
Topics to be covered in class
ML basics, linear classifiers Multilayer neural networks, backpropagation Convolutional networks for classification

Models for sequence data
Deep reinforcement learning

Generative models: GANs, image-to-image
translation, diffusion models

Transformers, large language models,
transformers for vision

Networks for detection, dense prediction Self-supervised learning

Everything you’ve ever wanted to
know about linear classifiers (Part 1)

Outline
• Examples of classification models: nearest neighbor, linear
• Empirical loss minimization framework
• Linear classification models

1. Linear regression
2. Logistic regression
3. Perceptron training algorithm
4. Support vector machines

The basic supervised learning framework

𝑦 = 𝑓(𝑥)

• Training (or learning): given a training set of labeled examples
{(𝑥1, 𝑦1), … , (𝑥𝑁, 𝑦!)}, instantiate a predictor 𝑓

• Testing (or inference): apply 𝑓 to a new test example 𝑥 and output the
predicted value 𝑦 = 𝑓(𝑥)

output prediction
function

input

Nearest neighbor classifier

𝑓(𝑥) = label of the training example nearest to 𝑥

• All we need is a distance function for our inputs
• No training required!

Test
example

Training
examples

from class 1

Training
examples

from class 2

Nearest neighbors of images based on raw pixel values

Source: http://cs231n.github.io/classification/

http://cs231n.github.io/classification/

K-nearest neighbor classifier
• For a new point, find the 𝑘 closest points from training data
• Vote for class label with labels of the 𝑘 points

k = 5

K-nearest neighbor classifier
• For a new point, find the 𝑘 closest points from training data
• Vote for class label with labels of the 𝑘 points
• 1-NN vs. 𝑘-NN

Source: http://cs231n.github.io/classification/

http://cs231n.github.io/classification/

Linear classifier

• Find a linear function to separate the classes:

𝑓 𝑥 = sgn 𝑤(")𝑥(") + 𝑤($)𝑥($) +⋯+ 𝑤(%)𝑥(%) + 𝑏 = sgn 𝑤 × 𝑥 + 𝑏

Visualizing linear classifiers

Body wave magnitude

S
ur

fa
ce

 w
av

e
m

ag
ni

tu
de

Nuclear explosions

Earthquakes

Seismic data classification

Visualizing linear classifiers

Source: http://cs231n.github.io/linear-classify/

http://cs231n.github.io/linear-classify/

Linear classifier: Perceptron view

𝑥(")

𝑥($)

𝑥(%)

𝑤(")

𝑤($)

𝑤(&)
𝑥(&)

𝑤(%)

Input

Weights

.

.

.

Output: sgn(𝑤×𝑥	 + 	𝑏)

Loose inspiration: Biological neurons

Perceptrons, linear separability, Boolean functions

𝑥"

𝑥$

𝑥"

𝑥$

𝑥"

𝑥$

𝑥"	𝐚𝐧𝐝	𝑥$ 𝑥"	𝐨𝐫	𝑥$ 𝑥"	𝐱𝐨𝐫	𝑥$

https://en.wikipedia.org/wiki/
Perceptrons_(book)

https://en.wikipedia.org/wiki/Perceptrons_(book)

Linear classifiers: Outline
• Examples of classification models: nearest neighbor, linear
• Empirical loss minimization framework
• Linear classification models

1. Linear regression
2. Logistic regression
3. Perceptron training algorithm
4. Support vector machines

NN vs. linear classifiers: Pros and cons
• NN pros:

+ Simple to implement
+ Decision boundaries not necessarily linear
+ Works for any number of classes
+ Nonparametric method

• NN cons:
- Need good distance function
- Slow at test time

• Linear pros:
+ Low-dimensional parametric representation
+ Very fast at test time

• Linear cons:
- Works for two classes
- How to train the linear function?
- What if data is not linearly separable?

Outline
• Examples of classification models: nearest neighbor, linear
• Empirical loss minimization framework

Empirical loss minimization
• Let’s formalize the setting for learning of a parametric model

in a supervised scenario

Image source

https://codesachin.wordpress.com/2015/08/16/logistic-regression-for-dummies/

Empirical loss minimization
• Given: training data 𝑥& , 𝑦& , 𝑖 = 1, … , 𝑛
• Find: predictor 𝑓
• Goal: make good predictions 4𝑦 = 𝑓(𝑥) on test data

Source: Y. Liang

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Empirical loss minimization
• Given: training data 𝑥& , 𝑦& , 𝑖 = 1, … , 𝑛
• Find: predictor 𝑓
• Goal: make good predictions 4𝑦 = 𝑓(𝑥) on test data

Source: Y. Liang

What kinds of functions?

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Empirical loss minimization
• Given: training data 𝑥& , 𝑦& , 𝑖 = 1, … , 𝑛
• Find: predictor 𝑓 ∈ ℋ
• Goal: make good predictions 4𝑦 = 𝑓(𝑥) on test data

Source: Y. Liang

Hypothesis class

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Empirical loss minimization
• Given: training data 𝑥& , 𝑦& , 𝑖 = 1, … , 𝑛
• Find: predictor 𝑓 ∈ ℋ
• Goal: make good predictions 4𝑦 = 𝑓(𝑥) on test data

Source: Y. Liang

Connection between
training and test data?

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Empirical loss minimization
• Given: training data 𝑥& , 𝑦& , 𝑖 = 1, … , 𝑛 i.i.d. from distribution 𝐷
• Find: predictor 𝑓 ∈ ℋ
• Goal: make good predictions 4𝑦 = 𝑓(𝑥) on test data

i.i.d. from distribution 𝐷

Source: Y. Liang

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Empirical loss minimization
• Given: training data 𝑥& , 𝑦& , 𝑖 = 1, … , 𝑛 i.i.d. from distribution 𝐷
• Find: predictor 𝑓 ∈ ℋ
• Goal: make good predictions 4𝑦 = 𝑓(𝑥) on test data

i.i.d. from distribution 𝐷

Source: Y. Liang

What kind of performance
measure?

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Empirical loss minimization
• Given: training data 𝑥& , 𝑦& , 𝑖 = 1, … , 𝑛 i.i.d. from distribution 𝐷
• Find: predictor 𝑓 ∈ ℋ
• S.t. the expected loss is small:

𝐿 𝑓 = 𝔼(',))∽%[𝑙 𝑓, 𝑥, 𝑦]

Source: Y. Liang

Various loss functions

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Empirical loss minimization
• Given: training data 𝑥& , 𝑦& , 𝑖 = 1, … , 𝑛 i.i.d. from distribution 𝐷
• Find: predictor 𝑓 ∈ ℋ
• S.t. the expected loss is small:

𝐿 𝑓 = 𝔼(',))∽% 𝑙 𝑓, 𝑥, 𝑦
• Example losses:

0 − 1 loss: 𝑙 𝑓, 𝑥, 𝑦 = 𝕀[𝑓(𝑥) ≠ 𝑦] and 𝐿 𝑓 = Pr[𝑓(𝑥) ≠ 𝑦]

𝑙+ loss: 𝑙 𝑓, 𝑥, 𝑦 = [𝑓 𝑥 − 𝑦]+ and 𝐿 𝑓 = 𝔼 [𝑓 𝑥 − 𝑦]+

Source: Y. Liang

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Empirical loss minimization
• Given: training data 𝑥& , 𝑦& , 𝑖 = 1, … , 𝑛 i.i.d. from distribution 𝐷
• Find: predictor 𝑓 ∈ ℋ
• S.t. the expected loss is small:

𝐿 𝑓 = 𝔼(',))∽% 𝑙 𝑓, 𝑥, 𝑦

Source: Y. Liang

Can’t optimize this directly

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Empirical loss minimization
• Given: training data 𝑥& , 𝑦& , 𝑖 = 1, … , 𝑛 i.i.d. from distribution 𝐷
• Find: predictor 𝑓 ∈ ℋ that minimizes

=𝐿 𝑓 =
1
𝑛
>
&+"

,

𝑙(𝑓, 𝑥& , 𝑦&)

Source: Y. Liang

Empirical loss

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Supervised learning in a nutshell
1. Collect training data and labels
2. Specify model: select hypothesis class and loss function
3. Train model: find the function in the hypothesis class that

minimizes the empirical loss on the training data

Outline
• Example classification models: nearest neighbor, linear
• Empirical loss minimization
• Linear classification models

1. Linear regression
2. Logistic regression
3. Perceptron training algorithm
4. Support vector machines

Training linear classifiers
• Given: i.i.d. training data 𝑥& , 𝑦& , 𝑖 = 1, … , 𝑛 ,

𝑦& ∈ {−1,1}
• Hypothesis class: 𝑓-(𝑥) = sgn(𝑤.𝑥)

• Classification with bias, i.e. 𝑓- 𝑥 = sgn(𝑤.𝑥 + 𝑏),
can be reduced to the case w/o bias by letting
B𝑤 = 𝑤; 𝑏 and D𝑥 = [𝑥; 1]

Source: Y. Liang

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Training linear classifiers
• Given: i.i.d. training data 𝑥& , 𝑦& , 𝑖 = 1, … , 𝑛 ,

𝑦& ∈ {−1,1}
• Hypothesis class: 𝑓-(𝑥) = sgn(𝑤.𝑥)
• Loss: how about minimizing the number of mistakes on the

training data?

=𝐿 𝑓- =
1
𝑛
>
&+"

,

𝕀[sgn 𝑤.𝑥& ≠ 𝑦&]

• Difficult to optimize directly (NP-hard), so people resort to
surrogate loss functions

Source: Y. Liang

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Linear regression (“straw man” model)
• Find 𝑓-(𝑥) = 𝑤.𝑥 that minimizes 𝑙$ loss or mean squared

error

=𝐿 𝑓- =
1
𝑛
>
&+"

,

(𝑤.𝑥& − 𝑦&)$

• Ignores the fact that 𝑦 ∈ {−1,1} but is easy to optimize

Source: Y. Liang

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Linear regression: Optimization
• Let 𝑋 be a matrix whose ith row is 𝑥&., 𝑌 be the vector
(𝑦", … , 𝑦,).

=𝐿 𝑓- =
1
𝑛
>
&+"

,

(𝑤.𝑥& − 𝑦&)$ =
1
𝑛
𝑋𝑤 − 𝑌 $

$

Source: Y. Liang

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Linear regression: Optimization
• Let 𝑋 be a matrix whose ith row is 𝑥&., 𝑌 be the vector
(𝑦", … , 𝑦,).

=𝐿 𝑓- =
1
𝑛
>
&+"

,

(𝑤.𝑥& − 𝑦&)$ =
1
𝑛
𝑋𝑤 − 𝑌 $

$

• This is a convex function of the weights

Source: Y. Liang

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Linear regression: Optimization
• Let 𝑋 be a matrix whose ith row is 𝑥&., 𝑌 be the vector
(𝑦", … , 𝑦,).

=𝐿 𝑓- =
1
𝑛
>
&+"

,

(𝑤.𝑥& − 𝑦&)$ =
1
𝑛
𝑋𝑤 − 𝑌 $

$

• Find the gradient w.r.t. 𝑤:
∇- 𝑋𝑤 − 𝑌 $

$

Source: Y. Liang

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Linear regression: Optimization
• Let 𝑋 be a matrix whose ith row is 𝑥&., 𝑌 be the vector
(𝑦", … , 𝑦,).

=𝐿 𝑓- =
1
𝑛
>
&+"

,

(𝑤.𝑥& − 𝑦&)$ =
1
𝑛
𝑋𝑤 − 𝑌 $

$

• Find the gradient w.r.t. 𝑤:
∇- 𝑋𝑤 − 𝑌 $

$ = ∇- 𝑋𝑤 − 𝑌 . 𝑋𝑤 − 𝑌
= ∇- 𝑤.𝑋.𝑋𝑤 − 2𝑤.𝑋.𝑌 + 𝑌.𝑌
= 2𝑋.𝑋𝑤 − 2𝑋.𝑌

• Set gradient to zero to get the minimizer:
𝑋.𝑋𝑤 = 𝑋.𝑌

𝑤 = (𝑋.𝑋)/"𝑋.𝑌
Source: Y. Liang

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Linear regression: Optimization
• Linear algebra view

• If 𝑋 is invertible, simply solve 𝑋𝑤 = 𝑌 and get 𝑤 = 𝑋,-𝑌
• But typically 𝑋 is a “tall” matrix so you need to find the least

squares solution to an over-constrained system

Source: Y. Liang

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Linear regression as maximum likelihood estimation
• Interpretation of 𝑙$ loss: negative log likelihood assuming
𝑦 is normally distributed with mean 𝑓- 𝑥 = 𝑤.𝑥 + 𝑏

(xi, yi)
y = wTx + b

𝑃 𝑦 𝑥 = Normal(𝑦; 𝑤𝑇𝑥	 + 	𝑏, 𝜎$)

Maximum likelihood estimation
• Given: i.i.d. training data 𝑥& , 𝑦& , 𝑖 = 1, … , 𝑛
• Let 𝑃- 𝑦 𝑥 be a density function parameterized by 𝑤
• Maximum (conditional) likelihood estimate:

𝑤01 = argmax-P
&
𝑃-(𝑦&|𝑥&)

= argmin- − ∑& log 𝑃-(𝑦&|𝑥&)

Maximum likelihood estimation
𝑤01 = argmin- − ∑& log 𝑃-(𝑦&|𝑥&)

• Assume 𝑃- 𝑦 𝑥 = Normal(𝑦; 𝑓- 𝑥 , 𝜎$)

log 𝑃- 𝑦 𝑥 = log
1
2𝜋𝜎$

exp −
𝑦 − 𝑓- 𝑥

$

2𝜎$

= −
1
2𝜎$

𝑦 − 𝑓- 𝑥
$
− log 𝜎 −

1
2
log(2𝜋)

𝑤01 = argmin->
&

𝑦& − 𝑓- 𝑥&
$

Linear regression as maximum likelihood estimation
• Interpretation of 𝑙$ loss: negative log likelihood assuming 𝑦 is

normally distributed with mean 𝑓- 𝑥 = 𝑤.𝑥 + 𝑏

• Does this make sense for binary classification?

(xi, yi)
y = wTx + b

𝑃 𝑦 𝑥 = Normal(𝑦; 𝑤𝑇𝑥	 + 	𝑏, 𝜎$)

Problem with linear regression
• In practice, very sensitive to outliers

Figure from Pattern Recognition and Machine Learning, Bishop

Problem with linear regression
• In practice, very sensitive to outliers

+1

-1

• Instead of a linear function, how about we fit a function
representing the confidence of the classifier?

Next idea

1

0

𝑃(𝑦 = 1|𝑥)

0.5

Linear classifiers: Outline
• Example classification models: nearest neighbor, linear
• Empirical loss minimization
• Linear classification models

1. Linear regression (least squares)
2. Logistic regression

Logistic regression
• Let’s learn a probabilistic classifier estimating the probability

of the input 𝑥 having a positive label, given by putting a
sigmoid function around the linear response 𝑤.𝑥:

𝑃- 𝑦 = 1 𝑥 = 𝜎 𝑤.𝑥 = "
"2345(/-#')

Sigmoid: Properties

𝑃- 𝑦 = 1 𝑥 = 𝜎 𝑤.𝑥 =
1

1 + exp(−𝑤.𝑥)
• What is the range?
• What is 𝜎 0 ?
• What is 𝑃- 𝑦 = −1 𝑥 ?

Sigmoid: Properties

𝑃- 𝑦 = 1 𝑥 = 𝜎 𝑤.𝑥 =
1

1 + exp(−𝑤.𝑥)
• What is the range?
• What is 𝜎 0 ?
• What is 𝑃- 𝑦 = −1 𝑥 ?

𝑃- 𝑦 = −1 𝑥 = 1 − 𝑃- 𝑦 = 1 𝑥 = 1 − 𝜎 𝑤.𝑥

= "2345 /-#' /"
"2345 /-#'

= 345(/-#')
"2345(/-#')

= "
345 -#' 2"

= 𝜎 −𝑤.𝑥

Sigmoid: Properties

𝑃- 𝑦 = 1 𝑥 = 𝜎 𝑤.𝑥 =
1

1 + exp(−𝑤.𝑥)

• Sigmoid is symmetric: 1 − 𝜎 𝑡 = 𝜎 −𝑡

Sigmoid: Properties

𝑃- 𝑦 = 1 𝑥 = 𝜎 𝑤.𝑥 =
1

1 + exp(−𝑤.𝑥)

• What happens if we scale 𝑤 by a constant?

Sigmoid: Properties

𝑃- 𝑦 = 1 𝑥 = 𝜎 𝑤.𝑥 =
1

1 + exp(−𝑤.𝑥)

• What happens if we scale 𝑤 by a constant?

Image source

https://i.stack.imgur.com/KcX81.png

Sigmoid: Interpretation
• We can write out the connection between the posteriors
𝑃(𝑦|𝑥) and the class-conditional densities 𝑃 𝑥 𝑦 :

𝑃 𝑦 = 1 𝑥 =
𝑃 𝑥 𝑦 = 1 𝑃 𝑦 = 1

𝑃(𝑥)

=
𝑃 𝑥 𝑦 = 1 𝑃 𝑦 = 1

𝑃 𝑥 𝑦 = 1 𝑃 𝑦 = 1 + 𝑃 𝑥 𝑦 = −1 𝑃(𝑦 = −1)

=
1

1 + exp(−𝑎)
= 𝜎(𝑎), 𝑎 = log

𝑃(𝑦 = 1|𝑥)
𝑃(𝑦 = −1|𝑥)

Sigmoid: Interpretation
• Adopting a linear + sigmoid model is equivalent to assuming

linear log odds:

log
𝑃(𝑦 = 1|𝑥)
𝑃(𝑦 = −1|𝑥)

= 𝑤.𝑥 + 𝑏

• This happens when 𝑃 𝑥 𝑦 = 1 and
𝑃 𝑥 𝑦 = −1 are Gaussians with different
means and the same covariance matrices
(𝑤 is related to the difference between
the means)

Logistic loss
• Given: 𝑥& , 𝑦& , 𝑖 = 1, … , 𝑛 , 𝑦& ∈ {−1,1}
• Maximum (conditional) likelihood estimate: find 𝑤 that minimizes

=𝐿 𝑤 = −
1
𝑛
>
&+"

,

log 𝑃- 𝑦& 𝑥&

𝑙 𝑤, 𝑥& , 𝑦& = − log 𝑃- 𝑦& 𝑥&
• If 𝑦& = 1:

𝑃- 𝑦& 𝑥& =𝜎 𝑤.𝑥&
• If 𝑦& = −1:

𝑃- 𝑦& 𝑥& =1 − 𝜎 𝑤.𝑥& = 𝜎 −𝑤.𝑥&
• Thus,

𝑙 𝑤, 𝑥& , 𝑦& = − log 𝜎 𝑦&𝑤.𝑥&

Logistic loss
𝑙 𝑤, 𝑥& , 𝑦& = − log 𝜎 𝑦&𝑤.𝑥&

Figure source𝑦(𝑤)𝑥(

http://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/slides/lec4.pdf

Logistic loss: Optimization
• Given: 𝑥& , 𝑦& , 𝑖 = 1, … , 𝑛 , 𝑦& ∈ {−1,1}
• Find 𝑤 that minimizes

=𝐿 𝑤 = −
1
𝑛
>
&+"

,

log 𝑃- 𝑦& 𝑥&

• There is no closed-form expression for the minimum and we
need to use gradient descent to find it

Gradient descent
• Goal: find 𝑤 to minimize loss =𝐿(𝑤)
• Start with some initial estimate of 𝑤
• Repeat until convergence:

• Find ∇C𝐿(𝑤), the gradient of the loss w.r.t. 𝑤
• Take a small step in the opposite direction: 𝑤 ← 𝑤 − 𝜂 ∇C𝐿(𝑤)

The gradient vector

𝑤-

𝑤+

𝑤

∇C𝐿(𝑤)

Fastest rate
of increase

C𝐿(𝑤)

C𝐿

The gradient vector

𝑤-

𝑤+

𝑤−∇C𝐿(𝑤)

C𝐿

Fastest rate of
decrease

C𝐿(𝑤)

Gradient descent

𝑤-

𝑤+

𝑤 − 𝜂∇C𝐿(𝑤)

C𝐿(𝑤 − 𝜂∇C𝐿(𝑤))

C𝐿

Gradient descent
• Goal: find 𝑤 to minimize loss =𝐿(𝑤)
• Start with some initial estimate of 𝑤
• Repeat until convergence:

• Find ∇C𝐿(𝑤), the gradient of the loss w.r.t. 𝑤
• Take a small step in the opposite direction: 𝑤 ← 𝑤 − 𝜂 ∇C𝐿(𝑤)

𝑤"
𝑤$

C𝐿

Gradient descent
• Goal: find 𝑤 to minimize loss =𝐿(𝑤)
• Start with some initial estimate of 𝑤
• Repeat until convergence:

• Find ∇C𝐿(𝑤), the gradient of the loss w.r.t. 𝑤
• Take a small step in the opposite direction: 𝑤 ← 𝑤 − 𝜂 ∇C𝐿(𝑤)
• 𝜂 is the step size or learning rate

Figure source

https://www.slideshare.net/ssuserf88631/scalable-machine-learning-73621818

Full batch gradient descent
• Since =𝐿 𝑤 = "

,
∑&+", 𝑙 𝑤, 𝑥& , 𝑦& , we have

∇=𝐿 𝑤 =
1
𝑛
>
&+"

,

∇𝑙 𝑤, 𝑥& , 𝑦&

• For a single parameter update, need to cycle through the
entire training set!

Stochastic gradient descent (SGD)
• At each iteration, take a single data point 𝑥& , 𝑦& and perform

a parameter update using ∇𝑙 𝑤, 𝑥& , 𝑦& , the gradient of the
loss for that point:

𝑤 ← 𝑤 − 𝜂 ∇𝑙 𝑤, 𝑥& , 𝑦&

• This is called an online or stochastic update
• In practice, mini-batch SGD is typically used:

• Group data into mini-batches of size 𝑏
• Compute gradient of the loss for the mini-batch 𝑥!, 𝑦! , … , (𝑥", 𝑦"):

∇C𝐿 =
1
𝑏
F
>?-

@

∇𝑙(𝑤, 𝑥> , 𝑦>)

• Update parameters: 𝑤 ← 𝑤 − 𝜂∇C𝐿

SGD for logistic regression
𝑙 𝑤, 𝑥& , 𝑦& = − log 𝜎 𝑦&𝑤.𝑥&

• Let’s find the gradient:
∇𝑙 𝑤, 𝑥& , 𝑦& = −∇- log 𝜎 𝑦&𝑤.𝑥&

= −
∇-𝜎 𝑦&𝑤.𝑥&
𝜎 𝑦&𝑤.𝑥&

• Derivative of log:

log 𝑔 𝑎
9
=
𝑔′(𝑎)
𝑔(𝑎)

SGD for logistic regression
𝑙 𝑤, 𝑥& , 𝑦& = − log 𝜎 𝑦&𝑤.𝑥&

• Let’s find the gradient:
∇𝑙 𝑤, 𝑥& , 𝑦& = −∇- log 𝜎 𝑦&𝑤.𝑥&

= −
∇-𝜎 𝑦&𝑤.𝑥&
𝜎 𝑦&𝑤.𝑥&

= −
𝜎 𝑦&𝑤.𝑥& 𝜎 −𝑦&𝑤.𝑥& 𝑦&𝑥&

𝜎 𝑦&𝑤.𝑥&
Derivative of sigmoid:

𝜎9 𝑎 = 𝜎 𝑎 1 − 𝜎(𝑎) = 𝜎 𝑎 𝜎 −𝑎

SGD for logistic regression
𝑙 𝑤, 𝑥& , 𝑦& = − log 𝜎 𝑦&𝑤.𝑥&

• Let’s find the gradient:
∇𝑙 𝑤, 𝑥& , 𝑦& = −∇- log 𝜎 𝑦&𝑤.𝑥&

= −
∇-𝜎 𝑦&𝑤.𝑥&
𝜎 𝑦&𝑤.𝑥&

= −
𝜎 𝑦&𝑤.𝑥& 𝜎 −𝑦&𝑤.𝑥& 𝑦&𝑥&

𝜎 𝑦&𝑤.𝑥&
• We also used the chain rule: 𝑔$ 𝑔" 𝑎

9
= 𝑔$9 𝑔" 𝑎 𝑔"9(𝑎)

SGD for logistic regression
𝑙 𝑤, 𝑥& , 𝑦& = − log 𝜎 𝑦&𝑤.𝑥&

• Let’s find the gradient:
∇𝑙 𝑤, 𝑥& , 𝑦& = −∇- log 𝜎 𝑦&𝑤.𝑥&

= −
∇-𝜎 𝑦&𝑤.𝑥&
𝜎 𝑦&𝑤.𝑥&

= −
𝜎 𝑦&𝑤.𝑥& 𝜎 −𝑦&𝑤.𝑥& 𝑦&𝑥&

𝜎 𝑦&𝑤.𝑥&
= −𝜎 −𝑦&𝑤.𝑥& 𝑦&𝑥&

• SGD update:
𝑤 ← 𝑤 + 𝜂 𝜎 −𝑦&𝑤.𝑥& 𝑦&𝑥&

SGD for logistic regression
• Let’s take a closer look at the SGD update:

𝑤 ← 𝑤 + 𝜂 𝜎 −𝑦&𝑤.𝑥& 𝑦&𝑥&
• What happens if 𝑥& is incorrectly, but confidently, classified?

• The update rule approaches 𝑤 ← 𝑤 + 𝜂 𝑦>𝑥>
• What happens if 𝑥& is correctly, and confidently, classified?

• The update approaches zero (but never actually reaches zero)

SGD for logistic regression
• Logistic regression does not converge for linearly separable

data!
• Scaling 𝑤 by ever larger constants makes the classifier more

confident and keeps increasing the likelihood of the data

Image source

https://i.stack.imgur.com/KcX81.png

SGD for logistic regression
• Logistic regression does not converge for linearly separable

data!
• Scaling 𝑤 by ever larger constants makes the classifier more

confident and keeps increasing the likelihood of the data

Source: J. Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/WI2022/598_WI2022_lecture04.pdf

