 %&,0,: %&,0,;

%&,:,0 %&,:,: %&,:,;

%&,;,0 %&,;,: %&,;,;

7&,0,0 7&,0,: 7&,0,;

7&,:,0 7&,:,: 7&,:,;

7&,;,0 7&,;,: 7&,;,;

CNN

Image captioning with RNNs and attention

Example results
• Good captions

Example results
• Mistakes

Quantitative results

Source

http://slazebni.cs.illinois.edu/spring17/lec21_captioning.pdf

Outline
• Vanilla seq2seq with RNNs
• Seq2seq with RNNs and attention
• Image captioning with attention
• Transformers

Sequence modeling beyond RNNs

x1 x2 x3

h1 h2 h3

x4

h4

Q1 Q2 Q3

K3
K2
K1

E1,3
E1,2
E1,1

E2,3
E2,2
E2,1

E3,3
E3,2
E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→),			Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

RNNs

x1 x2 x3 x4

h1 h2 h3 h4

1D convolutional networks Transformers

Works on ordered sequences
• Pros: Not limited by fixed context

size (in principle): After one RNN
layer, hT ”sees” the whole sequence

• Con: Hidden states have limited
expressive capacity

• Con: Not parallelizable: need to
compute hidden states sequentially

Works on multidimensional grids
• Pro: Each output can be

computed in parallel (at training
time)

• Con: Bad at long sequences:
Need to stack many conv layers
for outputs to “see” the whole
sequence

• Works on sets of vectors

Basic transformer model
• Sequence-to-sequence architecture using only point-wise

processing and attention – no recurrent units or convolutions

Encoder: receives entire input
sequence and outputs encoded
sequence of the same length

Decoder: predicts next token
conditioned on encoder output and

previously predicted tokens

Image source
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, L. Kaiser,

I. Polosukhin, Attention is all you need, NeurIPS 2017

http://jalammar.github.io/illustrated-transformer/
https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

Key-Value-Query attention model

Image source

The decoder generates a
query describing what it
wants to focus on

Compute dot products between
the query and the keys
generated by encoder, giving
alignment scores between
source tokens and the query

Sum the values generated by
encoder weighted by the
attention weights

Decoder

Encoder

Feed the scores into a softmax
to create the attention weights

!1 !2 !3 !4

$1 $2 $3 $4

https://distill.pub/2016/augmented-rnns/

Key-Value-Query attention model
• Key vectors: ! = #$%

• Value Vectors: & = #$'

• Query vectors
• Similarities: scaled dot-product attention

(),+ =
,- · %+

/
or (= 0!1 / 3

(3 is the dimensionality of the keys)

• Attn. weights: 4 = softmax((, dim = 1)
• Output vectors:

A) = ∑+ 4),+&+ or A = 4&

01 02 03 04

#1

#2

#3

!1

!2

!3

(F,F (G,F

(F,G

(F,H

(G,G

(G,H (H,H

(H,G

(H,F

(I,H

(I,G

(I,F

4F,F 4G,F

4F,G

4F,H

4G,G

4G,H 4H,H

4H,G

4H,F

4I,H

4I,G

4I,F

Softmax()

&1

&2

&3

A1 A2 A3 A4

Product(), Sum()

Adapted from J. Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture13.pdf

Key-Value-Query attention model
• How does permuting the order of

the queries change the output?
• How does changing the order of

the keys/values change the
output?

!1 !2 !3 !4

&1

&2

&3

'1

'2

'3

(),) (+,)

(),+

(),,

(+,+

(+,, (,,,

(,,+

(,,)

(-,,

(-,+

(-,)

.),) .+,)

.),+

.),,

.+,+

.+,, .,,,

.,,+

.,,)

.-,,

.-,+

.-,)

Softmax()

/1

/2

/3

01 02 03 04

Product(), Sum()

Adapted from J. Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture13.pdf

Attention mechanisms

• Encoder self-attention: queries, keys, and values come from previous
layer of encoder

• Decoder self-attention: values corresponding to future decoder
outputs are masked out

• Encoder-decoder attention: queries come from previous decoder
layer, keys and values come from output of encoder

Self-attention

Image source

• Used to capture context within the sequence

As we are encoding “it”, we
should focus on “the animal”

As we are encoding “it”, we
should focus on “the street”

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

Self-attention layer
• Query vectors: ! = #$%
• Key vectors: & = #$'
• Value vectors: (= #$)
• Similarities: scaled dot-product attention

*+,- = %.· '-
0 or * = !&1 / 3

(3 is the dimensionality of the keys)

• Attn. weights: 4 = softmax(*, dim = 1)
• Output vectors:

A+ = ∑- 4+,-(- or A = 4(

One query per input vector

!1 !2 !3

&3

&2

&1

*E,F

*E,G

*E,E

*G,F

*G,G

*G,E

*F,F

*F,G

*F,E

4E,F

4E,G

4E,E

4G,F

4G,G

4G,E

4F,F

4F,G

4F,E

(3

(2

(1

Product(→), Sum(↑)

Softmax(↑)

A1 A2 A3

#1 #2 #3

Adapted from J. Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture13.pdf

Recall: Self-attention GAN

!"# = % &" '((&#)

+#," =
exp(!"#)
∑" exp(!"#)

How much to attend
to location 1 while

synthesizing feature
at location 2

3# = 4 5
"
+#," 6 &"

Values

Keys

Queries

H. Zhang, I. Goodfellow, D. Metaxas, A. Odena. Self-Attention Generative Adversarial Networks. ICML 2019

https://arxiv.org/pdf/1805.08318.pdf

Masked self-attention layer

• The decoder should not “look ahead”

in the output sequence

!1 !2 !3

%3

%2

%1

&',)

&',*

&','

&*,)

&*,*

&*,'

&),)

&),*

&),'

+',)

+',*

+','

+*,)

+*,*

+*,'

+),)

+),*

+),'

,3

,2

,1

Product(→), Sum(↑)

Softmax(↑)

-1 -2 -3

.1 .2 .3

<START> This is

This is ….

Adapted from J. Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture13.pdf

Masked self-attention layer
• The decoder should not “look ahead”

in the output sequence

!1 !2 !3

%3

%2

%1

&',)

&',*

&','

&*,)

&*,*

&*,'

&),)

&),*

&),'

+',)

+',*

+','

+*,)

+*,*

+*,'

+),)

+),*

+),'

,3

,2

,1

Product(→), Sum(↑)

Softmax(↑)

-1 -2 -3

.1 .2 .3

Adapted from J. Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture13.pdf

Masked self-attention layer
• The decoder should not “look ahead”

in the output sequence

!1 !2 !3

%3

%2

%1

−∞

−∞

(),)

−∞

(+,+

(+,)

(,,,

(,,+

(,,)

-

-

.),)

-

.+,+

.+,)

.,,,

.,,+

.,,)

/3

/2

/1

Product(→), Sum(↑)

Softmax(↑)

01 02 03

11 12 13

Adapted from J. Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture13.pdf

Attention mechanisms: Summary

• Encoder self-attention: queries, keys, and values come from previous
layer of encoder

• Decoder self-attention: values corresponding to future decoder
outputs are masked out

• Encoder-decoder attention: queries come from previous decoder
layer, keys and values come from output of encoder

N transformer
blocks

N transformer
blocks

Attention mechanisms: Illustration

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

Transformer architecture: Details

A. Vaswani et al., Attention is all you need, NeurIPS 2017

Encoder

Decoder

https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

Positional encoding
• To give transformer information about ordering of tokens, add

function of position (based on sines and cosines) to every input

Image source

position

Embedding dimension

https://distill.pub/2016/augmented-rnns/

Multi-head attention
• Run ℎ attention models in parallel

on top of different linearly
projected versions of ",$, %;
concatenate and linearly project
the results

• Intuition: enables model to attend
to different kinds of information at
different positions (see
visualization tool)

https://github.com/jessevig/bertviz

Transformer blocks

• A Transformer is a sequence
of transformer blocks
• Vaswani et al.: N=12 blocks,

embedding dimension = 512,
6 attention heads

• Add & Norm: residual
connection followed by layer
normalization

• Feedforward: two linear layers
with ReLUs in between, applied
independently to each vector

• Attention is the only
interaction between inputs!

https://arxiv.org/pdf/1607.06450.pdf

Transformer architecture: Zooming back out

A. Vaswani et al., Attention is all you need, NeurIPS 2017

Encoder

Decoder

https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

Results

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

Transformers: Pros and cons

x1 x2 x3

h1 h2 h3

x4

h4

Q1 Q2 Q3

K3
K2
K1

E1,3
E1,2
E1,1

E2,3
E2,2
E2,1

E3,3
E3,2
E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→),			Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

RNNs

x1 x2 x3 x4

h1 h2 h3 h4

1D convolutional networks Transformers

Works on ordered sequences
• Pros: Not limited by fixed context

size (in principle): After one RNN

layer, hT ”sees” the whole sequence

• Con: Not parallelizable: need to

compute hidden states sequentially

• Con: Hidden states have limited

expressive capacity

Works on multidimensional grids
• Pro: Each output can be

computed in parallel (at training

time)

• Con: Need to stack many conv

layers for outputs to “see” the

whole sequence

• Works on sets of vectors
• Pro: Good at long sequences: after

one self-attention layer, each output

“sees” all inputs!

• Pro: Each output can be computed

in parallel (at training time)

• Con: Memory-intensive: cost of

attention operator is quadratic in

input size

Making transformers more efficient

Y. Tay et al. Efficient transformers: A survey. arXiv 2022

https://arxiv.org/pdf/2009.06732.pdf

